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ABSTRACT
Online reviews are used on the large scale to assess the quality and
reputation of urban venues like hotels, restaurants, museums, etc.
However, contributing reviews requires manual effort in the digital
world, undertaken by only a small fraction of a venue’s visitors.
In this position paper, we present a framework that automatically
assigns an offline reputation score by only relying on the physical
presence of a user at a venue. In our approach, we passively cap-
ture the list of preferred WiFi networks (PNL) radiating from users
smartphone as part of WiFi Probe requests in order to anonymously
detect similar and recurrent users and to derive a personalised rep-
utation score for an urban venue. By leveraging these ubiquitous
WiFi radio signals, we seek to gather participation from a much
broader set of visitors than online contributors. In this position
paper, we outline our scoring technique, an early prototype archi-
tecture and discuss the potential of the proposed framework.
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1. INTRODUCTION
As the urban cities grow and expand, the number of venues and

Points of Interests (PoIs) in the cities and services that are avail-
able to the citizens is also growing rapidly. However, our source
of information about the quality and reputation of these PoIs and
venues has been confined to online resources such as TripAdvisor1

and Yelp2.
Although these sources provide valuable and often very thorough

information regarding places and venues, their coupling of physical

1http://www.tripadvisor.com/
2http://www.yelp.com/
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places’ information to the online world imposes various limitations.
First, the reviews and scores of these systems are reflective of the
opinion of only those customers who have contributed their feed-
back to these websites, as opposed to the bigger population sample
of everyone who visited the place. Secondly, in gathering these
feedbacks the social relation between the visitors is not taken into
account. That is the user is not aware whether the review score of
a place was contributed by her social relations (e.g., her friends or
family) or people similar to her. Finally, by design, the usage of on-
line reviews and reputation scores imposes the user to pre-plan and
seek this information in advance to visiting a place, taking away
the spontaneous facet of discovering new places.

In this paper we overcome these limitations by introducing an of-
fline spatial scoring mechanism, where information from everyone
who has visited a venue is anonymously captured and used to derive
a spatial score - quantification of the reputation of an urban venue
based on physical visit patterns of similar and socially intimate
users. In so doing we propose a framework which relies on non-
obtrusive radio signals originating from the crowds who have vis-
ited a place in the past without the need for any application or direct
participation. These radio signals, namely WiFi probe requests,
contain a list of previously connected Access Points (APs) for each
user, referred to as the Preferred Network List (PNL). We then
ground our work over the theories of homophily [7] and argue that
similar people enjoy similar activities and therefore are more likely
to exhibit common APs in their PNL. For example, family mem-
bers and partners are likely to have a very similar PNL, whereas
colleagues would exhibit less commonality in the previously con-
nected APs (i.e., PNLs). However, the homophily is not limited
only to the friendship and social relationships that are known to us
face-to-face but it also includes the familiar strangers, those who
we regularly observe in different urban spaces we inhabit without
directly interacting with them [8]. Leveraging the captured PNLs,
we define a spatial score as a personalised similarity score between
the visitor and all those who visited the PoI in the past.

Our proposed framework offers an alternative to the existing on-
line spatial reviewing resources, and decouples the PoIs’ informa-
tion from the current Web 2.0 platform. By doing so, we lift the
above three obstacles. More specifically, our system leverages in-
put from everyone who visited the place carrying a WiFi enabled
device to derive this spatial score, thus taking into account a much
bigger population sample than the online contributors. Our ap-
proach also allows us to discover social relations of those who pre-
viously visited the place, enabling us to calculate the spatial score
in a personalised way. Furthermore, our framework captures PNLs
and communicates back the spatial score to the user without the
need for the users device to be connected to the Internet at any



point. In this position paper we describe the spatial score, an early
architecture and evaluation plan of the envisioned framework.

2. BACKGROUND
We start by offering a primer on the dynamics of WiFi manage-

ment frames, that provides the foundation of our framework. We
then position our work against past research on WiFi probe based
service design.

2.1 Probes and Preferred Network Lists
Apart from data packets, mobile device exchanges overhead mes-

sages with APs to manage wireless connections. Control Frames,
for example, regulate access to an AP and make sure that two de-
vices do not transmit packets at the same time. In addition, devices
and APs exchange Management Frames that are used for authenti-
cation and association with a wireless network.

In our work we are interested in a particular type of management
frame, Probe Request, which devices use to actively discover avail-
able APs. If a probe request is populated with a Service Set Identi-
fier (SSID) field, i.e., the name of the network the AP serves, then
it is directed to a particular WiFi network. Otherwise, it is regarded
as a broadcast probe request looking for any available network. The
destination address and the Basic Service Set ID (BSSID, i.e., the
MAC address of the AP) is always set to a broadcast address (i.e.,
“ff:ff:ff:ff:ff:ff”). Figure 1 shows an example of a directed probe
that looks for a specific network called “Hilton NY”.

A mobile device sends probe requests for every network it was
connected to in the past with the corresponding SSID at the vendor-
specific time intervals, depending on the power state of the device
and the connection state of the WiFi chip3 . This list of networks
(SSIDs) is denoted as the user’s Preferred Network List (PNL). If
an AP receives a probe request that is either broadcasted or con-
tains its SSID, it replies with a Probe Response frame to inform the
device about its proximity. If the SSID of the AP is in the PNL of
the device, the device and the AP exchange the authentication and
association frames to connect the device to the AP. Unlike a probe
request, a probe response is always directed to a specific device. In
a probe response, the source address and BSSID are set to the MAC
address of the AP whereas the destination address corresponds to
the MAC address of the device from which the probe request was
received.

Since probe requests are not encrypted, they can easily be in-
tercepted even if they are directed to a particular SSID. In our
framework, we capture probe requests originating from users’ de-
vices (as a proxy of visitors of a place), and reconstruct PNLs from
them (as a proxy of a visitor’s familiar places) allowing us to de-
tect homophily. That is, we derive a similarity score from a PNL
by comparing it with previously captured PNLs. The result is later
communicated back to the user in a probe response. Since this re-
sponse is directed to a specific device, we can add in personalised
information, which the device OS or specific apps can interpret and
visualise accordingly.

2.2 Related Work
WiFi probes have been used in the past for various purposes in-

cluding user tracking [5, 9, 10, 12] and discovering users’ social re-
lations [2, 4]. The Preferred Network List of the probes has been
exploited by Barbera et al. [2] to discover the social relations be-
tween individuals through modelling similarity as a graph. The
Adamic-Adar similarity was used to smooth out the influence of

3When not connected to a WiFi network, mobile devices typically
send probe requests every 15 to 60 seconds.

Figure 1: A (partial) Probe Request originating from a device with
MAC address “90:68:c3:be:34:9f” that is looking for an AP with
SSID “HILTON NY”.

frequently used Access Points, through discounting the importance
of the APs logarithmically. The authors also studied the other as-
pects of homophily such as device type and the language of those
socially linked users. Similarly, Cunche et al. [4] used PNLs to
decide whether two devices potentially belong to socially linked
users. While these works focus on detecting and inferring the users’
social relationships, we aim to take a rather different perspective
and focus on profiling places rather than users. In so doing, we ex-
ploit the information provided through the probes of the visitors to
derive a spatial score for each place.

3. ARCHITECTURE
In our architecture, we rely on existing wireless networking in-

frastructure which we augment with two small software modules
as depicted in Figure 2: a module responsible for capturing and
storing PNLs from WiFi-enabled user devices and a module that
computes personalised spatial scores based on these PNLs. For the
sake of simplicity, the figure shows our architecture for a place with
a single AP. However, it should be noted that it can easily scale up
to places with multiple APs by moving shared storage facilities and
the spatial scoring module into the cloud. With flexible firmwares
like OpenWRT4, modifications to legacy APs become feasible such
that we can leverage open existing hardware. Moreover, we envi-
sion that network-centric sensing becomes more and more adopted
in future small cells, in order to offer a plethora of location-based
values such as place recommendations to users within signal range.

Figure 2: Software modules deployed on urban WiFi APs engaging
in a dialog with a user’s personal device.

3.1 Radio Signal Module
We use the WiFi interface of an AP to listen to probe requests

directed to any AP on a fixed channel. By doing so, we extract two
sets of information from the broadcasting device, that is the PNL
list of the device, as well as information regarding the presence of
the device in the current location. To obtain the PNL of a device,
we aggregate captured probe requests based on their source MAC
address (which identifies a single device) over a pre-defined time
4http://openwrt.org/



interval. While we can rely on the MAC address of the device to
remain consistent over a short transmission time (e.g., probe re-
quests), we cannot assume the same consistency during the longer
time intervals (e.g., hours, days) due to MAC randomisation strate-
gies that are put in place to protect user’s privacy. To address this
problem, we use the PNL itself as an identification of the device, as-
suming that the PNL is unique to each individual and along with ad-
ditional sensing information (e.g., frequency of probing) can serve
as the individual’s identifier [11] replacing the dependency on the
MAC address.

In addition to serving as an identifier, the PNL also presents
the previous places that the person had visited and connected to
their WiFi APS. However it falls shorts from capturing those places
which the user has visited in the past without connecting to the
WiFi available in the place. To account for these cases, we ex-
tract another set of information regarding the device’s presence in
a venue. We do so by monitoring the time of the first probe and
last probe seen from the device, allowing us to infer the duration
that the device stayed in the venue. Based on this information we
construct a virtual list similar to the PNL, which we store in the
cloud database. This list contains the device identifier, the SSID
along with the BSSID of the APs (that receives the probe request)
as well as any additional pieces of information such as frequency or
duration of visits, which are not available on the device-maintained
PNLs but can be sensed and monitored from the infrastructure. By
capturing the duration information, we can filter the short visits
(e.g., seconds) that may correspond to a person passing by but not
visiting the place. The frequency on the other hand can give us an
indication of the topophilia [13] or the attitude and the perception
of the user towards the place, that is if the person feels the “sense
of belonging” they are more likely to visit the place again. Finally,
we construct a list of visited places by extracting the SSIDs out of
both the captured device-maintained PNLs as well as the virtually-
constructed PNLs, which will later be used to infer the homophily
amongst users.

Finally, this module is also responsible for communicating the
inferred spatial score back to the user. We do so by relying on
“beacon stuffing” [3]. In this approach, extra information is en-
capsulated in WiFi management frames such that no active WiFi
connection needs to be established with the AP (for which a user
might not have proper credentials). For instance, a device can ping
an AP with a directed probe request which is replied by the AP with
a directed probe response in which the inferred spatial score could
be embedded in (e.g., in vendor-specific fields that are reserved in
WiFi management frames). At the device end, the spatial score can
then be extracted from a received probe response and delegated to
a notification service (as part of the mobile OS) to which local ap-
plications can subscribe and hence leverage the spatial scores as
location-based context information.

3.2 Spatial Scoring Module
In order to calculate a personalised spatial score of a PoI for a

user we first construct a vector v which includes the captured PNLs
from the user as well as the virtually-constructed PNLs. We refer
to this union vector simply as PNL henceforth. We then compute
a pairwise comparison of this vector with all the previously stored
PNLs. As each PNL corresponds to a vector (v) of previously con-
nected APs, the pairwise comparison essentially captures whether
an element of vector v is also observed in any other PNL (regardless
of its position in the vector). However, not all the commonly seen
APs carry the same importance. Consider for example a common
AP match with SSID “Vodafone Hotspot”. The fact that it was seen
by two persons in the past, tells us very little about the homophily

between them as the widely distributed “Vodaphone Hotspot” APs
do not uniquely identify a place. Therefore, we require to give a
weight to the elements of a PNL list: private APs such as those at
home or at the office are more unique and hence deserve a higher
weight. We use TF-IDF [6] to associate a weight wu to each AP
based on its uniqueness.

As well as accounting for the uniqueness of the APs, we need to
consider the frequency of individuals visiting a given PoI, as it gives
us an indication of the users interest to (approval of) a place. How-
ever, this information is not stored on the mobile device or inside
WiFi probes, as the PNL only specifies the previously connected
APs regardless of how many times a device has been connected
to that AP. We account for this reoccurrence weight by keeping a
simple counter (as explained in the previous section), representing
the number of visits from a given device to a given PoI. We nor-
malise this counter per user and refer to this normalised weight as
recurrence weight and denote it as wr .

Finally, the weight w brings together the uniqueness and recur-
rence weight for each previously connected AP as: w = γ ∗ wu +
β ∗wr , where γ and β are constants. We then formulate our spatial
score as an average weighted similarity score, wi if the ith member
of the PNL is also observed in v′ as follows:

f(v, v′) =

n∑
i=1

wi

|v|
where n denotes the number of common APs between v and

v′ and |v| corresponds to the number of all previously connected
APs of the query device. This metric has two desirable properties.
Firstly, it can capture whether others similar to the user visited the
same place. We define these relations in terms of three categories
of self, friends and familiar strangers and detect them based on
setting a threshold for the similarity score. Secondly, this metric
can capture the ageing effect, that is if a user visited the same place
in the distant past her similarity score would decay over time as her
list of preferred connections (PNL) would have also changed over
time. Thus allowing us to discount the spatial score for those places
that the user has stopped visiting.

Figure 3: The spatial score distribution for a user at public versus
private spaces.

As the result of calculating this score across all v′s that are seen
in the same venue, we can build a distribution for the user for the
specific place. We refer to this distribution as the spatial score
distribution. We claim this distribution would take two different
shapes depending on the type of the spatial venue. For the private
spaces where individuals can inhabit a space by being part of a spe-
cific social circle, this distribution would resemble the integral of



Figure 4: The spatial score modeled as Pareto distribution.

the standard normal distribution as depicted in Figure 3 where the
x-axis presents each of the previously seen PNLs (ranked v′) and y-
axis presents the computed similarity f(v, v′). The expected distri-
bution shape of the private places is therefore due to the larger num-
ber of similar users (i.e., pairwise similarity comparison). However,
for public spaces such as PoIs common to urban cities we expect
a long tail distribution (the dashed line in Figure 3) to be observed
as it reflects that the place is visited by many strangers. In this pa-
per we are interested in the common public urban venues and thus
expect to observe the latter type of the distribution.

However, depending on the similarity of the past visitors the
long-tail distribution is expected to exhibit different properties. For
example, the majority of the spatial scores (that is the top 80%)
could have resulted from only 20% of the past visitors, resulting
in a Pareto distribution, or coming from even a lesser percentage
of the past visitors. Figure 4 illustrates variations of the spatial
score (long tail) distribution for three cases. While the dotted line
presents the Pareto principle of 80-20, the dashed line presents the
scenarios where the high spatial similarity score is only contributed
by a few. The solid line on the other hand presents the cases where
the top spatial score is contributed by 30% of the past visitors, thus
indicating an increased likelihood of the users’ homophily.

We can capture these differences in the distributions through the
shape parameter α of the distribution. The smaller the α, the more
percentage of the past visitors were found to be similar with the
current user. As α grows bigger, the power law property of the
distribution becomes more announced corresponding to the cases
where very little similarity with all the past visitors exists. The
final result for each user for a given place is thus a combination of
the mean (µ) of the distribution and the shape (α) parameter, which
is communicated to the user’s device through probe response. This
personalised reputation score can then be presented to the user in a
semantically rich way for example through icons.

4. CONCLUDING REMARKS
In this position paper, we propose a spatial scoring technique

together with an early prototype architecture to quantify the rep-
utation of an urban venue using everyday WiFi radio signals that
emit from users smart phones. As a future avenue of this work, we
are currently implementing our framework for a real world eval-
uation. Our implementation is based on Meshlium devices from
Libelium [1] which have all the properties of a real WiFi AP in-
cluding the ability to easily program them. A Meshlium features
a 500 Mhz x86 processor, two WiFi interfaces (one of which acts
as an AP by default) and runs an embedded Debian Linux operat-
ing system. Furthermore, in order to communicate and visualise

the spatial score to the user, we are currently developing an An-
droid application. This application primarily acts as a widget and
displays the received spatial score in different colours with seman-
tically rich labelling for easy user interpretation. We plan to deploy
this framework and its accompanied application starting in spring
2015, with a pool of 50 users. To avoid unmanageable data spar-
sity, users will be selected so that their mobility mainly covers a
restricted area in the city, with good overlaps (e.g., university staff
and students). We will assess the usability of our system through
surveys and structured interviews.
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