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ABSTRACT
We present the design, implementation and evaluation of a
novel human encounter detection framework for measuring
and analysing human behaviour in social settings. We pro-
pose the use of WiFi probes, management frames of WiFi,
that periodically radiate from mobile devices (as proxies for
humans), and existing WiFi access points to automatically
capture radio signals and detect human copresence. Based
on the spatio-temporal properties of this copresence and their
interplay we defined a model, borrowing theories from so-
ciology, to detect human encounters – short-lived, sponta-
neous human interactions. We evaluated our framework us-
ing controlled and in-the-wild experiments yielding a detec-
tion performance of 96% and 86% respectively. As such, our
framework opens up interesting opportunities for designing
proxemic and group applications, as well as conducting large-
scale studies in the areas of computational social sciences.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile
computing systems and tools;
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INTRODUCTION
Understanding human social interaction is an important facet
of modelling individual and group behaviour, with the po-
tential to transform our understanding of our lives, organisa-
tions, and societies. Indeed, in the digital world, thanks to
the unprecedented traces from users of social media [19, 26],
emails [9, 15], and call data records [7, 23], the quantification
of human social interactions has been studied extensively to
compile comprehensive pictures of the ways we learn, act,
think, and behave as social human beings.

However, the emergence of such a data-driven “computa-
tional social science” based on the physical world has been
much slower. Only in the recent years, modern technologies,
such as video surveillance [5], wearable smart badges [2,22],
and multimodal sensor equipped smartphones [10, 24] are
used to explore the human social interactions in the physical
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world. Although accurate, most of these technologies come
at the expense of high deployment and management costs,
and sometimes at the risk of privacy erosion. Besides, the in-
trinsic requirement of carrying special purpose hardware lim-
its the potential of these approaches beyond short-term stud-
ies. Being able to detect human interactions with minimum
obstruction to their daily life routines and settings could en-
able new avenues of research in the social psychology domain
where encounters and social engagement of individuals, such
as those with behavioural disorders (e.g., depression), could
be monitored for medical diagnostics.

A possible solution is thus to rely on the devices that are
already embedded in our lives such as smartphones to act
as proxies for humans, granting the assumption that people
mostly carry their phones with them [16]. For instance, pre-
vious work has shown that people carry their mobile phone at
the workplace, 48% of the time within arm-reach and 82% of
time within 5 meters [8], making the phones’ location a good
approximation for users’ location in the offices. However, ac-
tive sensing approaches on mobile phones have been shown
to be inefficient in terms of energy consumption [3, 14].

Motivated by these issues, in this paper we aim to build a
novel framework for detecting human spontaneous encoun-
ters. In particular we are interested in detecting those social
interactions that are short-lived in nature and are spontaneous
between a small set of individuals. Our framework leverages
existing WiFi infrastructure and WiFi signals radiating from
mobile devices to detect human copresence. Borrowing the-
ories from sociology, we propose a novel model for detecting
human encounters based on the spatio-temporal properties of
this copresence and their interplay. As such, the contributions
of our work are twofold:

• A model, grounded on sociology theory, for detecting
spontaneous human encounters in the physical world from
copresence data.

• The design, implementation and evaluation of and end-to-
end framework embodying this model that actively lever-
ages existing WiFi infrastructure with minimal but wilful
participation from the users.

Our encounter detection framework essentially transforms
quantified network noise into social signals. In doing so, it
opens up opportunities for novel proxemic applications and
large-scale human behaviour analytics at low cost. After out-
lining the terminology used throughout the text, we elaborate
on the design challenges and implementation of our frame-
work, followed by an evaluation (controlled and in-the-wild
experiments) and concluding remarks.



COPRESENCE AND HUMAN ENCOUNTER
In this section we first define the terminology that we use
throughout the paper. We then describe the scope and sce-
narios of human encounters that we want to capture.

Terminology
In order to define what we mean by an encounter and its char-
acteristics, we visit the definitions from the social science lit-
erature where different aspects of human groups and interac-
tions have been studied for many years by sociologists. In
the study of human groups [13], a main distinction between
primary and secondary groups is made. Primary groups are
those in which everyone knows everyone else on face-to-face
basis and thus can be treated as a small social system. In con-
trast, the secondary groups are characterised by impersonal
relations and are goal-oriented. However, in this work we are
not interested in the social relationships between the individ-
uals, rather in their interactions. Thus, to make our taxonomy
independent of this relational aspect, we avoid using the term
group and instead borrow two other major terms from sociol-
ogy: copresence and encounter.

Copresence. This term refers to the spatio-temporal condi-
tions under which humans can interact with each other. De-
fined by Goffman [12], copresence is the condition when
people “sense that they are close enough to be perceived
in whatever they are doing, including their experiencing
of others, and close enough to be perceived in this sens-
ing of being perceived”. These conditions are expected to
persist throughout a contained space like a room, and to
apply to anyone in that space. For example, in the context
of a workspace, employees who share an office can be re-
ferred to as being copresent to each other. Whereas in pub-
lic spaces, such as streets, the area for which the defined
mutual perceiving prevails is hard to define. To quantify
the physical distance over which one person can perceive
another with the naked sense, we borrow from [20] where
a distance limit of up to 4 meters is proposed. Further-
more we are interested in corporeal presence, situated in
semi-private spaces (e.g., workplace), which refers to bod-
ily presence and excludes remote interactions such as tele-
phony or online social interaction [29].
While the term copresence captures the condition of be-
ing close to each other from the human sense, it does not
capture interactions amongst the copresent individuals. For
example, a group of individuals waiting at a bus stop could
be referred to as copresent despite no human interaction
amongst them is exhibited.

Encounter. Defined by Goffman [12] the term encounter
comprises “all those instances of two (or more) participants
in a situation joining each other openly in maintaining a
single focus of cognitive and visual attention (single mu-
tual activity), entailing preferential communication rights”.
A simple example of an encounter is when persons meet
each other in the workplace corridor and engage in a con-
versation. The term encounter implies two main properties
by definition: Firstly, it is not only constrained to verbal
conversations, but can also include gestures, gaze and non-
verbal interactions amongst persons. However, regardless

of the communication channel, the participants are bound
to be mutually involved. Secondly, the term is indepen-
dent of social ranking of human interactions – persons with
a different social status or background can be engaged in
an encounter – and covers occasions which bring two per-
sons into close access to each other. Finally, to conclude
the definition and properties of encounter, we borrow from
Zhao [29] to constrain our definition to real-time, recipro-
cal encounters which exclude short non-intentional inter-
actions, such as greeting a postman passing by.

In this work we are interested in human encounters which
are intrinsically short-lived, which we refer to as spontaneous
encounters.

Scope Definition
In order to define the scopes and scenarios of the spontaneous
encounters that we are interested in this work, we consider
two variables that are exhibited in every human encounter:
duration and size.

Duration (δtg). The duration represents the amount of time
that an encounter existed, from the time of formation to its
decomposition. Duration is a simple metric but a good in-
dicator for differentiating various types of encounters. For
example, a high δtg – in the order of hours – can be reflec-
tive of a cohabiting group such as a family where the mem-
bers spend long periods of time together at home. Whereas
a smaller value of δtg – for example less than 10 minutes
– could be more representative of spontaneous encounters
such as coffee breaks at the workplace and casual chats.
Furthermore, as the encounters are defined based on the
engagement of the individuals, the termination of the en-
counter (and thus δtg) is highly affected by the entrance
and departure of a participant. We will discuss this prop-
erty and how it is used in our encounter detection algorithm
later in this paper.

Size (N ). The size represents the number of distinct individ-
uals in the encounter. In the domain of social psychology,
size has been shown to play an important role in determin-
ing the nature of groups. J.C.Turner, a social psychologist,
proposed a theory of size and depersonalisation [25]. He
states that as the size of the human group grows, the group
becomes more depersonalised.

Based on these two variables and their interplay, we now em-
pirically define a model for human encounters.

• N >= 2. By definition an encounter should have at least
two members.

• δtg > 1min. For an encounter to be considered a mean-
ingful reciprocal engagement (as opposed to random short-
lived copresence), its duration should be at least 1 minute.
This means any encounter that is less than 1 minute in du-
ration is excluded from our definition of encounter, as il-
lustrated in Figure 1a.

• As the size of the persons in the encounter N increases,
the duration of the encounter also increases as to allow the
individuals to mutually involve in the communication and



Figure 1: Scope and boundaries of a human encounter: (a) the exclusion of random temporary copresence; (b) the sub-linear
growth of copresent users; (c) the decrease in size of an encounter for longer durations; (d) an empirically defined model from
three previous social observations.

cognitive/visual attention [12]. We model this property as
a sub-linear growth (Figure 1b). For example, while a two
minute encounter for 2 persons could be long enough for a
social chat, a 5 persons encounter might require more than
5 minutes. We claim this requirement based on two prop-
erties from sociology. Firstly, as the number of persons
increases, the longer it takes for the ceremonial rituals1 of
encounters formation and decomposition [11]. Secondly, it
is more likely for the focus of attention (e.g., topic of the
conversation) to be shifted when more individuals are in-
volved in a verbal encounter. This property is illustrated in
Figure 1b by a sub-linear growth of size.

• Finally, as the duration δtg increases, the likelihood of
the encounter between a large number of individuals de-
creases. This is because it is less conventional for a large
number of people to actively and mutually interact with
each other for a long period of time (e.g., 10 people inter-
acting for over 1 hour), unless the copresence is a planned
gathering such as a meeting which falls outside the scope
of this work. This property is illustrated in Figure 1c by a
descending line.

Figure 1d brings together the above properties, for an empiri-
cally defined boundary of size and duration. In this paper, we
are interested in those encounters that fall in the shaded area
which correspond to intrinsically short-lived spontaneous en-
counters. These spontaneous encounters could be of three
different types: (i) spontaneous encounter of two or more
individuals where coming together does not seem to have a
previously defined rationale, such as small talk in the corri-
dor; (ii) spontaneous encounter of two or more individuals
with a clear rationale for their gathering, for example people
going for a coffee break; (iii) spontaneous encounter of two
or more individuals with additional persons joining in a later
time. This encounter could be related to a specific mutual in-
strumental activity. For example, a group of friends having a
debate and asking a third party to join their conversation.

In order to confirm that the proposed model is viable, we
looked at the measured interactions of 23 employees over 30
days as collected by [22]. This dataset monitored the inter-
action amongst employees of a data server configuration firm
for one month through infrared badges. Figure 2 presents the

1The ceremonial ritual refers to the conversations or actions that are
necessary to keep participants in line and give a closure to the mutual
activity sustained in the encounter.

duration and size of these interactions. As illustrated, the ma-
jority of the interactions fall within short-lived spontaneous
ones with a few participants. The figure also demonstrates
that as the number of participants increases so does the dura-
tion of the interactions.
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Figure 2: The size and duration of interactions amongst em-
ployees in a real enterprise.

DESIGN CHALLENGES
In the previous section, we described the foundation of our
spontaneous human encounter detection framework. Essen-
tially, to detect these encounters automatically we need sen-
sory signals that can accurately and reliably track the co-
presence of humans. This copresence is then modeled to
detect human encounters. There are multiple alternatives
to acquire the sensory signals with varying degree of char-
acteristics in terms of system requirements, measurement
complexity, and privacy concerns. For instance, past works
have explored capturing copresence information using dedi-
cated multimodal sensing infrastructure [5], dedicated sensor
badges [2, 22] or using mobile sensing techniques [10, 24].
Although accurate, these approaches often come at the ex-
pense of high deployment costs and privacy erosion. In this
paper, we divert from these traditional approaches and apply
a network-centric approach: we rely on existing WiFi infras-
tructure with minimal but willful user participation to detect
human copresence from WiFi signals. Our rationale behind
using WiFi signals is grounded upon the findings from past
research suggesting people carry their phones with them most
of the time [16] having WiFi switched on [3]. We argue that



this is a reasonable assumption for most of the spaces we tar-
get: workspaces, conferences, museum, networking events,
etc. Besides, by using existing WiFi Infrastructure together
with pervasive mobile phones, we aim to reduce the deploy-
ment and management costs substantially without compro-
mising the quality of detection. However, to realise our pro-
posed approach, we need to overcome three major challenges
as discussed below:

Zero Mobile Sensing We aim to detect human encounters
without the need of sensory information from the user’s
personal device, such as audio/video signals, GPS coor-
dinates, accelerometer data or WiFi scans. Moreover, we
want to step away from discovery protocols (e.g., Blue-
tooth) due to the risk of detecting peripherals that do not
uniquely identify a user (e.g., audio headset, wearables,
printer, etc), and the fact that Bluetooth is usually turned
off by users [3]. Instead, we aim to leverage day to day
WiFi radio signals exchanged between personal devices
and local network infrastructure.

Detection Accuracy We rely on common network infras-
tructure such as WiFi APs to capture WiFi signals origi-
nating from the users’ devices. However, as pointed out
in [21], no passive WiFi tracking system can guarantee ac-
curate tracking performance, due to a number of issues: (i)
temporal sparsity of detections, (ii) spatial sparsity of de-
tections across network nodes and (iii) unpredictable path
loss, e.g., caused by walls, furniture, people, etc. Since
many human encounters are short-lived, it is particularly
challenging to guarantee device detections in sub minute
intervals, whilst devices might or might not be connected
to a WiFi network.

Detection Reliability When opportunistically leveraging ra-
dio signals to detect human encounters, a valid concern is
the rate of erroneous detections. This error rate is chal-
lenged by several phenomena beyond our control, such as
signal fluctuations within an environment and device het-
erogeneity. For instance, different phone designs (e.g.,
used WiFi chip, antenna position, casing, . . . ) might af-
fect the strength of a signal leaving a phone. Besides, a
phone sitting in a user’s pocket might behave differently
from a phone laying on a desk.

While consistent transmission of WiFi signals from mobile
devices can mitigate these challenges, it requires mobile de-
vices to constantly send data packets, which is often energy
expensive. However, according to the 802.11 standard, a de-
vice can periodically radiate a WiFi signal to actively search
for available networks as long as the WiFi chipset is on. This
Wifi signal, a Probe Request – further referred to as ‘probe’
– is a WiFi management frame that can be either directed to
a specific network, by indicating its SSID, or broadcasted to
any network within range. Figure 3 shows an example of a
directed probe. Mobile devices periodically send out these
probes with a frequency that is vendor-specific and also de-
pends on the power state of the device. Upon receiving such
probe, an addressed AP replies with a Probe Response en-
abling the device to initiate a connection, or associate with an
AP with a stronger signal. Since probes are not encrypted,

they can easily be intercepted using commodity hardware,
i.e., a WiFi chip set to monitor mode. In our framework we
use these probes as the primary means to capture radio signals
transmitted from users’ devices (as proxies of humans).

Figure 3: A (partial) Probe Request originating from a device
with MAC address “90:68:c3:be:34:9f” that is looking for an
AP with SSID “DIRECT-”.

It is known that the frequency by which probes are sent
greatly varies between vendors and device models [21]. In-
deed, in a small experiment we conducted at our office space,
we noticed the number of probes sent by individual devices
ranging from less than 20 up to more than 100 in a pe-
riod of 10 minutes The majority of devices (laptops and mo-
bile phones) being used at our office space have an active
WiFi connection which causes mobile phones (e.g., Moto
G phones) not to send probes at all within our time win-
dow. These observations demand for a strategy to increase the
number of probes being sent by mobile phones. We consider
two options to guarantee predictable probe transmissions:

Network-centric Prompting devices for additional WiFi
transmissions from within the network. For instance, in
[21] Musa et al. have shown that by emulating the SSID
of popular or previously visited WiFi access points (AP),
devices can be tricked into (re-)associating with an AP and
generating extra probes. The advantage of this approach
is that it is fully passive, albeit it exploits the chattiness of
WiFi chips in a privacy-invasive way and interrupts active
WiFi connections.

Device-centric Synchronise the transmission of probes at the
device-end. While this approach requires a small device-
centric component, it guarantees a high detection rate.
Most importantly this allows users to opt in and out to our
human encounters detection framework.

Using either of these approaches, we argue that the Detec-
tion Accuracy challenge can be realistically addressed. While
we can exercise control over the timing or probes, we cannot
mitigate the potential effects of device heterogeneity on sig-
nal fluctuations. As a result, some inaccuracies are likely to
be introduced when calculating human copresence. By feed-
ing aggregated copresence data (as sensed by multiple net-
work nodes) through a semantic model capturing human lim-
its (e.g., duration and size of human groups), we aim to in-
crease the Detection Reliability in our framework.

Energy Consumption of WiFi Probes
In what follows, we assess the energy gains that can be ex-
pected from our approach at the device-end. We compared
the energy consumption of a WiFi scan and a WiFi probe (i.e.,
listening to radio signals from nearby APs versus transmitting
a radio signal). To gain control over probes without rooting a
phone and modifying its WiFi drivers, we leverage the WiFi
Direct standard. WiFi Direct is designed to enable devices to
easily connect with each other without requiring a wireless



AP. An important step in this process is the device discovery
phase, when devices send out probes to advertise their pres-
ence. These probes can be distinguished from other probes by
their SSID value (“DIRECT-”) and are broadcasted on chan-
nels 1, 6 and 11 in the 2.4GHz band. To measure the energy
consumption of sending out a controlled WiFi Direct probe,
we initiate a WiFi Direct device discovery and immediately
abort it as soon as one probe has been sent out. Performing a
WiFi scan is supported natively on Android phones, albeit we
witness other manufacturers (i.e., Apple) to shield this func-
tionality from developers.

We disassembled an Android Moto G phone and measured its
battery’s discharge current for either task using a Tektronix
Power Analyser. The results of our energy measurements are
listed in Figure 4. While the peak current drawn by both tasks
is very similar, the WiFi scan consumes more energy because
it takes longer. During a WiFi scan, the chip needs to tune to
each WiFi channel for at least 100ms and listen for incoming
(beacon) frames that are typically broadcasted every 100ms
by APs. During a WiFi direct discovery process, devices also
listen to each other’s probe responses which introduces some
overhead – a trade off between leveraging existing APIs and
manipulating a phone’s firmware.

Figure 4: Comparison of the energy consumption for sending
a WiFi probe and performing a WiFi scan on a Moto G phone.

As the figure shows, the actual power gain of a WiFi Direct
probe over a WiFi scan is approximately 30%. However, the
real gain comes from the fact that as soon as the probe leaves
the phone, it is in the network. In contrast, collecting signal
strength (RSS) measurements on a phone requires active net-
work connection to communicate its scan results to a server
in the network for further analysis. In the next section, we
explain the detail technical approach of our framework that
actively leverages the decisions informed in this section.

DESIGN AND IMPLEMENTATION OF THE FRAMEWORK
The framework proposed in this paper, consists of three main
components as illustrated in Figure 5.

Radio Signal Capturing Engine
Based on insights from our feasibility study, we opted for a
hybrid sensing approach consisting of:

• A small device-centric component that is responsible
for synchronising probe transmissions at the device-end.
Hence we can aim to minimise the effects of temporal
changes in the environment with probes being broadcasted
simultaneously.

• A network-centric component that runs on local network
nodes and which is responsible for collecting probes and
feeding them to our algorithms.

Figure 5: Architecture pipeline.

As such, our architecture is designed with the ubiquitous
availability of small wireless cells (i.e., WiFi APs) with on-
board computing capabilities in mind. As a proxy of a small
cell, we opted for Meshlium devices from Libelium2 which
have all the properties of a ‘real’ WiFi AP including the abil-
ity to easily program them. A Meshlium features a 500Mhz
x86 processor, two WiFi interfaces (one of which acts as an
AP by default) and runs an embedded Debian Linux operat-
ing system. However, any device with a WiFi chip that can
be put in monitoring mode can be leveraged for collecting
probes and reporting signal measurements to our copresence
engine. We involve the user in the loop as we only capture
probes with SSID “DIRECT-” which are intentionally broad-
casted by an app running on a user’s personal device. In the
next sections, we explain how we time probe transmissions
and collections.

Heartbeat Synchronisation
Clocks embedded in electronic devices typically consist of
cheap quartz oscillators which are prone to clock drift, such
that they count time at slightly different rates. To correct
for these errors, devices should regularly synchronise their
clocks with an accurate, external time source such as GPS or
an NTP server. Recent smartphones (e.g., Motorola Moto G,
Google Nexus 5, iPhone 6) automatically synchronise their
clocks and we found them to be on par with an accuracy up
to 1 second which suits our purpose. Besides, we manually
configured the Meshliums to synchronise their clocks every
hour with a NTP server, over a LAN connection. To lock
on to the heartbeat, a smartphone or network node initially
sleeps for (60−S) mod I seconds with S being the number
of seconds past the minute of the current time and I being the
interval between pulses (with I chosen less than 60 seconds).

Scheduling Probe Requests
We orchestrate phones to send out a probe request in concert
at each pulse of the heartbeat. We generate these probes in
the same way as we did to measure the energy consumption,
e.g., by leveraging the WiFi Direct standard. As such, the
only requirement for a phone to be used with our framework

2http://www.libelium.com



Figure 6: Phones locking on to a shared heartbeat. Once syn-
chronised, phones send out a probe at each ti.

is to have WiFi switched on – the phone may or may not be
connected to an AP.

Scheduling Probe Request Collection
On the Meshliums, we put one of its WiFi interfaces in mon-
itor mode and continuously listen for “DIRECT-” probe re-
quests on channel 6 (albeit channel 1 or 11 could be used as
well). Thus, we only capture those probe requests which we
assume that are intentionally sent by a phone to the Meshli-
ums – all other probe requests, e.g., originating from devices
trying to connect to a WiFi AP, are discarded. Each Mesh-
lium expects to pick up a probe request from each phone in
its vicinity at each heartbeat pulse ti and stores the MAC ad-
dress of the phone along with the probe’s perceived signal
strength as reported by the WiFi hardware. Next, at each ti+2
(i.e., two seconds after each pulse), all MAC addresses and
RSSI values are bundled and reported to the copresence en-
gine. The collective reports received from all Meshliums on
the server are then passed as input to the copresence detection
algorithm.

Copresence Detection Engine
This component consists of a NodeJS Web server to which
network nodes report their RSS measurements and a Mon-
goDB database where the copresence results are stored. The
idea behind our copresence technique is that the devices of
copresent users will exhibit similar radio signal characteris-
tics at a shared location. To this end, we compare the RSS
values from different detected devices with each other accord-
ing to the algorithm outlined in [6]. The aggregated set of
RSS values obtained from different network nodes is a vector
that acts as a fingerprint of the user’s current location. For
instance, if network nodes M1, M2 and M3 reported the de-
tection of a device with MAC address “90:68:c3:be:34:9f” at
time T0, its corresponding fingerprint vector entry resembles:

t0, 90:68:c3:be:34:9f, [M1 : −48,M2 : −64,M3 : −58]
We calculate the distance (in the signal domain) between fin-
gerprints from every j-th and k-th device, dj,k. To this end,
we used the Manhattan distance metric, in which the sum
of the absolute differences of signal strengths is computed.
Assume that rMi

j and rMi

k denote RSS values from the j-th
and k-th device observed by network node Mi with N corre-
sponding to the number of common network node detections,
their Manhattan distance can be calculated as:

dj,k =

N∑
i=1

|rMi
j − rMi

k | (1)

Note that two fingerprint vectors may include an unequal list
of different observed devices. Before applying the distance
metric for a pair of devices, we first extract common detec-
tions. To have a fair comparison, we then normalise the cal-
culated distance by dividing it by N .

Users whose device fingerprints differ less than a dissimilar-
ity threshold δ are considered to be copresent. This thresh-
old δ should be chosen to approximate a distance of up to
3 meters between devices which has been identified as the
boundary of a potential human encounter. We refer to our
Sensitivity Analysis where we identify optimal configuration
parameters such as the threshold value and preferred heart-
beat interval. To increase the confidence level that detected
copresent users were actually together, we aggregate copres-
ence samples over a 1 minute window as explained in the
same section.

Human Encounter Inference Engine
Using the two variables described earlier, we now build a fea-
ture which reflects the stability of the encounter’s gathering
by taking into account the entrance and departure of the par-
ticipants. We define this stability feature by reasoning that
an encounter exhibits mutual commitment of the participants.
This means the members all contributed equally to the en-
counter by staying the same amount of time together. We for-
mulate this as a function f(G) for a given group of copresent
users G where G contains N distinct individuals:

f(G) =

N∑
hi∈G

δthi

N × δtG
(2)

Here hi denotes the i-th human in the copresence group and
δthi denotes the time the participant stayed in the encounter.
For G to be a spontaneous encounter, we expect f(G) → 1.
As f(G) → 0 we observe volatility in the group which can
correspond to copresence scenarios such as people queueing
at a coffee machine.

Based on this feature we built an online inference model lay-
ered on top of the copresence engine. The input to this model
is a list of copresent humans, fed to our model every minute
as shown in the example below.

t0, {h1, h2, h3}, {h4, h5}

t1, {h2, h3}, {h1, h4, h5}
In order to infer spontaneous encounters from this input
stream, at every timestamp (i.e., every minute), we infer to
which of the past events the current copresence list corre-
sponds to. We do this by taking into account the mem-
bership of the copresent individuals, and deciding at each
timestamp whether they already fit a previously identified
copresence group or if we need to create a new copresence
group. For example, based on the above example, at time
t0, two copresence groups co-exist ({h1, h2, h3}, {h4, h5}).
At time t1, our model receives {h2, h3} and {h1, h4, h5} as
input. Given that h2 and h3 were previously seen at time
t0, we add {h2, h3} as the follow-up time sequence to the



{h1, h2, h3} copresence group. Similarly {h1, h4, h5} is
added to both {h1, h2, h3} and {h4, h5} given the partici-
pation of h1 and h4 in those copresence groups at time t0.
Therefore at time t1 we extract the following possible cop-
resence groups:

CG1

(
t0 : {h1, h2, h3}
t1 : {h2, h3}

)
CG2

(
t0 : {h1, h2, h3}
t1 : {h1, h4, h5}

)

CG3

(
t0 : {h4, h5}

t1 : {h1, h4, h5}

)
As the number of copresence groups at the same timestamp
grows, the number of potential combinations of the copres-
ence groups grows accordingly. For each potential copres-
ence group after time t0 – recall that our encounter definition
imposes a minimum of at least one minute copresence – we
calculate the defined stability feature f(G). However, as our
feature calculation happens online, f(G) needs to be calcu-
lated gradually over time. We adjust our feature calculation
as follows:

f(W ) =

Nw∑
hi∈W

δthi

Nw × δtw
(3)

where W denotes a sliding window, Nw is the number of dis-
tinct individuals in the window timeframe and δtw is the du-
ration of the window (i.e., the window size). For instance,
in the above example f(W ) for a window size of 2 minutes
(δtw = 2) at time t1, will result in 0.83, 0.6 and 0.83 for CG1,
CG2 and CG3 respectively. As time passes (per minute),
this feature is recalculated through the sliding window W .
Finally, at each timestamp t we decide if an encounter has
formed if f(W ) ≈ 1. In the above example none of the
copresence groups are detected as an encounter. To account

Figure 7: Log normal distribution with µ = 3.5 and σ = 0.9.

for the properties and limits of spontaneous encounters that
we defined earlier, we set the window size δtw in our feature
calculation dynamically by reasoning on Figure 1. At every
timestamp, we reason on the number of copresent people and
follow the distribution in Figure 1 to decide how long those
individuals must have been together to be considered as an en-
counter. To this end, we model the empirically drawn curve
by experimenting with a log normal distribution. We set the

mean and standard deviation of this distribution as µ = 3.5
and σ = 0.9 respectively through experimental parameter fit-
ting, so to best correspond to our empirical distribution. The
final distribution is presented in Figure 7. We use this dis-
tribution to detect the minimum duration for a given size of
copresent people, and use this duration to set the window size
dynamically. We refer to this approach as Adaptive Window.

Finally, in order to detect the group decomposition, we calcu-
late an exponential moving average as follows:

St = (1− α)× St−1 + α× ft(W ) (4)

where ft(W ) denotes the result of f(W ) at time t. This
approach allows us (by setting α) to decide on whether the
present or the past should have more influence on detecting a
copresence as an encounter. It also allows us to incorporate
tolerance into our model as to be able to account for temporal
volatility in the encounter, e.g., caused by a person passing by
an encounter. We detect an encounter to be terminated if at
time t the moving average St is less than a threshold denoted
by thexit.

EXPERIMENTAL SETUP
In our setup, we use 4 WiFi monitoring nodes (Meshliums)
which we deployed in our office, where about 50 people share
an open office space. In placing the monitoring nodes, we fol-
lowed the configuration of the existing corporate WiFi access
points, assuming that future small cells would also be placed
by the facility manager based on the coverage they provide.
As the result of this placement strategy, these four nodes were
located 15 to 20 meters apart, as illustrated in Figure 8. From
the device-end, we used 9 Moto G phones (3rd generation)
on which we installed a prototype application for sending out
synchronised WiFi probes, as discussed in our architecture.
Each of these phones was attributed a unique color, based
on its MAC address. To validate the correct operation of
our setup, we implemented a feedback loop in our prototype
showing on each device its detected copresent peers.

Figure 8: Floorplan of the testing area and screenshot of our
Android application protoype.

Sensitivity Analysis
Prior to evaluating the performance of our framework, we
conducted a number of experiments to optimise the config-
uration parameters of the copresence detection engine. To
this end, we collected offline training data consisting of sets
of RSS measurements of pairs of copresent (less than 3 me-
ters apart, i.e., the limit we set for a human encounter) and



Figure 9: RSS fluctuations of copresent devices (a) and de-
termining the optimal threshold δ for minimising copresence
detection errors.

dispersed devices at different locations in our coverage area.
Figure 9a depicts the RSS fluctuations from two copresent
devices at the coffee corner, as perceived by one of the Mesh-
lium over 70 seconds. While we experience a similar varia-
tion trend, we witness sporadic RSS jumps which are consis-
tent throughout our training data samples. Furthermore, not
all probes are always captured by a Meshlium, even at close
signal distance. To compensate for sudden RSS fluctuations
between copresent devices as well as probe losses, we aggre-
gate multiple copresence detection samples over a 1 minute
window. For instance, for a probe frequency of 5 seconds, we
require two users to be detected at the same location at least
3 times in our time window (empirically defined) to regard
them as being copresent in that minute. Note that we opted
for a 1 minute window to maintain sufficient granularity for
detecting human encounters from copresent data.

In order to find the optimal dissimilarity threshold δ, we con-
struct a connectivity graph based on fingerprint similarities.
If the distance dj,k between a j-th and a k-th device is less
than δ, their corresponding nodes are connected by an edge
in the graph, i.e., Cj,k = 1. Otherwise, their nodes are dis-
connected, i.e., Cj,k = 0. We then evaluated the algorithm’s
performance for different values of δ using a connectivity er-
ror metric. If two users and their devices j and k were in
reality co-present, we define C ′j,k = 1 indicating a true link
between these devices, otherwise C ′j,k = 0. We calculate
ej,k = Cj,k − C ′j,k for every two pairs of nodes. The con-
nectivity error ej,k = −1 indicates a false negative error and
ej,k = 1 indicates a false positive error. From our training
data, we analysed the connectivity errors for different values
of δ. Figure 9b suggests that the optimal threshold should be
chosen between 3 and 3.5 – we used 3.25.

CONTROLLED EVALUATION

Dataset
In order to evaluate our framework, we scripted a set of use
cases which were imitated using the previously described
smartphones and the application. The scripted use cases cor-
responded to the scope and definition of the spontaneous en-
counters and fall within the three categories of scenarios de-
scribed earlier.

For each of these scenarios we collected multiple variations
of spontaneous encounters ranging from 2 up to 6 persons,
for different durations. In total we collected nine different in-
stances of these scenarios. Due to the space constraints, we

Figure 10: Two example scenarios of the controlled data col-
lection

Scenario Window size False Positive

Queue with 4 2-5 0
Queue with 6 2-5 0
Queue with 8 2-5 0
Workspace 2 4
Workspace 3-5 2
Workspace 6+ 0

Table 1: The number of false positives for the instances of
scenarios which did not include any encounters.

will only describe two specific cases in detail assissted by Fig-
ure 10. The timeline indicates the composition and decompo-
sition of encounters across individuals, whereas grayed out
individuals are either copresent or passing by but do not join
the encounters. In addition to these cases we also collected
instances of scenarios of copresent inviduals which do not
correspond to encounters (e.g., people sharing a desk).

Results
In this section we present the results of our encounter de-
tection engine for the data collected through the controlled
setting. We first analyse the validity of our algorithm by ex-
amining the cases which did not include any encounter (i.e.,
queue and workspace scenario). In so doing, we measure the
number of false positives for each of these cases by varying
the window size (Table 1). The results indicate the correct-
ness of our approach in not detecting any encounters for the
queue scenarios. However, in the case of the workspace sce-
nario, we observe encounters detected for smaller window
sizes. This is because in our online processing, we can-
not distinguish between individuals joining (or departing) the
workspace or an encounter, unless the copresence is longer
than what we consider to be the boundary of an encounter
(outside the shaded area of the Figure 1d). We discuss and
address these cases in the evaluation of our live deployment
in the In-the-Wild section, where the duration of individuals’
copresence in the open office resonates with the actual work-
ing day. Next we evaluated our inference engine accuracy



in detecting spontaneous encounters based on the rest of the
collected scenarios described earlier. We evaluate our algo-
rithm in terms of two aspects: (i) the detection accuracy, i.e.,
whether a ground-truth spontaneous encounter is detected;
(ii) decomposition delay, i.e., how accurately our algorithm
detected the duration of the spontaneous encounter.

Detection Accuracy. We evaluate the accuracy of our algo-
rithm in detecting spontaneous encounters, by comparing
the result of our inference engine against the ground-truth
for all the scenarios. To this end, we set the parameter
α = 0.5, and thexit = 0.75 and measure precision and re-
call for a variable window size (δtw). Furthermore, we set
the condition for a spontaneous encounter to f(W ) = 1.
Figure 11a illustrates the F-Score results for a varying win-
dow size versus an adaptive window size where the win-
dow size was determined based on our human interaction
model. As shown in the figure, in case of the variable win-
dow size, the wider the window size the lower the F-Score.
As δtw gets bigger, the algorithm fails to detect short-lived
spontaneous encounters which may happen between a few
people. This is because the bigger δtw, the longer duration
each member is required to stay together for the sponta-
neous encounters to be detected (f(W ) = 1). This causes
the short-lived spontaneous encounters to go undetected,
thus lowering the recall. Smaller window sizes, however,
also suffer from the opposite problem of low precision.
This is because they also capture people who are acciden-
tally passing by as participants of the encounters.

Figure 11: Framework performance: (a) F-Score for varying
window size versus adaptive window size and (b) the decom-
position delay.

Moving to the comparison with the adaptive window,
our algorithm performs with an F-Score accuracy of 0.96
(precision = 1, recall = 0.92). As the number of co-
present people increases, our window size is adaptively
widened to reflect back on the longer membership dura-
tion that is needed for the given size to be considered as
a spontaneous encounter. These are encouraging results,
as we are able to detect the spontaneous encounters from
a diverse set of scenarios with a very high precision and
recall. However, the F-Score by itself cannot capture the
validity of our model since it is equally important to detect
an encounter’s decomposition (next to its formation).

Decomposition Accuracy In our experiments we first fix
α = 0.5 and examined the effect of thexit. By defini-
tion, the higher thexit the more conservative our algorithm
would be, that is the encounter decomposition would hap-
pen earlier. We found on average our approach had delta

decompositions of less than 2 minutes. The smallest de-
composition delay was observed for thexit = 0.75 as il-
lustrated in Figure 11b. As the parameters α and thexit
exhibit an interaction, we also experimented with varying
the α parameter. The results were consistent and intuitive,
i.e., as α → 1 and more weight is given to the present, the
sooner the encounters end resulting in negative delta de-
composition time. As α → 0 and more weight is given to
the past, the longer it takes for St to decay causing the en-
counters to be detected for a longer duration they actually
existed.

IN-THE-WILD EVALUATION
In this section we report on the live deployment of our frame-
work for 7 hours. The in-the-wild study started at 10am and
involved 8 employees who share an open office space. In or-
der to eliminate the challenges that are raised by different de-
vice manufacturers in this study, we asked the participants to
carry the same devices as before. We then ran a diary-based
study, where we asked the participants to record their encoun-
ters during the day. A major advantage of diary studies is that
they bring the task of data collection into the respondents’ ev-
eryday world, however, a common disadvantage is that they
rely on human recall and memory.

The participants were told to perform their daily work rou-
tines, carrying the phones we provided them. The participants
were also asked to take their coffee break and their social
chats near our coverage area to ensure they would be in the
range of our network nodes. In our deployment setting, four
of the participants shared a proximate desk area with each
other, leading to a potential continuous copresence amongst
them. In order to account for this situation, we tuned our en-
counter detection algorithm to learn the continuity of these
copresences and ignore them as encounters. To this end, we
added a parameter which corresponds to this continuity, and
set its limit to 20 minutes. That is, if the same set of individ-
uals have been copresent for longer than 20 minutes, we con-
clude they share a common sitting area. We set this limit to 20
minutes as it corresponds to the maximum duration of sponta-
neous encounters we are interested in – recall the shaded area
of Figure 1d. For the evaluation, we also used the adaptive
window and set α = 0.5 and thexit = 0.75. The rest of the
settings were consistent with those in the previous section.

We report and discuss the final results of our evaluation in
terms of precision and recall of the overall framework, and
do not dwell into the accuracy of separate components. We
measure the recall in terms of the number of the correctly
identified encounters out of the self-reported ones, and the
precision as the total number of detected encounters out of
the self-reported ones. Our ground-truth data based on the
diaries corresponded to 17 distinct self-reported encounters
between 8 participants. Given that these diaries suffer from
imprecise timekeeping caused by human error, we allow a +/-
10 minutes offset from the actual time of the encounter to the
reported time. That is, we consider a spontaneous encounter
to be detected even if its composition time is shifted by 10
minutes compared to the reported ground-truth. The results
of the in-the-wild study show that our framework was able to



detect 10 out of 17 encounters leading to 58% recall, however,
our framework also detected additional 5 false encounters (15
in total) making the precision of our technique to 86%.

Looking at these results closely and comparing them to the
ground-truth, we can see the success of our algorithm is in
detecting the false positives that result in sharing a desk area,
leading to high precision. However, the same factor causes
the recall to suffer. That is, our framework fails to detect en-
counters that happen between those individuals who share a
desk space, even if they go for a coffee together. While this
is a limitation of our current approach, this can be mitigated
through applying a filter in the network node, e.g., in the co-
presence detection engine. The filter should detect a signif-
icant and almost identical fluctuation of RSSIs across a pair
(or a set) of co-located devices (as proxies of humans) indi-
cating that these devices are continuously preserving the same
distance. This indication would be enough for the inference
engine to adapt accordingly to deal with the phenomenon de-
scribed above. Figure 12 depicts the duration of encounters
in comparison to the self-reported ground-truth. Here, the
x-axis presents the time of the day (in minutes) while the y-
axis shows the duration of the encounter, both for detected
and ground-truth encounters. Two observations can be made
based on this figure. First, the horizontal distance between the
detected and the ground-truth data shows that all the detected
groups fall within 10 minutes offset from their ground-truth
counterpart. Secondly, for 9 of these detected encounters
the detected duration error was on average 1.5 minutes (me-
dian=1) – with an exception of an outlier at time 230 where
the duration delta is 12 minutes.

Figure 12: Delta delay in detection and decomposition time.

RELATED WORK
A large body of work exploring WiFi-based localisation and
co-localisation algorithms exists in literature [1, 28]. In our
framework, we rely on a distance-based co-localisation algo-
rithm borrowed from [6], whilst more advanced algorithms
could be plugged in as well. Our contribution lays in the
combination of such algorithm with a social model for in-
ferring human encounters. Other works have also relied on
Bluetooth to e.g., discover crowds [27], but studies indicate
that few devices have Bluetooth turned on by default as com-
pared to WiFi [3]. Also, due to Bluetooth frequency hop-
ping, timely detections of mobile devices cannot be guaran-
teed for inferring short-lived human encounters. In general,

discovery-based tracking solutions result in each device hav-
ing its own perception of a copresent group, lacking consen-
sus. Passive tracking solutions such as [3, 21] leverage the
network to determine users’ trajectories. These systems also
struggle with deterministic device detections, albeit Musa et
al. [21] have shown that tricks can be applied to increase the
detection rate. However, deploying sniffing hardware in pub-
lic areas remains a sensitive topic w.r.t. privacy given that
it tracks users without their consent and therefore is forbid-
den by law in several countries. We advocate for solution in
which users can opt in and opt out anytime.

Several ways of detecting human groups have also been in-
troduced by computational social sciences [4, 17]. Olguı́n
et al. proposed the sociometric badge, a wearable device
that is used to measure face-to-face interactions in the work-
place [22]. Brown et al. [2] tracked face-to-face interactions
by using light-weight RFID tags which exploit short-range
wireless sensing technologies to infer an interaction taking
place. Other approaches have relied on quantifying interac-
tion through cameras [5] and signals captured through mobile
phones [10, 24] such as audio signals indicating the meta-
linguistic contexts of conversation between individuals (i.e.,
turn-takings and pace) [18]. Indeed, to detect face-to-face in-
teraction, high precision technologies such as infrared light
with a transmission range between 2 to 4 meters and a narrow
cone of 20 degrees are typically required [20].

CONCLUDING REMARKS
In this paper, we presented a framework for detecting spon-
taneous human encounters. We measure human copresence
from ubiquitous WiFi radio signals and feed this data to a
model grounded upon social theory to infer face-to-face in-
teractions. This framework was evaluated through controlled
experiments accompanied by live deployment. While our ini-
tial results are encouraging, we acknowledge that our evalua-
tion was limited in terms of number of participants and device
variety. In particular, we expect congestion to happen in the
case of denser deployments (with hundreds of individuals)
where a large number of probes would share the same chan-
nel simultaneously. Indeed alternative robust techniques such
as those that incorporate randomisation could be developed
as part of our framework. We also plan to assess the impact
of different device models and antenna designs.

Furthermore, while no modifications to a phone are needed, a
present limitation of our approach is that it depends on a small
application running on a user’s personal device to guarantee
the detection of the device in a limited time window. We envi-
sion that this component could be part of future mobile oper-
ating systems, as to give developers control over WiFi probes
and offering users with the option to indicate what they may
be used for (i.e., opt in/out to particular services). The major
advantage of our system lays in the fact that it leverages exist-
ing network infrastructure with minimal energy expenditure
(zero sensing) on mobile devices. We have shown that even
without highly accurate copresence data (e.g., sub meter), we
can detect human encounters with high accuracy thanks to
our inference model taking social patterns into account.
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