
International Journal of Smart Home

Vol. 2, No. 3, July, 2008

1

Prottoy Middleware Platform for Smart Object Systems

Fahim Kawsar1, Kaori Fujinami2 and Tatsuo Nakajima1
1Waseda University, Tokyo, Japan.

2Tokyo University of Agriculture and Technology, Tokyo, Japan
{fahim, tatsuo}@dcl.info.waseda.ac.jp, fujinami@cc.tuat.ac.jp

Abstract
This paper presents a middleware platform, Prottoy for the development of smart object
systems. A smart object has some specific characteristics e.g., augmentation variation,
perceptual feedback provision, push-pull model, etc. In addition a smart object could be
stand-alone, co-operative or associated with an external application. Generic pervasive
middlewares have no clean support for accommodating all these characteristics of smart
objects. Prottoy is designed by carefully observing the characteristics of smart objects and it
has taken a core-cloud approach to represent them digitally. A smart object’s common
functional features are combined together as a generic core and a collection of
supplementary service profiles represents the cloud that can be plugged-in atop the core.
Application developers are offered unified interfaces to interact bi-directionally (sense-
actuate) with the underlying smart objects isolating access issues completely regardless of the
smart objects' types and properties. Prottoy's hybrid architecture allows a smart object to be
stand-alone, co-operative or a part of an application. The benefit of our approach is twofold.
Firstly, the core-cloud artefact framework provides a lucid representation of smart object
that accommodates its specific features leading to a generic smart object model. Secondly,
Prottoy allows rapid development of smart object systems by providing unified interfaces with
high-level abstractions. In this paper, we discuss the background, technical details and the
qualitative evaluation of Prottoy.

1. Introduction

One of the consequences of pervasive technologies (e.g., miniaturization of the computer
technologies and proliferation of wireless internet, short-range radio connectivity, etc.) is the
integration of processors and tiny sensors into everyday objects. This has revolutionized our
perception of computing. We are in an era, where we communicate directly with our
belongings, e.g., watches, umbrella, clothes, furniture or shoes and they can also
intercommunicate. These everyday objects are now designed to provide supplementary
services beyond their primary purposes, an initiative that has been denoted as Smart Object
computing. It has drawn significant attention from the research community; primarily because
of its promising potential in various industries e.g., supply chain management, medicine,
environment monitoring, entertainment, smart spaces, etc. Another interesting application of
smart objects can be seen in its related field of sensor networking. Since, these smart objects
are often augmented with multiple sensors, a network of smart objects resembles a sensor
network. Consequently, smart object networks could be a practical approach for deploying
sensor networks. One additional advantage of such approach is that these objects are
facilitating sensing as a supplement to their primary established purposes.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

2

In this paper, we look at the system issues for these smart objects. In particular we discuss
two issues 1) a suitable artefact framework for representing smart objects and 2) a
middleware that enables the rapid development of smart object systems. Although context-
aware computing is often interchangeably used to denote smart objects systems, and several
middleware have been proposed in the literature [11, 13, 26, 28], we argue that a complete
smart object system cannot be confined with these middlewares' scopes. Three primary
reasons are:

1. A smart object's functionalities are highly influenced by the designer, and an object’s
functionalities are often scenario dependent. The system modeling object’s functionality
needs to be extremely flexible to accommodate the temporal roles of the object, i.e., an
object could be augmented initially with one specific function, and later other
functionalities could be added incrementally. Widget model used in existing middlewares
are unable to handle such multiple, ad-hoc, and incremental nature of smart objects due
to the one-to-one design paradigm.

2. A smart object could be stand-alone, co-operative or part of an application. Although,
existing middlewares support application to use multiple smart objects, they have no
clean support for stand-alone or co-operative smart objects.

3. Typically in context aware computing, tiny sensors are used to instrument the
environment for sensing physical phenomena and back end infrastructures are used to
model these sensors' data and to provide proactive services. However, smart objects are
often capable of both sensing and actuation. Thus the programming abstractions needed
for smart object systems are not equivalent to that of context-aware computing in general.

We will show why a generic context-aware platform is not suitable for smart objects and

accordingly present a rapid application development platform, Prottoy to meet the specific
requirements of smart objects. Our platform is centered on a self-contained core-cloud
artefact framework (artefact wrapper component of Prottoy; see section 5.1) where smart
objects common functional features are combined in a core, and its specific supplementary
service profiles (so-called smartness) can be plugged atop the core as clouds. This framework
supports a pure object oriented design methodology where smart functionalities are accessed
via the profile abstraction of an object's digital instance, which is in contrast with context and
service abstractions used in existing literature. Prottoy also follows hybrid architecture, where
an application layer component (virtual artefact component of Prottoy; see section 5.2) allows
infrastructure level support for application developers to interact with the self contained smart
objects. Such design allows Prottoy to support the development of stand-alone or co-operative
smart objects and also applications that integrate multiple smart objects. The application
component of Prottoy isolates all access level complexities and provides generic functions to
interact with the smart objects regardless of their types and properties. This makes Prottoy an
effective middleware for building and rapid prototyping smart object systems. We will justify
our claims by demonstrating a series of smart object systems built using Prottoy and positive
feedback from the developers who have utilized Prottoy in their projects.

1.1. Contribution

The contributions of this article are three-fold:

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

3

1. By analyzing the characteristics of smart objects, we present a core-cloud artefact
framework for representing smart objects. This framework can be used as generic smart
object architecture independent of middlewares.

2. We present a middleware Prottoy for smart object systems that enables rapid application
development utilizing a cleaner programming abstraction. Smart objects are represented
in the application space per se and profile abstraction is used to access its functions (i.e.,
sensing and actuation).

3. Finally, we present a several smart object systems built atop Prottoy to illustrate the
feasibility of our approach and share our development experiences.

In the next section we present an overview of smart objects and their characteristics. Then,

we position our research with respect to the related work. Next, we proceed to the design
issues and technical details of Prottoy. Then, we show the feasibility of our approach by
illustrating three smart object systems. Finally, we report some experiences with smart object
systems and conclude the paper.

2. Background: Smart Objects

The Oxford American Dictionary defines the terms Smart as "Having intelligence" and
Object as "A material thing that can be seen and touched". However, in pervasive computing
the term Smart Object has been used in several contexts. For example: low cost visual tagged
objects have been used in augmented reality environment, RFID tagged objects have been
used in supply chain management and other enterprise applications. Typically for these
objects, intelligence such as perception, reasoning and decision-making is allocated at the
infrastructure where only tracking, identification and sharing are done at the object end. Our
previous works on Sentient Artefact [19, 14] extend this model by incorporating sensing and
perception at the object end while managing reasoning and decision-making at the
infrastructure. In more sophisticated cases, intelligence is integrated into the object itself.
Examples are Mediacup by Beigl et al. [5] Smart Furniture by Tokuda et al. [30] and
Cooperative Artefacts by Strohbach et al. [29]. From a hypothetical point, all these objects
can be considered as smart objects if the locality of intelligence is ignored. However, while
designing platforms for generic smart objects, it is necessary to understand the scope of the
so-called "smartness" of objects. Hence, in the rest of this paper we will consider a smart
object as:

“A computationally augmented tangible object with an established purpose that is aware
of its operational situations and capable of providing supplementary services without
compromising its original appearance and interaction metaphor. Supplementary services
typically include sharing object's situational awareness and state of use; supporting proactive
and reactive information delivery, actuation and state transition.”

All the smart objects mentioned earlier can be rationalized under this annotation. For
example: the smartness of a tagged object can be seen in the delivery of its identity
information; Mediacup's [5] and Cooperative Artefacts' [29] smartness can be contemplated
in sharing situational awareness; AwareMirror's [14] smartness can be observed by its
proactive information delegation, etc.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

4

2.1. Characteristics of Smart Objects

Considering the history of smart objects, we have observed that a smart object usually
exhibits the following characteristics:

2.1.1. Affordance and Variation in Augmentation: Any physical object - in whatever shape
or size - has certain affordances that affect how people use it. These affordances allow people
to intuitively come up with new ideas to augment the same object to provide different value
added services. A rudimentary reason behind
this practice is the scenario specific
augmentation. However, it is hard to confine
the augmentation scope. Consider, Figure 1
depicting two ideal situations, a) one everyday
object capable of playing multiple functional
roles and b) multiple physical objects sharing a
similar functional role. In Figure 1(a) we have
a smart table that can be augmented for two
supplementary functions: ambient display and
proximity detector (whether some one is in
front of it or not). In Figure 1(b) we have a
mirror display [14] in a washroom whose
functionality can be triggered by any of the
three augmented objects, e.g., a toothbrush,
a comb or a razor. The suitable
augmentation of these objects depends on the underpinned scenario, regardless of the multiple
functionalities that can be afforded. These situations signify the fundamental characteristic of
a smart object: “augmentation depends on the affordances as perceived by the designers of
the underlying applications.”

2.1.2. Appearance with Perceptual Feedback: Physical objects evolved over the years in
physical appearance and acceptances by the end users. A constraint for smart object designers
is to keep the original appearance of the objects after augmentation; i.e., augmented services
must not be decoupled from the appearance. However, associating computational smartness
(in whatever form) to a dumb object also needs to be balanced with the fundamental
principles of Human Computer Interaction (HCI), that is to provide perceptual feedback of
users' operation and their computational states [6] in a persuasive way. Consider a regular
chair, if one of its legs is broken, it is easily perceived by us. What if the chair is augmented
with some sensors (so that it can understand someone is sitting on it) and one of the sensors is
not working thus affecting its functional output, which cannot be consciously observed. A
successful augmentation of the chair provides some feedback to its user by notifying this
malfunctioning state to seek attention. Thus, the second characteristic of smart object is:
“keeping its original appearance intact and providing perceptual feedback of its internal
state.”

2.1.3. Push-Pull Model: With the rise of beyond desktop computing, a significant effort has
been made to make the environment aware to provide proactive services [11]. Two
approaches have been investigated so far: sensor networking and smart objects. The first has a
top down approach; sensor nodes deployed in the physical space are connected to a
centralized infrastructure, which deduces the meaning of sensor data for proactive actions.

Figure 1: A single object with multiple
roles and multiple objects with

identical role

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

5

Here, sensor nodes are used for sensing only and some other artefacts perform the actions.
The second, smart objects has a bottom up approach, self-contained objects are responsible
not only for collecting the environmental data but also for pushing the environment state via
actuation. This distinction is a crucial design factor for intelligent system [24] and
corresponding programming abstractions. Smart objects are usually self-contained and can do
both: sense the physical phenomenon (pull) and actuate to cause the phenomenon (push).
Thus, the third characteristic of smart objects is: “support for both pushing and pulling the
environment phenomenon.”

2.1.4. Object Memory: Adding intelligence to a physical object adds computational memory
to the object. This memory content includes but is not limited to static artefact models that
describe general properties of an object, dynamic annotations added by the user or an
application, and historic information about an object’s former states or uses [27]. However,
the granularity and locality of this memory varies with the type of augmentation. For
example: a tagged objects usually contains identity information in its small non-volatile
memory and the underlying infrastructure maintains its state history, where as more
sophisticated objects like AwareMirror [14], the states of the object can be maintained locally
at the object end. Regardless of the locality i.e., off-board or on-board, smart objects usually
associate, advertise, and provide some information stored in its memory. So, the fourth
characteristic of smart objects is: “maintaining a persistent memory either on-board or off-
board.”

2.2. Smart Object Systems

In general, smart objects operate individually, or are collectively integrated by proactive
applications or collaborate with peers to attain a specific purpose. When working collectively

Figure 2: Different use cases for smart object systems

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

6

a network of smart objects is formed which is often referred to as a smart object system1.
Henceforth, we observe smart objects systems from three perspectives:

1. Standalone and self contained objects that are independent of any infrastructure and are
capable of perception, reasoning and decision making autonomously with appropriate
perceptual (auditory or visual) feedback (case 1 in Figure 2). Examples are Mediacup [5],
commercial smart objects from Ambient Device [1], etc.

2. Applications integrating multiple smart objects, specifying the interactions between smart
objects in order to provide some proactive services (cases 3-5 in Figure 2). This
application is executed by another entity that orchestrates the smart objects. Typically a
back end infrastructure is utilized by the application for the integration of smart objects.
Examples include a smart space with multiple smart objects [19, 17] ambient gaming
[25], etc.

3. The third perspective lies in between stand-alone smart objects are also capable of
communicating with peers for taking autonomous actions thus creating a co-operative
ecology of smart objects (case 2 in Figure 2). Cooperative Artefacts [29] is an example of
such an initiative.

In the next section, we look at the related work.

3. Related Work

Prottoy seeks comparison from two aspects: representation and platform for smart objects.
Hence, in this section we compare Prottoy from both perspectives.

3.1. Representation of Smart Objects

One of the very first prototypes of smart object was Mediacup [5] where a regular coffee
cup was instrumented to provide the state of the cup as context information. Although the
Mediacup project and its succeeding Smart-Its [15] provide solid insight into the
augmentation of physical artefacts with sensing and processing, they did not provide any
generic representation model that can make them usable with any general purpose
applications. Tokuda and his group introduced Smart Furniture and u-Textures to build
custom furniture [30, 23], however their approach is also closed and tightly coupled with their
underlying scenarios. The same is true for other projects in this area where various objects are
augmented for providing value added functionalities [1, 29] These objects work fine in a
specific scenario, however this assumption of scenario specific objects leads to a less reusable
and close development model. The artefact framework presented in this paper takes a generic
approach to solve this problem. The core-cloud framework combines the common features of
smart objects in a core and allows augmented features to be plugged-in atop the core leading
to a generic representation of smart objects in an application independent way.

3.2. Middleware for Smart Objects

Context aware middlewares are typically used to relate with smart objects. Henceforth, in
this section we position Prottoy against some context aware middlewares.

3.2.1. Distributed Widget based Middlewares: Distributed component middlewares usually
follow a widget-based model [4,11], where underlying objects are represented by distributed

1 Often the terms "smart object" and "smart object system" are used interchangeably.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

7

widgets that are managed by some widget manager (analogous to GUI widget model) Context
Toolkit [11] focuses on the component abstraction by providing the notion of Context Widget
and Context Aggregator. Discoverer manages these components and additionally there is a
Context Interpreter component that performs the task of context interpretation. Context
Toolkit provides one to one mapping for objects' functions to widgets and introduce multiple
programming abstractions (widget, service, aggregator) thus making it difficult to manage a
smart object system cleanly. Although, for a generic context aware platform Context Toolkit
performs very well, it is not suitable for a smart object system, since the abstraction level and
smart object requirements are different than what context toolkit was developed for. Thus
several components those are specific to a smart object system (e.g., object memory,
notification module, profile repository, proxy, storage, etc.) are missing in Context Toolkit.
Other distributed middlewares for context aware systems [15, 24] also share these pitfalls.
Traditional distributed component technologies like DCOM, CORBA etc. are not suitable for
smart object systems due to their unavailability at the range of diverse devices and operating
systems.

3.2.2. Infrastructure based Middlewares: Context aware middlewares that have taken a
infrastructure approach either in a distributed manner [3,7,18,26,28] or in a centralized
manner (black-board architecture) [13] provide fair performance in context acquisition from
sensors and in providing interpreted context via standard APIs. This approach has some
significant advantages over the distributed widget model since smart objects can share data
and services that are independent of underlying hardware. In addition, configuration and
evolution of infrastructure-based systems are easier than widget based systems. However,
they suffer from single point of failure, scalability and extensibility concerns. Also, collecting
information from several sources in one place makes the framework complex and
maintenance becomes difficult. Furthermore, this approach cannot support stand alone or co-
operative models of smart object systems directly. Prottoy’s approach is different from these
as it completely distributes the context sources into multiple artefact wrappers (see section
5.1), and provides infrastructure support at individual application spaces through virtual
artefacts (see section 5.2). In addition, Prottoy's programming abstractions are cleaner since it
presents smart objects as a whole and allows accessing its services (sensing, actuating) and
properties via object instance. Furthermore, the discovery process of the distributed smart
objects are hidden in Prottoy from the application developers point of view, as there is no
centralized networked discovery service like other infra-structured middlewares. In stead,
each of the smart objects advertises its services per se which are automatically discovered by
the virtual artefact component of Prottoy that runs in the application space.

3.2.2. Middlewares for World Modeling: Several researchers investigated on real world
modeling by building context aware middlewares. The Sentient Computing Project [3]
utilizes Active Bat location system to provide a platform for indoor applications exploiting a
world model. Prottoy’s approach is different as it offers the applications to create a context
aware environment by constructing an array of smart objects. It means Prottoy specializes the
world model creation by allowing developers to construct the model as they want. HP Cool
Town [9] encapsulates the world by providing web presence of place, people and thing and
allows interaction with web presence of these entities primarily exploiting RF technology.
Cool Town supports only web based context aware applications. Easy Living [7] focuses on
an architecture that supports the coherent user experience as users interact with variety of
devices in a smart environment. Easy Living also utilizes the notion of world model. In

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

8

contrast to these systems, Prottoy provides a more generic abstraction as developer has the
flexibility to construct the model by manipulating virtual artefact.

3.3. Drawbacks of Current Approaches

Earlier in this section, we have looked at several middlewares that provide programming
support for various aspects of ubiquitous context-aware computing. However, we argue that
these platforms cannot fully accommodate the required features for smart object systems. In
the following we present some drawbacks of these systems to justify our claim:

1. Tightly Coupled Presentation of Smart Object: Existing infrastructures provide a
widget notion to encapsulate the object features [11]. These widgets are not capable of
hosting multiple augmented features or do not allow incremental addition of features to a
smart object. Adding a new feature to an existing object requires generation of a new
widget. This solution is inadequate and impractical because for one physical object, we
might end up in multiple widget representation, one for each augmented features.

2. Inadequate Infrastructure: Consider, Figure 2 where five different use cases for a
smart object are shown. In case 1, smart objects are stand-alone providing a single or
multiple built-in functions without any applications. Case 2 shown as example of co-
operative smart objects system whereas in cases 3-5 three different modalities of
application association are shown. Although the latter cases (3-5) are supported by
existing infrastructures [4, 11, 14, 26, 28] by providing a wrapper that is tightly glued
with the rest of the infrastructure, but they have no clean support for cases 1 and 2. Smart
objects cannot be accommodated natively as stand-alone objects and/or co-operative
objects in these infrastructure environments without special care.

3. Abstruse Programming Abstraction: Programming abstraction in the existing
middlewares [13, 26, 28] is context [10] oriented predominantly. Actuation functions are
often presented as action of infrastructure service. Consider, the widget model of Dey et
al. [11] Since it follows a one-to-one mapping, if a smart object provides multiple
functionalities, for each functions we need a new widget. On the other hand, a service
model represents objects that can actuate. Thus for a smart object that can both sense and
actuate, we need two different programming abstractions, widget and service. Although,
context data can be a service of a smart object, it does not truly reflect what a smart
object is or what it is capable of. For example, often the infrastructure service involves
the smart object that provides the context. This causes confusion in building applications
with smart objects.

4. Low Reusability: As mentioned in section 2.1, several features of smart objects (state
maintenance, perceptual feedback, etc.) are prevalent. However, due to a missing
reusable toolkit for smart object systems that can automatically accommodate these
recurring features, developers are required to re-implement these features over and over
again.

In the next section, we discuss the design principles adopted in Prottoy to
compensate these drawbacks.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

9

4. Design Decisions
Considering the characteristics of smart objects and drawbacks of current approaches, we

have adopted a hybrid architecture atop a core-cloud artefact framework in our approach.

4.1. Core-Cloud Artefact Framework for Smart Object

The first characteristic (section 2.1.1) of the smart object essentially signifies that objects'
intelligence cannot be confined strictly. On the other hand, all objects do share some common
features, which are highlighted by the other characteristics. Accordingly in our artefact
framework, the common features of the smart object are built into a core of the artefact
model, where the smart features can be added as clouds
around the core. The entire model follows a plug-in
architecture, whereas the core itself is a generic binary and
any cloud (functions) can be plugged into the core. Figure
3, depicts the conceptual core-cloud artefact model. From
a designer's point of view, this cloud-based approach gives
us the liberty to make the artefact model independent of its
perceived affordances, which might be a sensing type
(pull) or an actuation type (push). This satisfies the push-
pull characteristics of smart objects (section 2.1.3). In
addition, these clouds (service profiles) can be plugged
into the core anytime thus solving the tightly coupled
representation problems of current approaches. This design
also solves the absence of a reusable toolkit problem i.e., the core can be shared among
multiple applications where as the clouds are scenario-dependent thus allowing the
developers to build specialized smart objects. In section 5.1 we present the artefact wrapper
component of Prottoy, designed following this artefact model.

4.2. Hybrid Architecture

To accommodate all types of smart object systems as shown in Figure 2, we have adopted
this hybrid architecture in our design. The cores of the artefact framework have interfaces to
interact with the external worlds and an application layer component called Virtual Artefact
(see section 5.2) enables this interaction support to application. In other words, this layer acts
as the interface between the external applications and the underlying smart objects. However,
the object can work autonomously even if this communication channel at the core is not
utilized (stand-alone mode). This hybrid design essentially solves the infrastructure
dependency issues of existing systems.

4.3. Smart Object and Profile based Programming Abstraction

The appropriate abstraction for a smart object is the object itself and it can directly be seen as
a classic implication of Object Oriented Design. Each of the supplementary functional
features of the smart object are represented as independent public procedures (service
profiles, see section 5.1) that share some common private data and private procedures (e.g.,
object memory, notification scheme, etc.) along with the properties of the object (e.g., color,
shape, size, owner, vendor, etc.). Application developers, access the instance of the objects
that are customized (scenario specific augmentation) for the applications at hand via Virtual
Artefact (see section 5.2). This programming abstraction is cleaner than that of existing
middlewares used in smart object spectrum and solves the abstruse abstraction problem.

Figure 3: A Conceptual
Core-Cloud Artefact

Model

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

10

4.4. Application Requirement

Typical distributed middleware attributes are also inherent requirements for a smart object
middleware. These requirements include but are not limited to:

1. Data Dissemination, aggregation and Interpretation: Middleware platform should
have appropriate support for accessing smart objects' data, aggregate them and interpret
according to application logic. Our solution incorporates this support at the Virtual
Artefact layer (see section 5.2) via lucid APIs. This layer supports both asynchronous
(event based subscription) and synchronous (polling) communication modes.

2. Dynamic Discovery: Each artefact wrapper (see section 5.1) representing a smart object
contains a discovery module at its core that advertises its presence and listens to external
requests. A corresponding locator module in the virtual artefact (see section 5.2) layer
handles the discovery from the application perspective. However, the actual discovery
process is hidden from the application developers through abstract APIs. By distributing
the discovery tasks into these two components Prottoy removes the necessity of a
dedicated discovery service.

3. Separation of Concerns and Transparency: It is obvious that our core-cloud artefact
model and hybrid architecture completely separate the applications from the environment
and provide applications with transparent accesses through the Virtual Artefact
component.

In the next section, we present the architecture and implementation details of Prottoy that
follow these design guidelines.

5. Prottoy Middleware Platform

Figure 4 provides a bird eye view of the
architecture of Prottoy, which is composed of two
components: Artefact Wrapper and Virtual
Artefact. The former is the artefact model that
encapsulates a smart object whereas the latter is
the infrastructure component that allows
applications to manipulate the smart objects. For
each Artefact Wrapper (smart object), application
developers instantiate a Virtual Artefact in the
application space to interact with the
corresponding smart object. Please note that,
although we describe the implementation2 of these
components here, our prototype implementation is
not entitled as the only implementation of our
architecture. In other words, the Artefact Wrapper
design can be thought of an implementation
independent model. The same applies to the hybrid architecture achieved by the combination
of Artefact Wrapper and Virtual Artefact.

2 Current prototype implementation is done in Java

Figure 4: Architecture of Prottoy

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

11

5.1. Artefact Wrapper

Artefact wrapper provides a layered architecture where basic smart objects' functionalities
are combined in a core component as a generic binary. Additional augmented features can be
added as plug-ins atop the core. Each augmented feature is called a profile in our approach.
These profiles are artefact independent and represent a generic service. This design allows an
artefact to be stand-alone artefact and simultaneously participate in an application scenario,
thus supporting all use cases of Figure 2. The internal architecture of the artefact wrapper
consists of the following (Figure 5):

1. Core Component: Typically
instrumented artefacts have some
common characteristics e.g., capable of
communication [5, 29], provides
perceptual feedback [6], possesses
memory etc. The core component of
our artefact framework encapsulates all
these functionalities in a generic binary.
The communication module facilitates
communication support and
encapsulates the transport layer where
as the discovery module allows service

advertisement. The notification module
enables the rest of the modules to
indicate their status. The artefact memory contains property data, profile descriptions,
and other temporal data. The client handler is the request broker for services and
delegates the external requests to specific profiles. Finally, the profile repository hosts
the array of profiles. The profile repository has dynamic class loaders to load the profiles
dynamically when requested. The entire core is packaged in a generic binary and runs
independently.

2. Profile: Each profile represents a specific functionality and implements the underlying
logic of the functions, e.g., providing context by analyzing the attached sensors' data or
actuating an action by changing the artefacts' state (e.g., increasing the lamp brightness
etc.). Each profile is a sensor or an actuator type and has a profile handler, a template to
plug device code and context calculation or service actuation logic. The profile handler
has an abstraction layer that hides the heterogeneity of the underlying devices. A profile
implementation needs to inherit a base ProfileHandler class. This class enables the core
to load this profile and to further communicate (forwarding application requests etc.) with
it. A snippet of a minimal profile implementation code looks like the following:

1. public class ProximityProfile extends ProfileHandler{
2. /* sensor driver code and context calculation logic */
3. public void updateContext(){
4. //do something
5. setContextData(context);
6. notify();
7. }
8. /* Provide the device driver code service execution code here */
9. public synchronized Hashtable executeService(Service argument){
10. //do something}}

Figure 5: Artefact Wrapper Architecture

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

12

In the updateContext() function (line 3-7), after context calculation, the developer
should specify the current context value by setting the context statement using
setContextData() (line 5) and should invoke notify() (line 6), which eventually notifies
all the interested clients of this context. In the executeService() function (line 9-10) the
developer should specify the service actuation logic along with device manipulation code.
Interested application can request the service of the profile through appropriate APIs (see
section 5.2).

Deployment and Runtime Configuration of Artefact Wrapper: The artefact wrapper is a
binary per se with interfaces for external interactions. The profile repository component has a
dynamic class loader that loads the plug-ins during artefact instantiation time. Each profile
comes with a manifest file along with the profile implementation. This manifest file is used to
load the profile. In our current implementation a predefined directory structure is followed,
and all the profiles are put in the specific directory. This allows the core to load the profiles
using the manifest files.

5.2. Virtual Artefact

Virtual Artefact provides infrastructure support for applications. However, in stead of a
dedicated centralized infrastructure as proposed in the existing literature [13,26,28] it runs at
the individual application spaces and offers highly abstracted unified interfaces, thus
diminishing the drawbacks of a centralized
approach. Figure 6 shows the internal
architecture of the Virtual Artefact. The
communication module enables applications
to communicate with the artefact wrappers
(smart objects). The locator module discovers
the underlying artefacts wrappers representing
the smart objects. The storage module enables
applications to log objects’ data in this storage, maintained as XML database. These logs can
be exploited for reasoning purposes. The proxy module enables manipulation of the historical
data stored in the storage. In addition, application can use this module to simulate a real
object utilizing the historical data of the corresponding object. All these module
functionalities are complete and can be accessed via highly abstracted APIs. The Data
Processor module provides data filtering, aggregation and interpretation of profiles outputs
(e.g., context data). Application developers implement these components to accommodate
application specific processing.

5.3. Programming Model for Application Development

For building a stand-alone or co-operative smart object system, developers only use the
artefact wrapper component. For building applications integrating multiple smart objects,
both artefact wrapper and virtual artefact are used. A snippet of a sample application code
showing a few APIs usage of Prottoy is shown below.

1. VirtualArtefact door =
2. new VirtualArtefact(“Proximity”,prop);
3. VirtualArtefact lamp =
4. new VirtualArtefact(“Light”,prop);
5. if(door.status){
6. door.subscribe(this,”doorListener”);
7. }

Figure 6:Virtual Artefact Architecture

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

13

8. //call back
9. public void doorListener(Context data){
10. String context = data.getContextData();
11. /*Interpret according to application logic.
12. For example for turning on the light we fire */
13. if(lamp.status){
14. Service argument = new Service();
15. argument.setActionName(”switching”);
16. argument.setCommand(”turn on”);
17. lamp.execute(argument);
18. }

The sample application uses two smart artefacts, a door augmented with infrared sensors that
can sense the proximity of an entity in front of it, and a regular wall lamp that can be turned
on/off automatically. For each smart object, an artefact wrapper is generated and deployed.
Application creates an instance of a virtual artefact for each artefact wrapper (line 1-4).
Application can manipulate the smart objects services (subscribe, poll, execute) via Virtual
Artefact APIs (line 5-7, line 13-18). In addition, application can utilize other infrastructure
support like data processing, history management, etc. Please note the programming
abstraction used here, i.e., the smart object itself in the form of virtual artefact where objects'
services are accessed via virtual artefact's unified APIs regardless of the object type.
Furthermore, only profile and properties of the objects are used to discover a smart object
only. Such high level unification isolates all access level complexities (e.g., discovery, access
protocol, marshaling messages, etc.) thus reducing application developers’ burden
considerably. Also, the virtual artefact design implements Reflection feature of Java rather
the event framework to eliminate the strict middleware dependency (e.g., extending a
middleware component for event aggregation etc.). In line 6 of the above code the callback
handler name was freely defined and implemented. Such simplicity makes application
development very simple and rapid using Prottoy.

6. Sample Smart Object Systems

In the introduction section we raised three issues that we addressed in this paper: i)
providing a generic artefact framework to represent multi-functional reusable smart objects,
ii) providing a middleware that supports different combination of smart object systems (e.g.,
stand-alone, co-operative and integrating application) and iii) a cleaner programming
abstraction for smart objects. We have shown in the earlier sections how our artefact
framework provides support for representing multi-functional and reusable smart objects
using core-cloud artefact model. We also shown the clean programming abstraction that our
approach offers. To address Prottoy's support for different smart object systems in this section
we present three systems. The first one is a stand-alone wearable object providing proactive
notifications [21]. The second is a co-operative smart object system, where state-of-use
information among multiple artefacts is exchanged to form a intelligent living-room [22].
Finally, the third system is a proactive application integrating multiple smart objects where
tooth brushing practice is observed for providing persuasive feedback on human lifestyle
using a virtual aquarium [25]. We consider these proof-of-concept systems qualitatively
evaluate the value of Prottoy as suggested by Abwod and Edwards et al. [2,12].

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

14

6.1. RoonRoon

RoonRoon (a physical embodiment artefact) is a wearable teddy (as shown in Figure 7)
that acts as a user interface for information services [21]. It can monitor user’s physical
activity state (walking, standing,
running and sitting) and can notify
personalized information in a
contextual manner. RoonRoon's
body is augmented with a small
wireless sensor node [16], a headset
and a host machine. Users can

upload their schedule information in
its host machine and can provide
their notification modality preference. RoonRoon is built using artefact wrapper only, where 3
profiles were used for identifying users activity by analyzing accelerometer data, for allowing
user to upload their schedule and for manipulating notification modalities.

6.2. Co-operative Living Room

The second system is for a proactive living room scenario [22]: “When the door is opened,
the lamp is turned on considering room's brightness. If a user picks a phone call, while the
TV is on, the TV automatically mutes the volume. The lamp proactively reduces its brightness
when the TV is on." Four smart objects are
used in this system (as shown in Figure 8) that
are capable of sharing their operational states:
Door (open, close), Phone (idle, held), Lamp
(on, off, light level), Simulated TV (on, off,
volume). All objects (except TV) are
augmented with cookie sensor nodes [16] and
Gumstix 3 running PC Linux. The lamp is
additionally connected to a X10 module. All
four objects implemented two profiles each
for providing their state-of-use and interacting
with peers, where as the lamp and the TV
implemented one additional profile to change
their states; on/off, brightness, volume level respectively. Only artefact wrapper is used in this
application.

6.3. Virtual Aquarium System

The third application, Virtual Aquarium
(Figure 9) has the objective of improving
users’ dental hygiene by promoting
correct tooth brushing practices [25]. The
system is set up in the lavatory where it
turns a mirror into a simulated aquarium.
Fish living in the aquarium are affected by
the users’ tooth brushing activity. If users

3 http://www.gumstix.com

Figure 7: RoonRoon System

Figure 8: Co-operative Living
Room System

Figure 9: Virtual Aquarium System

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

15

brush their teeth properly, the fish prosper and procreate. If not, they are weakened and may
even perish. This application uses a toothbrush augmented with 3D accelerometer sensor that
can provide its identity and state of use by implementing one profile. The application
monitors tooth-brushing activity by subscribing to artefact wrapper (representing the
toothbrush) using virtual artefact and generates appropriate display in the form of an
aquarium.

All three systems were successfully built atop Prottoy and deployed over several weeks to
understand their usability features that we have reported in [21, 22, 25].

7. Discussion

In this section, first we provide the qualitative evaluation of Prottoy from developers point
of view followed by our experience report.

7.1. Evaluation from the Developers Perspective

We have built several smart object systems atop Prottoy. In this paper we reported three
systems (section 6) that demonstrate three different use cases for smart object systems. In the
following, we mention some premier points identified through these developments and
feedbacks from the programmers.

1. Access Simplicity: The application code in section 5.3 shows that the virtual artefact
removes all access level complexities. The discovery process is completely hidden in
Prottoy via lucid APIs. In fact, there is no generic discovery service that runs separately
in Prottoy environment. Such high abstractions enable application developers to focus on
their application logic rather than spending time on access issues, like discovery, access
protocol, message handling etc., which resulted in simple and faster development.

2. Separation of Concern: Prottoy's two-layered architecture makes an application well
structured and makes an application easy to grow. Developers only define the profiles for
distributed artefact wrappers and accumulate those profiles with respective virtual
artefacts in application space. An application can be written with some profiles that are
absent at the deployment time but could be added at some later phases. Due to the
modular structure of Prottoy and plug and play nature of artefact wrapper, such isolation
is possible, which allows incremental evolution of an application. This “separation of
concern” also enabled effective group development; as some developers can focus on the
artefact wrappers and others on the virtual artefacts. This fact was observed in multiples
times and was also reported by the developers.

3. Programming Abstraction: Developers can manipulate the smart objects via virtual
artefacts just like other components of their application code (e.g., GUI Class, Math
Class, etc.) that are centered on object oriented programming. Virtual artefact behaves
completely as an object instance of a class (e.g., having properties, public methods for
profile usage, etc.), however in this case the only difference is that it represents a physical
and tangible object. This clean abstraction and compatibility with rest of the codes are
interesting quality features of Prottoy that are reported by the developers. Also, the APIs
used in Prottoy for event manipulation are of free form that allow application code to be
structured independent of the middleware, e.g. specific event loop or separate threads are
not needed for event manipulation in Prottoy. Such flexibility makes Prottoy very
suitable for rapid prototyping.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

16

4. Reusability: Since, the core functionalities are shared across multiple smart objects, once
the profiles are developed, they can be easily ported to similar objects. Consider the
situation depicted in figure 1(b), once the identifier profile is generated for the
toothbrush, we can port this profile to the razor or to the comb as long as same sensors
are used. This has been one of the major strengths of Prottoy as an application could run
in variant scenarios with different objects using the same code.

7.2. Experiences

Over the period of this research, we experienced and realized several interesting issues
related to smart objects that we would like to put forward for discussion.

Simplicity and Features: In the earlier prototype of this work we have tried to provide
several secondary features, e.g., security, personalization, etc. However, through the
development of a series of applications we have realized that these features add little values
as most of the applications have their specific needs and defining these features generically at
a global scope is very difficult. In fact, for a smart object middleware the primary features
i.e., abstracting physical objects, and providing lucid APIs to aggregate events in a simplest
way by hiding complexities (discovery, marshaling messages, etc.) are the keys for the
developers' satisfaction. For example, Prottoy hides the discovery process completely from
the developers. We found this transparency is more important to the developers than
providing a versatile separate discovery service at an infrastructure (as we did in our earlier
prototype). These issues highlight one significant aspect: "Secondary features have no value
unless the primary features of a middleware are complete and adequate".

Performance Metrics: Ubicomp research is experimental in nature and applications are the
whole point of ubiquitous computing [8]. This makes it difficult to evaluate a middleware of
ubicomp systems. Primarily because the performance metrics typically used to benchmark a
distributed middleware are not compelling to measure the quality of a ubicomp middleware.
For example, efficiency of a smart object middleware is not constrained by faster throughput
or minimum latency, in stead support for proper context identification and triggering of
proactive service in a timely fashion are more important metrics for defining efficiency. A
smart object is typically battery powered; therefore less energy consumption is a major
design goal for smart object middlewares. Generally speaking, a smart object middleware
have very little commonalities with traditional distributed system middleware, at least from
the benchmarking perspective.

System Robustness is Hidden: A smart object system is often physically distributed and
provides proactive services contextually. This characteristic suggests that users attentions' on
smart object systems are not coherent. Thus if a particular node (e.g., artefact wrapper or
virtual artefact) fails and restarts silently, it is very likely that users will be unaware of that
fact. Of course, in situations where users are actively interacting with the system, or if the
level of error is very critical, e.g. entire hardware damage, etc., failures will be visible.
However, considering the physical nature most of the time the systems' robustness is hidden
from the end users.

7.3. Shortcomings of Prottoy

Prottoy is specifically designed for smart object systems. Thus, it is not suitable for a
generic context-aware or sensor networking application. Prottoy enables a smart object to
have multiple augmented functions and these functions (i.e., service profiles) are derived by
the designers of the system. Such profile notion has serious drawback from standardization

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

17

aspect. Since, we do not have a common vocabulary or ontologies that can be used to define
profiles, one pitfall of our approach can be seen in profile based unification. However, by
profile abstraction, we are not trying to define the ontology. In stead, we are providing a
structure that designers can use to define their own ontology. Of course, defining the
conceptual ontology in a standard way is the hardest part not the encoding. We are fully
aware of that, and do not claim that Prottoy provides a solution. Our contribution is providing
a lucid architecture that can glue such encoding structures with rest of the systems seamlessly.

8. Conclusion

In this paper we presented a middleware platform, Prottoy for smart object systems. By
carefully examining the characteristics of smart objects (augmentation variation, perceptual
feedback, push-pull model and object memory) and smart objects systems (stand-alone, co-
operative and application oriented) we have adopted a core-cloud artefact framework and
hybrid architecture for the middleware. The core-cloud model combines the common features
of smart objects in a core and allows augmented features to be plugged-in atop that. The
hybrid architecture of Prottoy supports development of stand-alone, co-operative and
application oriented smart object systems. We have demonstrated the feasibility of our
approach through a series of applications and qualitative evaluations. Prottoy is inherently
developed for smart object systems, thus the features applicable to a smart object system are
the focal points that define Prottoy's strength. The reverse is also true, i.e., Prottoy is not a
generic context-aware platform, and thus generic context-aware middlewares can easily be
seen as more versatile than Prottoy. The primary contributions of this works are: an artefact
model adopting core-cloud design for generic smart objects, the hybrid middleware
architecture with cleaner programming abstraction and solid implementation and validity of
our design propositions through several real life applications. We consider, our approach
provides elegant solutions of the existing problems of smart objects and will be beneficial to
the smart object computing community.

References

[1] Ambient devices, url: http://www.ambientdevices.com.
[2] G. D. Abowd. Software engineering issues for ubiquitous computing. In 21st international conference on

Software engineering, 1999.
[3] M. Addlesee, R. Curwen, S. Hodges, J. Newman, A. W. P. Steggels, and A. Hooper. Implementing a sentient

computing system. In IEEE Computer, 2001.
[4] J. E. Bardram. The java context awareness framework - a service infrastructure and programming framework

for context-aware applications. In Pervasive 2005.
[5] 5. M. Beigl, H. W. Gellersen, and A. Schmidt. Media cups: Experience with design and use of computer

augmented everyday objects. Computer Networks, special Issue on Pervasive Computing, 35-4, 2001.
[6] V. Bellotti and K. Edwards. Intelligibility and accountability: Human considerations in context-aware

systems. Human-Computer Interaction, 16(2-4), 2001.
[7] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easy living: technologies for intelligent

environments. In 2nd International Symposium on Handheld and Ubiquitous Computing, 2000.
[8] Some computer science issues in ubiquitous computing. M. Weiser. Communications of the ACM, 1993.
[9] C. Deborah and P. Debaty. Creating web representations for places. In 2nd International Symposium on

Handheld and Ubiquitous Computing, 2000.
[10] A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing Journal, 5(1):4–7, 2001.
[11] A. K. Dey, G. Abwod, and D. Salber. A conceptual framework and a toolkit for supporting the rapid

prototyping of context-aware applications. Human Computer Interaction, 16(2-4):97–166, 2001.
[12] W. K. Edwards, V. Bellotti, A. K. Dey, and M. W. Newman. Stuck in the middle: The challenges of user-

centered design and evaluation of infrastructure. In CHI 2003.

International Journal of Smart Home

Vol. 2, No. 3, July, 2008

18

[13] 13. A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. Integrating information appliances into an
interactive workspace. In IEEE Computer Graphics and Applications, 2000.

[14] K. Fujinami, F. Kawsar, and T. Nakajima. AwareMirror: A personalized display using a mirror. In Pervasive
2005, 2005.

[15] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl. Physical prototyping with smart-its. IEEE Pervasive
Computing, 03(3):74–82, 2004.

[16] K. Hanaoka, A. Takagi, and T. Nakajima. A software infrastructure for wearable sensor networks. In IEEE
RTCSA, 2006.

[17] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah, and E. Jansen. Gator tech smart house: A
programmable pervasive space. IEEE Computer, 2005.

[18] J. I. Hong and J. Landay. An infrastructure approach to context-aware computing. Human-Computer
Interaction (HCI) Journal, 16(2-3), 2001.

[19] F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting everyday life with sentient artefacts. In 2005 joint
conference on Smart objects and ambient intelligence, 2005.

[20] F. Kawsar, K. Fujinami, and T. Nakajima. Prottoy: A middleware for sentient environment. In IFIP
Conference on Embedded and Ubiquitous Computing, 2005.

[21] F. Kawsar, K. Fujinami, S. Pirttikangas, and T. Nakajima. RoonRoon: A wearable teddy as social interface
for contextual notification. In The International Conference on Next Generation Mobile Applications,
Services and Technologies, 2007.

[22] F. Kawsar, M. A. Masum, and T. Nakajima. Applying commonsense to augment user interaction in an
intelligent environment. In The 4th IET International Conference on Intelligent Environment (IE08), 2008.

[23] N. Kohtake, R. Ohsawa, M. Iwai, K. Takashio, and H. Tokuda. u-texture: Self-organizable universal panels
for creating smart surroundings. In Ubicomp 2005.

[24] G. Kortuem, N. Davies, C. Efstratiou, K. Kinder, M. I. White, R. Hooper, J. Finney, L. Ball, J. Busby, and D.
Alford. Sensor networks or smart artifacts? An exploration of organizational issues of an industrial health and
safety monitoring system. In UbiComp 2007.

[25] T. Nakajima, V. Lehdonvirta, E. Tokunaga, and H. Kimura. Reflecting human behavior to motivate desirable
lifestyle. In DIS 2008, 2008.

[26] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt. Gaia: A
middleware infrastructure to enable active spaces. IEEE Pervasive Computing, pages 74–83, 2002.

[27] M. Schneider. Towards a general object memory. In DIPSO 2007, 2007.
[28] J. P. Sousa and D. Garlan. Aura: an architectural framework for user mobility in ubiquitous computing

environments. In 3rd Working IEEE/IFIP Conference on Software Architecture, 2002.
[29] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray. Cooperative artefacts: Assessing real world

situations with embedded technology. In UbiComp 2004.
[30] H. Tokuda, K. Takashio, J. Nakazawa, K. Matsumiya, M. Ito, and M. Saito. Sf2: Smart furniture for creating

ubiquitous applications. In International Workshop on Cyberspace Technologies and Societies, 2004.

Authors

Fahim Kawsar is a Ph.D. candidate at the Distributed Computing Lab of Waseda University.
He has been working on the design and integration of smart objects since 2004. He received his
M. Engg. in Computer Science from Waseda University in 2006. He is a Microsoft Research
(Asia) Fellow and a student member of ACM and IEEE.

Kaori Fujinami is an associate professor in the department of computer, information and
communication sciences at Tokyo University of Agriculture and Technology. He received a MS
in Electrical Engineering and a Ph.D. in Computer Science from Waseda University in 1995 and
2005, respectively. He has been working on activity recognition, smart object systems and
human-computer interaction.

Tatsuo Nakajima is a professor of Department of Computer Science in Waseda University. His
interests are Operating Systems, Distributed Middleware, Real-time Systems and Ubiquitous
Computing.

