2015 IEEE International Conference on Pervasive Computing and Communications Work in Progress

CrumblR: Enabling Proxemic Services through
Opportunistic Location Sharing

Geert Vanderhulst, Marzieh Dashti*, Afra Mashhadi*, and Fahim Kawsar
Bell Laboratories
Alcatel-Lucent
Antwerp, Belgium
* Dublin, Ireland
{firstname.surname } @alcatel-lucent.com

Abstract—The need for a device to determine its own lo-
cation and share it with individual Location-Based Services
(LBSs) prevents large-scale adoption of indoor services, spe-
cially those belonging to small businesses or those intrinsic to
short-lived events. We present CrumblR — a proxemic service
broker platform that advocates anonymised location sharing
with place owners instead of LBS providers to receive value-
added contextual services. By decoupling location detection from
LBSs, CrumblIR liberates users from disclosing their locations to
individual service providers. Our platform relies on opportunistic
sharing of wireless signal fingerprints with nearby places to
enable discovery of proxemic services associated with the place.
In this WiP paper, we present the architectural design and the
simple place proximity detection algorithms used in CrumblIR.

I. INTRODUCTION

Today, the location of mobile devices is massively shared
and exchanged to facilitate a variety of Location-Based Ser-
vices (LBSs). Ranging from public social LBSs such as
Foursquare! to private enterprise ones such as Loc-aid?, LBSs
have truly taken advantage of the proliferation of GPS-enabled
devices. The prevalent LBSs are based on a fundamental
characteristic that couples Location and Services together; that
is each LBS builds its own database of locations alongside
other features (such as ratings, reviews, etc). This coupling
enforces the end-user to subscribe to each LBS individually
by downloading smartphone applications, in order to take
advantage of services that might be available to her at a
specific location. Although such model may work for popular
applications providing substantial LBSs (e.g., Foursquare), it
is less ideal for services belonging to small businesses or
those intrinsic to short-lived ad-hoc events. Furthermore, a
subscriber requires to determine its own location and share it
with each LBS separately. However, due to poor GPS signal
reception, a device often fails to reliably locate itself in most
public and private places such as shopping malls and enterprise
buildings. To cater for this scarcity, LBSs often have to further
rely on proprietorial expensive sources of data such as those
collected by Google, Apple, Skyhook Wireless, which still
have limited indoor availability and accuracy.

Recently many research studies [1], [8], [9] and services
such as Apple Indoor Positioning have leveraged the WiFi

Uhttps://foursquare.com/
Zhttp://www.loc-aid.com/

978-1-4799-8425-1/15/$31.00 ©2015 |[EEE

modules incorporated in smartphones to determine a user’s
indoor location. This method, based on WiFi fingerprinting,
relies on collecting and matching the fingerprints of location-
dependent characteristics, such as the received signal strength
from nearby WiFi Access Points (APs). The fingerprints
obtained at different locations are then semantically labelled
and stored in a database associated with their coordinates. This
allows for any newly collected fingerprints to be compared
with the database and thus infer the indoor location of the
users. However, one bottleneck of such approach involves
the collection of these rich semantically labelled fingerprint
databases which dynamically change over time.

In this work, we argue that by decoupling the location
detection from the LBSs, we are able to provide both the end-
users and service providers with a more dynamic base for
Proxemic Services in indoor spaces. We define a Proxemic
Service as a “temporal service that automatically provides
the user with value at a specific place”. Unlike a traditional
LBS, devices do not share their location with individual
proxemic services but rather with the place or spatial entity
that the service is associated with. Borrowing our terminology
from the story of Hansel and Gretel, we define a crumb as
an anonymous wireless signal fingerprint that captures both
cellular and WiFi signal sources. When residing at a trusted
place, a device starts sharing crumbs anonymously with the
place. Similar to Hansel’s bread crumbs, signal crumbs do
not give away the identity of a user, nor can they be spotted
outside the place (i.e. by a service that does not maintain a
relationship with the place). For instance, by “checking in”
to an airport, crumbs are shared with the airport such that
the user gains access to all proxemic services associated with
the airport — e.g., location-based notification services such
as “The Starbucks on your left offers 15% discount on all
pastries”, “Gate change: the flight from gate B2 will depart
from gate B10”, “Airport security warns for long queues near
the A gates.”. Whilst the stakeholders of these services clearly
differ, they leverage the same crumbs and provide the user
with a unified experience at a given place.

The key benefits of our platform, called CrumblR, are
twofold: (i) a per-place subscription model rather than a per-
service subscription model allows new services associated
with a place to opportunistically reach the end-users and (ii)

259

2015 IEEE International Conference on Pervasive Computing and Communications Work in Progress

Nearby Places

user & place
association

Hospital 200m

Airport 5km

ﬂ a automatic service subscriptions

Mall Services

Welcome @ Starbuks

= Claim your free coffee

Now in IMAX
Interstellar tickets

£+ Starbucks LBS
£ Flights LBS

ﬁ CityBus @ Mall
Check-in next downtown: 14m

£+ MAX LBS
/ £¥ CiryBus LBS ;

e opportunistic location sharing with place

Fig. 1. CrumbIR lets users check-in to a place (1), share their location context with multiple proxemic services at once (2) and delivers a unified experience

to the end-user by only presenting those services relevant at a place (3).

improved efficiency in terms of energy consumption on the
device, as the user only needs to share her location once to
take advantage of many services available to her.

II. DESIGN AND ARCHITECTURE

CrumblR associates places with services. A place in Crum-
bIR is similar to a place in Foursquare: it can be a corpo-
rate building, a public facility, a small business, etc. Since
we perceive that many LBSs only make sense at particular
locations, we focus on exactly those proxemic services which
offer a value to the user whilst residing at a place, e.g., critical
notifications, loyalty discounts, personalised navigation, etc.
Figure 1 depicts the CrumblR prototype application. First,
the user is presented with an overview of places known to
CrumblIR near her current location. By checking in to a place,
her device starts dropping crumbs — wireless signal fingerprints
— at the place.® In return for opportunistically sharing location
hints with a place, proxemic services associated with the
place push content to a user’s device (e.g., coupons, alerts,
interactive controls, etc). When leaving the place, the user is
automatically unsubscribed from these services which can no
longer track her.

A place is registered on our platform with a geographic
coordinate and a list of “fingerprinted points”. This list consists
of wireless signal measurements near a Point-in-Place (PiP)
that is of particular interest for that place, e.g., a gate, security
counter, ... at an airport. The geographic coordinate allows
CrumblR to list nearby places on the user’s device via GPS,
whereas the fingerprinted points allow CrumbIR to identify
whether a user is co-located with a PiP (section III-B). To
integrate with CrumblR, a service should implement an input
channel (i.e., a REST interface) to receive locations from
places, and an output channel to push content (i.e., active
HTML snippets) to a user’s device. The owner of a registered
place on CrumblR (who does not necessarily need to own

3By default, these crumbs are generated every minute to conserve energy.
However, we envision an adaptive sampling rate that scales up and down
based on a place’s requirements.

the infrastructure of the place), can then associate registered
services with her venue. CrumblR acts as a broker platform
associating users and services seamlessly and anonymously
across trusted places. Figure 2 depicts the situation where

services

laces
=) P
/ \e s ‘s .
. o 3
service pointin-place crumb
dispatcher detector handler
plage — N
(Airport) place =
points-in-place detector G
(Gate 1 &Gate 2] e e
A B (&) 3
from: Pseudonym from: Pseudonym from: Flights LBS §
to: Airport to: Airport LBSs to: Pseudonym 2
CRUMB lam @ GATE 2 GATE CHANGE 2

Fig. 2. Interaction between different components in CrumbIR.

a user has checked in to a place (airport), shares a crumb
with the place and gets associated with a service based on
her presence at a PiP within the place. To protect the user’s
privacy, we represent users by anonymous pseudonyms in their
communication with CrumbIR such that a user’s identity is
never revealed to either CrumbIR or individual services. Via
the crumb handler, a crumb arrives at the place’s instance
on CrumblR from where it is forwarded to the PiP detector.
Given the airport’s list of fingerprinted points, the PiP detector
determines groups of users residing near known PiPs. For
instance, if one or more users are detected to be co-located
with a PiP labeled “Gate 2”, the pseudonyms of these users and
PiP label are propagated to the airport’s associated services.

260

2015 IEEE International Conference on Pervasive Computing and Communications Work in Progress

Via the service dispatcher, a proxemic service reaches out to
all users located near Gate 2 to notify them of a gate change.

III. ALGORITHMS AND PRELIMINARY RESULTS

CrumbIR uses two algorithms to determine the user’s lo-
cation: (i) a place detection algorithm which is used for
automatically checking in to previously trusted places by
detecting a device’s coarse location (e.g., airport) and (ii) a
point-in-place detection algorithm to detect a device’s location
with finer granularity (e.g., specific airport gates). The former
runs as an offline algorithm on the end-users’ devices without
the need for a network connection, while the latter is an online
algorithm which is executed once the device starts sending
crumbs to a recognised place.

A. Place Detection via Minimal Radio Maps

Users’ preferences and trust in a place has shown to vary
over time and change dynamically depending on their social
context. Various works have previously examined ways for
addressing this dynamic change [7], [5], [2]. In this work
our focus is on scenarios where the users’ trust in a place
is persistent, however we believe similar techniques could
be incorporated into CrumblR. To this end, we designed a
mechanism to support automatic check-ins in trusted places,
similar to a phone automatically connecting to a trusted WiFi
AP. This is achieved by relying on two fundamental operations
of mobile phones: cellular and WiFi probing, enabling a phone
to learn about the identities of cell towers and WiFi APs within
radio range.

First, we maintain a list of places to which the device has
previously sent crumbs, i.e., places the user has checked-in
previously. Each place stores a Minimal Radio Map (MRM)
that consists of all perceived cell IDs and WiFi (B)SSIDs at
that place. This MRM is extracted from the list of fingerprinted
POIs sent to CrumbIR when registering a place and it is stored
on a user’s device after checking in to the place. Our place
detection algorithm then matches cell nodes and WiFi APs
currently in sight by a device with those stored in MRMs. After
a cell look-up, cell IDs are compared with those perceived
at each place, and a place is flagged as potentially “nearby”
in case of a match. This operation carries low overhead in
terms of energy consumption as cell look-ups are performed
continuously to maintain a connection with a mobile operator.

Next, if one or more places have been flagged but no WiFi
connection is established, we rely on WiFi probes to discover
APs in the vicinity. Each newly discovered AP in a probe is
then compared with the flagged places’ MRM, and in case of
a match, the device automatically checks in at the place and
starts sending crumbs. It should be noted that the accuracy
of our place detection is limited by the range of an AP. For
instance, if two neighbouring shops are both known as trusted
places, they might both be detected and crumbs will be sent to
each shop. To identify the more precise location of the user, we
combine the place detection algorithm with the point-in-place
detection algorithm which we describe next.

Finally, to further reduce the power usage of our place
detection algorithm, we limit the number of WiFi probes and
use the probing mechanism (which does not require a device
to connect with an AP) only when the user has no active
connection with a known WiFi AP. This approach could be
extended by incorporating other sources of information to infer
users’ displacement such as monitoring inertial sensors [8].

B. Point-in-Place Detection based on Co-Location

We address location detection within a place as a co-location
problem, i.e., identifying which users are co-located with
known PiPs. We first identify PiPs at a place (e.g., shops in
a mall, gates at an airport, etc) and collect an RF fingerprint
at (the center of) each PiP. Such RF fingerprint is a vector
of available AP IDs and their associated RF measurements,
i.e., received signal strength (RSS) measurements in our case.
The idea behind our co-location technique is that the multipath
structure of a radio channel is unique to every location and can
be considered as a signature of the location. Co-located devices
experience a similar multipath environment (e.g., reflectors
and objects in the environment) and therefore exhibit similar
multipath profiles. By combining live fingerprints (from user
devices) and a small set of pre-recorded fingerprints (from
PiPs), we link groups of users and PiPs with minimal fin-
gerprinting effort. In our approach, it is sufficient to collect
fingerprints only at PiPs — site-surveying an entire floorplan
or training a localisation algorithm is not required.

Our co-location algorithm calculates the signal distance
between every two nodes (user device nodes and PiP nodes).
Different distance metrics can be applied to measure the
distance between two fingerprint vectors. The simplest metric
is the Manhattan distance in which the sum of the absolute
differences of signal strengths is computed. Assume that riA
and 7P denote RSS values from the i-th AP observed by user
A and B respectively. Also assuming that N APs are seen by
two nodes A and B, their Manhathan distance [3] in the signal
space can be calculated as

N
dap =Y Irf=rP (1)
=1

The nodes whose fingerprints differ less than a dissimilarity
threshold § are considered potentially co-located. In order
to evaluate the accuracy of our approach, we construct a
connectivity graph of nodes based on fingerprint similarities.
If the distance d;j between a j-th and a k-th node is less
than 4, the two nodes are connected by an edge in the graph,
ie., Cj, = 1. Otherwise, two nodes are disconnected, i.e.,
Cjr = 0. Out of this graph we can easily extract groups
of co-located nodes. If such group contains a PiP, we know
that the users’ devices in that group reside near the PiP. This
information is then communicated to the services associated
with a place.

We tested our approach inside an enterprise building at a test
area spanning 2500 m? and consisting of 27 office cubicles,
16 meeting rooms and corridors. First, we collected PiP

261

2015 IEEE International Conference on Pervasive Computing and Communications Work in Progress

5 10
. - - - False negative
AN — False positive
<4 . 8
g . g
= \
5 . 5
e 3 AN 6 o
N
N =
o (23
g2 N 48
N
3 . 3
© N ©
w
&y AN {2
\

2 25 3 3.5 4 45 5
Dissimilarity threshold &

Fig. 3. Analysis of dissimilarity treshold for a 50 node connectivity graph.

fingerprints near the center of each cubicle and meeting room
and registered the place on CrumblR with this information.
Next, we provided 5 participants with smartphones running
a prototype of CrumblR. This application continuously sent
crumbs (RF fingerprints) to the place’s instance on CrumbIR
from where they are forwarded to the PiP detector (Figure 2).
We then dispersed our participants over the test area. As our
number of participants is limited, we repeated this process
10 times. We then extracted the time dimension and aggre-
gated the data to resemble a 50 node connectivity graph.
Since the purpose of this preliminary evaluation is to analyse
the accuracy of our clustering approach, we choose not to
distinguish between user nodes and PiP nodes. In this case
study, we considered two nodes to be co-located when there
is less than 2 meters distance between them. To find the
optimal dissimilarity treshold, we evaluated the algorithm’s
performance for different values of § using a connectivity error
metric. If two nodes j and k were in reality co-located, we
define C; . = 1 indicating a true link between these two nodes,
otherwise C ; = 0. We calculate ¢; , = C; , — C; , for every
two pairs of nodes. The connectivity error e, , = —1 indicates
a false negative error and e; = 1 indicates a false positive
error. Figure 3 shows the impact of § on connectivity errors
for a normalised Manhattan distance metric. Our early results
indicate the ¢ of our test area to be 3.5. This results in less than
1 % false negative and less than 2 % false positive connectivity
errors for a connectivity graph of 50 nodes.

IV. DISCUSSION

In CrumblIR, users voluntarily and anonymously share their
locations with a place to obtain associated proxemic services.
However, sometimes these services might overwelm a user
with information she is not interested in. We believe this
problem can be addressed via folksonomy-based profiling
such as those proposed in the publish/subscribe paradigm [6].
Besides, services lack personalisation options since they are
not aware of the user’s identiy. We envision proxemic services
to request permissions, similar to mobile applications, to
access certain types of information like the user’s identity and
hence unlock personalisation features when approved by the
user.

To detect groups of users near PiPs, we rely on basic WiFi
fingerprinting techniques. However, another solution would
be to leverage emerging BLE technologies such as Estimote
beacons* where each PiP can be represented by a beacon. Still,
the issue with such beacons is their associated deployment
and management cost. Place owners would need to invest to
make their venue compatible with CrumbIR which is not the
case with our present approach where existing infrastructure
is used. However, once BLE-based beacons become widely
adopted, our platform can be tuned to take advantage of them
when available.

As part of our future work we plan to evaluate the perfor-
mance of CrumblR more broadly, namely in scenarios such as
shopping malls where the number and distribution of APs can
vary greatly. Such deployments would allow us to evaluate
the complexity of CrumbIR and its algorithms as the scale
increases. Furthermore, we plan to investigate how we can
verify crumbs, catering for scenarios where a user has an
incentive to lie about her whereabouts. For example, a user
might replicate a previously recorded crumb to claim she
resides at a given place while she is not. This problem of
proving one’s location has been studied before [4]. Due to the
nature of our approach — opportunistically sharing crumbs —
we see an opportunity to seamlessly acknowledge each other’s
crumbs via crowd-sourcing.

Finally, we envision CrumblR to act as a collective analytics
platform where statistical knowledge about spatial places is
provided to interested parties (e.g., place owners). For instance,
the crumbs provided by users at a mall can provide insights
about the number of visitors at the mall at different times, the
most popular stores, etc.

REFERENCES
[1

—

Jacob T Biehl, Matthew Cooper, Gerry Filby, and Sven Kratz. LoCo: a
Ready-to-Deploy Framework for Efficient Room Localization using Wi-
Fi. In Proc. of UbiComp, pages 183-187, 2014.

Greg Bigwood, Fehmi Ben Abdesslem, and Tristan Henderson. Predicting

Location-sharing Privacy Preferences in Social Network Applications.

Proc. of AwareCast, 2012.

Sung-Hyuk Cha. Comprehensive Survey on Distance/similarity Measures

between Probability Density Functions. Int. Journal of Mathematical

Models and Methods in Applied Sciences, 1(4):300-307, 2007.

Wanying Luo and Urs Hengartner. VeriPlace: a Privacy-Aware Location

Proof Architecture. In Proc. of GIS, pages 23-32, 2010.

Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette, Patrick Kelley,

Madhu Prabaker, and Jinghai Rao. Understanding and Capturing People’s

Privacy Policies in a Mobile Social Networking Application. Personal and

Ubiquitous Computing, 13(6):401-412, 2009.

[6] Mohammad Sadoghi and H-A Jacobsen. Relevance matters: Capitalizing
on less (top-k matching in publish/subscribe). In Proc. of ICDE, pages
786-797. IEEE, 2012.

[7]1 Yasushi Sakura. How well can a user’s location privacy preferences
be determined without using gps location data. IEEE Transactions on
Emerging Topics in Computing, 10(1):1, 2014.

[8] He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid, Moustafa
Youssef, and Romit Roy Choudhury. No Need to War-drive: Unsupervised
Indoor Localization. In Proc. of MobiSys, pages 197-210, 2012.

[9] Zheng Yang, Chenshu Wu, and Yunhao Liu. Locating in fingerprint space:

Wireless indoor localization with little human intervention. In Proc. of

MobiCom, pages 269-280, 2012.

[2

—

—
W
—_

[4

=

[5

—_

“http://estimote.com/

262

