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ABSTRACT
Recent research has successfully shown brand newmodels withWi-
Fi signals explaining space dynamics, assessing social environments,
and even tracking people’s posture, gesture and emotion. However,
these models are seldom used in real execution and operating envi-
ronments, i.e., on residential gateways with networking tasks. In
this paper, we present the first, albeit preliminary, measurement
study of common Wi-Fi sensing models on a residential gateway.
This investigation aims to understand the performance character-
istics, resource requirements, and execution bottlenecks for Wi-Fi
sensing when being used in parallel with communication tasks.
Based on our findings, we propose two optimisation techniques - i)
dynamic sampling and ii) dynamic planning of inference execution -
for optimumWi-Fi sensing performance without compromising the
quality of communication service. The results and insights lay an
empirical foundation for the development of optimisation methods
and execution environments that enable sensing models to be more
readily integrated into next-generation residential gateways.
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1 INTRODUCTION
Recent compelling research has reimagined a commodity Wi-Fi de-
vice as a multi-purpose sensor capable of turning radio signals into
a rich source of computational information explaining space dynam-
ics, assessing the social environment and even tracking people’s
posture, gesture and emotion [1, 2, 4, 6–9]. A common intuition
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is that multi-path Wi-Fi signals emitted from a transmitter are af-
fected by human body and movement before reaching a receiver,
i.e., human body reflects, scatters, and blocks the signals. The signal
patterns can be learned to model a variety of motion-based human
activities. Conventional approaches seek to associate these signal
patterns acquired from channel state information (CSI) with hu-
man activities through training classifiers on top of often bespoke
features, e.g. statistical distributions and Doppler variations.

Although these approaches demonstrated the potential of Wi-Fi
sensing in a brand new class of applications, they are seldom used
in real execution environments, i.e., on a residential gateway, and
in real operating environments, i.e., when the gateway is equipped
with networking tasks. We argue for unleashing the true potential
of Wi-Fi signals as a general-purpose human sensing modality. We
need to turn our attention to developing a sound understanding
of runtime behaviour of these models on a residential gateway,
the natural, economically practical, and privacy-preserving exe-
cution environment of these class of models. One may argue for
leveraging the cloud server to process the CSI data, but it is not
practical considering the data volume; e.g., 0.54 million numbers
are generated every second at 1 kHz of CSI sensing (See Section 2.1
for the details.) It also naturally brings the privacy issues.

To this end, in this paper, we present a measurement study of
common shallow and deep Wi-Fi sensing models for human oc-
cupancy and physical activity detection on a representative resi-
dential gateway platform. We systematically explore the runtime
behaviour of the platform under various communication and sens-
ing workloads to uncover the performance characteristics, resource
requirements, and execution bottlenecks for Wi-Fi sensing models.

Based on our findings, we propose two optimisation techniques
for Wi-Fi sensing on commodity residential gateways. The first
technique dynamically shapes the sampling rate of the sensing
pipeline based on resource utilisation, leveraging a combination
of sparse and downsampling mechanism. The second technique
dynamically schedules the inference execution to achieve optimum
Wi-Fi sensing performance without compromising the quality of
communication service. The results and insights of this study offer
an empirical foundation for the faster integration of optimised
Wi-Fi sensing pipeline into next-generation residential gateways.

2 STUDY PRELIMINARIES
2.1 Wi-Fi Sensing Primer
As depicted in Figure 1, the Wi-Fi sensing model consists of a pair
of transmitter and receiver devices in the environment. There are
many paths by which electromagnetic energy travels between the
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Figure 1: Wi-Fi signal propagation characteristics.

(a) Banana Pi R2 (b) HummingBoard i2eX

Figure 2: Hardware devices.

transmitter and receiver. When people move, they disturb the mul-
tipath profile in the environment, which is the linear superposition
of a number of paths. For instance, Figure 1 shows two static paths:
the direct line-of-sight (LOS) and reflected non-line-of-sight (NLOS)
path. When a human subject walks from left to right in the figure,
a dynamic path is modulated by this movement. We build sensing
models by analysing their temporal patterns at the receiver.

For each transmitter-receiver pair, the superposition of multi-
paths in the time domain is described by aNsc -dimensional frequency-
domain CSI H corresponding to a sampling of OFDM subcarriers
across the bandwidth.1 As such, the transmitted signal X can be
related to the received signal Y through this input-output channel
response relationship according to Y = HX . A MIMO system gener-
alises this input-output relationship for Ntx transmitters and Nrx
receivers. For instance, if we have 3 transmitters and 3 receivers,
the channel is described as a 3 × 3 × 30 tensor of complex num-
bers each representing the amplitude and phase response of the
respective subcarriers. Typically these CSI tensors are modelled
with a purpose-built signal processing pipeline to detect a variety
of human activities induced by kinetic movements.

2.2 Representative Hardware
For the benchmark study, we used two commodity hardware de-
vices, Banana Pi R22 and HummingBoard-i2eX3. Figure 2 shows
the hardware devices and Table 1 details their configurations. We
selected Banana Pi R2 for the networking benchmark as it is an
open-source router and already used by a number of commercial
third-party home-network routers.

We used HummingBoard-i2eX for the sensing benchmark as it
supports CSI reading and also has the similar processing capability
to Banana Pi R2. CSI is captured on commodity wireless NICs as
1e.g. Nsc = 30 for the widely used Intel 5300 chip.
2http://www.banana-pi.org/r2.html
3https://www.solid-run.com/nxp-family/hummingboard/

Banana Pi R2 HummingBoard i2eX
CPU MediaTek MT7623N,

Quad-core ARM A7
iMX6 D, Dual core
1.0GHz ARM A9

Memory 2GB DDR3 1GB DDR3
Ethernet MT7530, 1 × WAN

and 4 × LAN
AR8030, 1 × Ethernet

Wi-Fi MT6625L Intel 5300
Table 1: Specification of the hardware used in the study.

estimated by the physical layer, but the access to raw data from
the application layer is highly limited. The most common way is to
use Intel Wi-Fi Wireless Link 5300 and the CSI tool with a custom
modified firmware and open source Linux wireless driver [5], and
it is supported by HummingBoard-i2eX.

For resource monitoring, we used atop, a light-weight resource
monitoring tool.Wemeasured CPU andmemory usage of the device
at the interval of one second.

2.3 Representative Sensing Models
We developed two sensing models, one for occupancy detection,
i.e., number of people, and the other for activity recognition, i.e.,
standing, sitting, or walking. These contexts are simple but provide
instrumental cues to a broad range of home applications including
smart energy metering, elderly monitoring, and intrusion detection.

Occupancy detection: We employ a light-weight shallow clas-
sifier borrowing from [3]. The model collects CSI data at 500 Hz and
takes a 10-second window of data as an input. Then, it extracts tem-
poral variations, e.g., variations of distances between consecutive
samples, and applied for linear discriminant analysis (LDA).

Activity recognition:We employ a purpose-built deep neural
network model, consisting of three convolution layers, three LSTM
layers, and one softmax output layer. The model samples CSI data
at 1 kHz and segments the stream into 3 second-window frames.
Then, it passes a time series of amplitude and phase values to the
first convolution layer. The softmax layer outputs the probability
of the activity classes. The model is processed every 10 seconds.

It is important to note that we do not argue that the described
models are representative for each context. Our goal is to cover
different workload characteristics of Wi-Fi sensing rather than op-
timising the accuracy. Thus, we intentionally chose different types
of pipelines, i.e., one with the statistical features and a shallow clas-
sifier and the other with raw CSI data and deep learning network.

3 BENCHMARK STUDIES
Our first set of experiments are designed to assess the runtime
performance of a representative residential gateway, i.e., Banana
Pi R2 under various networking loads. Next, we look at how the
platform behaves under sensing tasks, e.g., end-to-end execution of
occupancy and activity detection models. We expect, the outcome
of these experiments will uncover the feasibility of running sensing
tasks on residential gateways in parallel to networking tasks.

3.1 Benchmark for Networking Workloads
We study CPU and memory usage on Banana Pi R2, the representa-
tive residential gateway, under various communication workloads.
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Figure 3: CPU usage under various networking workloads

Experimental setup: To systematically explore the impact of
communication workloads on the resource usage, we synthetically
generate the workloads using iPerf 4, a network speed test tool. For
routing tasks, we connected one laptop to Banana Pi R2 via a WAN
port and the other laptop via a LAN port. We configured iPerf server
on the WAN-connected laptop, i.e., listening on a network port, and
iPerf client on the LAN-connected laptop, i.e., transmitting the data.
To ensure the consistency of the networking behaviour between
two different platforms, we also conducted the benchmark study
on HummingBoard-i2eX. However, we found out that its routing
capacity is much limited compared to that of Banana Pi R2 even
though they have similar performance capacity. We omit the result
on HummingBoard-i2eX due to page limit.

Results and implications: We measure CPU and memory
usagewhile increasing the bandwidth to send from the client. Figure
3 shows the CPU usage of components on a single CPU core; system
and user are when CPU is running kernel code and user-level code,
respectively and routing is when the kernel is servicing network
routing requests. The results show that the overall CPU usage
significantly increases as the network traffic to route increases. It
implies that home routers consume nontrivial CPU resource even
for the communication task only. The CPU usage of system and user
is insignificant when the bandwidth exceeds 400 Mbits/sec, because,
the priority for routing interrupt request (IRQ) is higher than that
of system and user. Interestingly, even with the full bandwidth, we
can observe high CPU usage only on a single core, which means
the other three cores are mostly idle. We conjecture that routing
mechanism is not optimised yet on Banana Pi R2. Interestingly,
different from CPU usage, the memory usage hardly changes, i.e.,
mostly remains around 370 MB regardless of the bandwidth.

3.2 Benchmark for Sensing Workloads
We then investigate the resource usage of Wi-Fi sensing on Hum-
mingBoard i2eX. For the workload, we consider the tasks for send-
ing and receiving wireless packets at different sampling rates. These
packets are then passed to different sensing models to assess the
overall resource footprint of the board.

Experimental setup: We configure two HummingBoards, one
as a transmitter and the other as a receiver. We transmit and receive
wireless packets via Intel 5300 in 5 GHz carrier and 40 MHz band-
width. We vary the packet transmission rate (sampling rate) as it is
an essential part of sensing pipeline and the resource usage of subse-
quent processing. We then connect the two representative sensing
models for occupation detection and physical activity recognition
4https://iperf.fr
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Figure 4: CPU usage under various sensing workloads

independently, i.e., we first test the occupancy detection model to
assess its resource footprint, and then repeat the experiment with
the activity recognition model.

Results and implications: We measure CPU and memory us-
age while increasing the sampling rate of CSI packets. Figure 4
shows the results; we omit the memory usage because it does not
increase much even at the maximum rate. HummingBoard uses a
considerable amount of CPU even for CSI reading only. With 1 kHz,
one of the widely used parameters in the literature, a transmitter
and a receiver use 20% and 51% of CPU, respectively. Interestingly,
a receiver uses much more CPU than a transmitter, around 2 to
3 times primarily due to the Linux CSI Tool [5] intercepting, and
parsing CSI data. We also notice the resource footprint of models
increasing gradually with higher sampling rates. For simplicity, we
only look at their execution behaviour without assessing classifica-
tion performances. Naturally, shallow occupancy detection model
demands lower CPU cycles than the deep activity detection model.
However, as the sampling rate reaches over 1kHz, the resource
requirements of these models are reasonably high.

3.3 Key Takeaways
Mainly, there are two critical takeaways from our benchmark stud-
ies. Firstly, residential gateways use a non-trivial amount of re-
sources for network services and Wi-Fi sensing. Secondly, since
the resource demand of network processing changes dynamically
depending on ongoing traffic, runtime adaptation of CSI sampling
and inference execution schedule are needed for integrating Wi-Fi
sensing on residential gateways. In the next section, we reflect on
these issues by offering two optimisation techniques.

4 OUTLOOK
Based on our findings, we propose potential ways for dynamic run-
time adaptation of Wi-Fi sensing. The key idea is to obtain multiple
processing options for a sensing model and dynamically select the
best one based on the available resources. In this section, we present
two techniques that can generally be applied without any knowl-
edge and modification of inference pipelines, dynamic sampling
and resource-aware execution planning. Then, we demonstrate the
early assessment of our techniques on HummingBoard with the
simulated CPU usage.

4.1 Dynamic Sampling
The sampling rate of CSI sensing determines how densely and fre-
quently the model senses human body and movement. Generally,
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(a) Occupancy detection
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(b) Activity recognition

Figure 5: Behaviour of dynamic sampling

the high sampling rate is known to be advantageous to detect fine-
grained activities, e.g., 2.5 kHz for speed modelling of limbs [7], but
also causes high processing costs due to a large amount of data to
process. Thus, a simple but effective way for the optimisation is
to downsample CSI sensing from a transmitter, i.e., choosing the
maximum sampling rate in a way of not compromising the quality
of the communication tasks. It may sacrifice the accuracy of the
model to some extent but guarantees seamless context monitoring.
Downsampling is effective especially when multiple receivers re-
ceive and process broadcast packets from a single transmitter as
it can easily control the resource usage for Wi-Fi sensing in the
whole network. Another alternative is sparse sampling, which is
conducted on a receiver side by selectively discarding the received
packets. For example, when a transmitter sends wireless packets
for CSI sensing at 1 kHz, a resource-scarce receiver can uniformly
discard three-quarter packets and process the inference pipeline
with 250 Hz CSI data. The dynamic sampling technique is for the
sensing models which are robust to different sampling rates, e.g.,
the ones using statistical features. We can also assume that the
model developers provide multiple models with different sampling
rates for runtime adaptation.

Figure 5a and 5b show the behaviour of the dynamic shaping
of CSI sampling for the two sensing models, i.e., the dynamically
selected sampling rate (single dots) and corresponding CPU usage
(dotted line); a solid line represents the simulated CPU usage of
networking tasks. The results show that the technique maximises
the sampling rate with given CPU availability. The CPU usage
of network tasks (solid line) increases, i.e., as the available CPU
decreases, the technique chooses the lower sampling rate to reduce
the CPU usage of CSI sensing, but themaximum one among possible
rates. The whole CPU usage (sum of a solid line and dotted line)
remains between 90% and 100%.

4.2 Resource-aware Execution Planning
Another opportunistic way for the sensing model-opaque adapta-
tion is to change the interval of pipeline execution dynamically.
Frequent pipeline execution guarantees shorter latency of context
updates but also increases the overall resource use. In the tolerable
range of the interval defined by the application, resource-aware
execution planning dynamically chooses the minimum interval of
the pipeline execution to be constrained without compromising the
quality of networking.

Figure 6a and 6b show the behaviour of the resource-aware exe-
cution planning for the two sensingmodels. Similarly, the technique
chooses a longer execution interval (but the shortest one that makes
the whole CPU usage less than 100%.), when the available CPU
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Figure 6: Behaviour of resource-aware execution planning

decreases, i.e., when the CPU use of networking tasks increases.
Note that, here, longer execution interval means lower CPU use.

4.3 Discussion and Future Work
To build and evaluate the end-to-end runtime adaptation system, we
further need to consider several more aspects. First, for the system
development, we need a technique that predicts the short-term
future communication bandwidth, e.g., for next 5 seconds. Based on
it, we need a scheduling algorithm that chooses the best execution
parameters for Wi-Fi sensing, i.e., sampling rate and execution
interval, while considering two optimisation techniques at the same
time. Second, regarding the evaluation, our preliminary study was
limited to the synthetically generated networking workload and
the analysis of the resource usage. We plan to validate our system
on top of the real networking workloads and investigate the impact
of the adaptation on the quality of the networking and sensing
services. We leave those as future work.
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