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Abstract
We introduce a novel problem setting for self-
supervised learning called Time-Synchronous
Multi-Device Systems, which requires a solution
in utilizing data from multiple data-generating de-
vices during contrastive training. To this end, we
propose a novel training setup, Group Supervised
Learning (GSL), which is an extension of con-
trastive learning by contrasting time-series data
gathered from different devices. GSL comprises
of three main components, relating to Device Se-
lection, Data Sampling and a novel loss function
to enable contrastive learning in a group of de-
vices. Comparisons were made between GSL and
other semi-supervised and fully-supervised base-
lines, and the results demonstrated that our pro-
posal is both data-efficient and outperforms the
baselines by as high as 0.15 in micro F1-score
across 2 human activity recognition datasets.

1. Introduction
Deep Learning (DL) techniques have emerged as promis-
ing alternatives for statistical feature-based Human Activity
Recognition (HAR). However, the major bottleneck in all of
the DL techniques in HAR is the requirement of a large la-
beled dataset which is expensive to collect. Semi-supervised
learning has emerged as a promising avenue to counter this
problem. Recently, self-supervised contrastive learning has
proved to be a cornerstone approach in representational
learning. A popular approach has been to learn powerful
representation by augmenting unlabeled data and contrast-
ing it with augmentations of itself or other data points (Chen
et al., 2020).

In this paper, we present a novel problem setting called
Time-Synchronous Multi-Device System (TSMDS) which
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Figure 1. A user owning multiple data-generating devices.

presents an unexplored opportunity for contrastive learning
in real-world settings. This problem setting is inspired by
the current trend of users owning multiple sensor-enabled,
data-generating devices, including smartphones and wear-
ables. Some studies, e.g., (Safaei et al., 2017) even estimate
that by 2025, each person will own 9.3 connected devices
on average. An example of this trend is shown in Figure 1 –
here, a user is wearing multiple accelerometer-enabled de-
vices which are simultaneously collecting sensor data while
the user is performing an activity, such as running.

Apart from the growing importance and practicality of this
problem setting, it presents a unique opportunity for self-
supervised learning. As the multiple devices are capturing
the same generative process (i.e., a user’s activity) from
different perspectives, we hypothesize that the data captured
from this group of devices have a natural affinity to each
other in some latent space. More importantly, the natural
affinity across this group of data samples can be leveraged
to design self-supervised contrastive learning algorithms.
As the supervision in this setting does not come only from
‘self’, but also from other devices in the group, we call this
setup Group Supervised Learning (GSL).

Similar to contrastive learning, the intuition behind GSL is
to push the feature embeddings of compatible data points
from a group (called positive group) closer to each other
while simultaneously pushing away the incompatible points
(negative group). This way the feature extractor is able to
utilize the knowledge from unlabeled data to learn a prior
over the dataset, which could then be fine-tuned for specific
downstream tasks using a fraction of labeled data points.

Our key contributions can be summarized as follows:
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• We propose a new problem setting, TSMDS, which ex-
ists in many domains in the real world but has not been
thoroughly explored yet.

• We present a novel framework GSL addressing the
TSMDS problem, utilizing the principles of contrastive
learning in a group setting. We also discuss new research
avenues, including device selection and data sampling in
the framework.

• Our early results demonstrate that GSL outperforms su-
pervised and semi-supervised training baselines proposed
in the HAR literature by as high as 0.15 in F-1 score.

2. Related Work
Contrastive Learning of Visual Representations. Con-
trastive learning (Khosla et al., 2021; Chen et al., 2020; He
et al., 2020; Caron et al., 2021; Harley et al., 2020) trains
models to extract distinctive features for different data, by
setting up a contrastive task between positive samples, those
which are similar depending on the heuristics selected, and
negative samples, those which are not from a similar dis-
tribution. Recent work by (Chen et al., 2020) proposed a
simplistic self-supervised contrastive learning framework,
SimCLR. The framework trains the feature extractor to
be agnostic against transformations, by using transformed
views of the same sample as positive pairs and contrasting
them against other samples. The authors demonstrated that
the use of embeddings from earlier layers of a contrastive
model for downstream tasks increased the performance and
generalizability of the embeddings. However, the simplistic
sampling of negative samples in SimCLR might not provide
the best supervision for training. Prior work in exploring the
effect of sampling on deep embedding learning (Wu et al.,
2017) has demonstrated that sampling could have a larger
impact on performance compared to the design of the loss
function. In this paper, we present a novel sampling method
for HAR, by leveraging characteristics of synchronized data
streams.

Self-supervised Learning for Human Activity Recogni-
tion. Self-supervised learning (SSL) has become an increas-
ingly popular area of research for human activity recognition
(HAR), where researchers have proposed different ways to
extract supervisory signals from data (Saeed et al., 2019).
Recently, the SimCLR framework has been applied in HAR
(Tang et al., 2020; Saeed et al., 2019; 2020). The authors
explored a set of different combinations of transformation
functions that are designed for time-series data, for train-
ing feature extractors for sensor data based on the SimCLR
framework. A slight improvement in performance was ob-
served compared to other training pipelines. However, again
this work focused on leveraging data from a single sensor
only, and the potential for extracting stronger supervisory

signals from other sensors and devices was not explored.
An initial attempt to leverage multiple devices for SSL has
been made for visual representation (Sermanet et al., 2018).
It showed that time-synchronized visual representations can
be used to provide a reward function for robot manipulation
via reinforcement learning. One of its limitations is that it
utilizes data from two camera views only, but our proposal
explores settings with more than two data sources.

3. Method
3.1. Problem Formulation

In the Time-Synchronous Multi-Device System (TSMDS)
problem setting, we are given time-aligned unlabeled data
samples from K devices. Let Di = {(xi

j)}Nj=1 be the unla-
beled dataset from the ith device, where xi

j is a data sample
and captured by the ith device at time j. LetD0 ∈ {Di}|Ki=1

be an anchor device for which we want to train and test a
downstream classification model. Then the goal of GSL is to
leverage the time-aligned, unlabeled multi-device datasets
to learn a feature extractor Fθ that can generate effective
feature representations for D0.

3.2. Solution Framework: GSL

We propose GSL (Group Supervised Learning), a con-
trastive self-supervised learning framework which extends
SSL to a setting with groups of time-aligned devices. The
key intuition behind GSL is to take the time-aligned sam-
ples from devices similar to D0, and pull them closer to the
samples from D0 in the embedding space. Similarly, we
aim to push other samples (e.g., unaligned samples) away
from D0 in the embedding space. Our solution framework
comprises of three components:

Device Selection. First, we separate the devices (other than
D0) into two groups: a ‘positive group’ denoted byD+, and
a ‘negative group’ denoted by D−. The key idea here is that
devices in the positive (or negative) group will contribute the
positive (or negative) samples during contrastive learning
with the anchor device D0. The choice of device selection
algorithms can depend on the problem domain and learning
task. For instance, for the task of HAR using motion sensors,
we can separate devices into positive and negative groups
based on the similarities/dissimilarities in their degrees of
freedom (DoF). E.g., for a ‘chest’-mounted sensor as the
anchor device, a ‘back’-mounted sensor could be a positive
device (similar DoF) and a ‘forearm’-mounted sensor could
be the negative device (different DoF). Alternatively, we
can use distribution-level statistics to separate devices. In
this work, we compute the Maximum Mean Discrepancy
(MMD) distance between the anchor dataset D0 and the
other devices, and choose p device(s) with the smallest
MMD distances as the positive device(s), and q devices(s)
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with the largest MMD distances as negative devices. Here
p and q are hyperparameters that influence how many and
which devices will be used in contrastive learning.

Data Sampling. After separating the devices, the next ques-
tion is how do we sample data from them during mini-batch
training. As highlighted in prior works (Wu et al., 2017),
mini-batch sampling could have a large impact on the per-
formance of self-supervised learning and hence, this com-
ponent of our framework allows for incorporating various
sampling strategies for positive and negative devices.

In this paper, we propose and evaluate the idea of syn-
chronous positive sampling and asynchronous negative sam-
pling. While constructing the mini-batches, we take a sam-
ple x0

T from the anchor device D0, and its corresponding
time-aligned samples x+

T from the positive devices D+.
For the negative devices D−, we randomly select samples
x−t |t6=T which are not time-aligned with the anchor sample.
The key intuition here is that synchronous sampling from
positive devices will output a sample with the same label as
the anchor sample, and we can aim to pull these samples
close to each other in the embedding space. Similarly, the
asynchronous negative sampling will output non-aligned
samples from the negative devices, which we will aim to
push away from the anchor.

The sampled data, denoted by x• ∈ D•, • ∈ {+,−, 0} is
then passed to the feature extractor Fθ to obtain the feature
outputs z•.

z• = Fθ(x
•), • ∈ {+,−, 0} (1)

Group Supervised Contrastive Loss. Finally, we train
this GSL setup using a novel loss function called Group
Supervised Contrastive Loss, which is an extension of the
standard contrastive loss function but compatible with mul-
tiple positive and negative samples. More specifically, we
have:

LGSL =

∑|D+|
i=0 exp

(
sim

(
z0, z+i

)
/τ
)∑|D+|

i=0 exp
(
sim

(
z0, z+i

)
/τ
)

+
∑|D−|
j=0 exp

(
sim

(
z0, z−j

)
/τ
)
 (2)

where sim(.) denotes cosine similarity and τ is a hyperpa-
rameter denoting temperature.

4. Evaluation
4.1. Experimental Setup

Datasets: For our experiments, we used two datasets for hu-
man activity recognition (HAR): OPPORTUNITY (Roggen
et al., 2010) and REALWORLD (Sztyler & Stuckenschmidt,
2016). They contain 3-axis accelerometer and 3-axis gyro-
scope data from multiple on-body devices.

Method GSL SSL Supervised
Proportion of data ≤ 75% ≤ 75% 100%

OPP - Back 0.769 0.612 0.698
OPP - Left Lower Arm 0.783 0.736 0.756
OPP - Left Shoe 0.732 0.706 0.700
OPP - Right Shoe 0.722 0.735 0.726
OPP - Right Upper Arm 0.831 0.599 0.681
RW - Chest 0.906 0.788 0.899
RW - Forearm 0.852 0.839 0.833
RW - Head 0.834 0.834 0.788
RW - Shin 0.891 0.886 0.885
RW - Thigh 0.899 0.866 0.879
RW - Upper Arm 0.876 0.862 0.857
RW - Waist 0.916 0.808 0.887

Table 1. Comparison of classification performance (F1-micro
scores) between GSL and other training pipelines on two HAR
datasets (OPP - Opportunity, RW - RealWorld).

The Opportunity dataset consists of data collected from 4
participants performing activities of daily living with 17
on-body sensor devices. For the study, we used five devices
deployed on back, left lower arm, right shoe, right upper
arm, and left shoe, and we targeted to detect the mode of
locomotion: stand, walk, sit, and lie. The RealWorld dataset
contains accelerometer and gyroscope traces of 15 partici-
pants, sampled at 50 Hz simultaneously on 7 sensor devices
mounted at forearm, thigh, head, upper arm, waist, chest,
and shin. Each participant performed 8 activities: climb-
ing stairs down and up, jumping, lying, standing, sitting,
running/jogging, and walking.

Baselines and Evaluation Metrics: We evaluate GSL
against two baselines, Supervised and self-supervised learn-
ing using a single device, namely SSL. Supervised represents
the traditional supervised learning, which trains the model
with all the labeled data of the anchor device. SSL follows
the technique proposed in (Tang et al., 2020) and trains Fθ
with unlabeled data from the anchor device using contrastive
learning. The positive data for contrastive learning is gen-
erated by augmenting an anchor data point with rotation
(simulating different sensor placements) and the negative
data is chosen from other data points of the anchor device,
i.e., with different timestamps.

For GSL and SSL, after training Fθ using contrastive learn-
ing, we add a classification head and train it using labeled
data from D0. We compare and report the performance
(micro-averaged F1 score) of each technique on the down-
stream HAR classification task on the anchor device.

Data processing: The accelerometer and gyroscope traces
were segmented into time windows of 3 seconds for Real-
World and 5 seconds for Opportunity without any overlap.
The whole dataset was normalized to be in the range of -1
and 1. For validation, we constructed the training and test
sets by dividing the devices datasets into two parts: 60%
and 40%, respectively.

Network architecture and hyperparameters: The base
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Figure 2. Assessing the classification performance of GSL and other training pipelines across different proportions of labeled data at four
body positions. F1-micro scores were reported on two different datasets, where GSL outperformed the other pipelines in almost all cases.

feature extractor Fθ for GSL and SSL consists of three
1D convolutional layers with 32, 64, and 96 feature maps
and kernel sizes of 24, 16, and 8 respectively. We used
Dropout (p = 0.1) and L2 regularization, and added a global
maximum pooling layer at the end. This is a design that was
shown effective for HAR in previous works (Saeed et al.,
2019; Tang et al., 2020). For the classification head, we use
2 dense layers and a softmax layer on top of Fθ, and the
last convolutional layer of Fθ was fine-tuned together with
the dense layers. For device selection, we use p = 1 and
q = 5 as hyperparameters for the RealWorld dataset, i.e.,
we used one device with the least MMD distance from D0

as the positive device and 5 devices with the highest MMD
distance from D0 as negative devices. For the Opportunity
dataset, we use p = 1 and q = 3.

4.2. Evaluation Results

We evaluate our proposal (GSL) and compare its perfor-
mance against baselines in the following setting: whether
our proposal, with lower labeled data availability, performs
on-par compared to the semi-supervised baseline, SSL, with
the same data availability, and whether it performs better
than Supervised with the full dataset. This setting is de-
signed to evaluate whether our proposal outperforms the
baseline methods and whether it is data-efficient, i.e., it is
able to perform well with less labeled data.

To this end, we fine-tuned GSL and SSL using 10%, 25%,
50%, 75% or 100% of the labeled training data from the an-
chor device, and evaluated them on the test set of the anchor
device. The Supervised model was trained using 100% of
the training data from the anchor device and evaluated sim-
ilarly on the test set. A hyperparameter search on training
parameters were performed for all pipelines to ensure the
optimal performance.

Table 1 shows the F1-micro scores of the models when
evaluated at 12 anchor devices. We compare the Supervised
model performance (trained with 100% labeled data) against

the best performing GSL and SSL models trained using
≤ 75% of the labeled data. The results show that the GSL
method outperforms the other baselines in the vast majority
of cases, with a performance gain compared to the second-
best pipeline as high as 0.15 in F1-score. It also indicates
that the GSL pipeline is data-efficient, by outperforming the
Supervised baseline in all cases while using less data.

Figure 2 shows the impact on performance when the pro-
portion of labeled data varies at four anchor devices across
the two datasets (please refer to the appendix for the re-
maining results). We present two important findings. First,
regardless of the proportion of labeled data used for fine-
tuning, GSL generally outperforms SSL. This shows that
our design of synchronous positive and asynchronous nega-
tive sampling of data from multiple devices contributes to
enhancing the accuracy of self-supervised learning. Second,
GSL outperforms Supervised, even with much less labeled
data. For example, when evaluated at the ‘back’ position
of the Opportunity dataset, GSL was able to outperform the
Supervised baseline using a quarter of the data.

5. Concluding Remarks
Our proposed GSL framework is still a work in progress and
there are a number of open research questions. First, our
problem setting and solution are not limited to HAR tasks
with accelerometer and gyroscope data: it can be easily
extended to other time-series data such as audio or video,
in multi-device settings. For example, GSL can be used to
train a feature extractor for downstream tasks in a multi-
view setting where the same scene is captured by different
cameras, or in a multi-audio setting where different smart
audio devices are recording the same speech in a room. We
are currently extending our evaluation to these settings. Sec-
ond, the choice of device selection and sampling algorithms
can greatly affect the performance of GSL. Due to lack of
space, we did not extensively compare different sampling
or device selection algorithms, and it remains an important
topic for future work.
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A. Evaluation results at other body positions
Figures 3 and 4 show the performances of GSL and other
baselines at all remaining body positions not presented in
section 4. In most cases, GSL was able to outperform
the other baselines, with significant improvement in F1-
scores. However, at some body positions, our proposal
only achieved a slight improvement over the baselines, or
performed worse. One possible reason for the variation in
results is that some devices exhibit vastly different physical
characteristics compared to other ones although they are the
result of the same generative process. This could make con-
trastive learning across devices less effective, and hence the
performance varies. As a future work, we plan to identify
and counter such settings directly in our training framework,
e.g., using the MMD distances between devices as a proxy
for their utility in contrastive learning.
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Figure 3. Assessing the classification performance of GSL and
other training pipelines across different proportions of labeled
data available at other body positions in the Opportunity dataset.
F1-micro scores are reported on two different datasets.
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Figure 4. Assessing the classification performance of GSL and
other training pipelines across different proportions of labeled
data available at other body positions in the Opportunity dataset.
F1-micro scores were reported on two different datasets.


