
Prototyping Smart Objects for the Mass

Geert Vanderhulst, Fahim Kawsar, Johan Criel and Lieven Trappeniers
Alcatel-Lucent Bell Labs

Copernicuslaan 50, 2800 Antwerpen, Belgium
{geert.vanderhulst, fahim.kawsar, johan.criel, lieven.trappeniers}@alcatel-lucent.com

Abstract—Several do-it-yourself projects and toolkits aim to
empower people in bringing intelligence into their personal
environments. This is particularly challenging because there is
still a large gap between people who can imagine how technol-
ogy could simplify their life and engineers who can actually
make things behave smart. To unite both camps, we present a
platform that enables ordinary people to become the inventor
of their own smart objects, assisted by a community of field
experts. Our software, called D-TALE, fosters the creativity
of people by giving them a forum where they can express
and prototype their innovative ideas. Moreover, D-TALE gives
rise to a crowd-sourcing platform where non-technical users
can request developers to provide an implementation for their
project. Our approach is outlined in a preliminary case study.

Keywords-Smart objects, DiY prototyping, Crowd-sourcing

I. INTRODUCTION

Whereas out-of-the-box products compete each other in
terms of connected features, we witness their smart building
blocks – sensors actuators – hitting the market at affordable
prices (e.g. Phidgets, Particles, . . . ). With these components
getting smaller, cheaper and more power-efficient, it be-
comes feasible to integrate them in the home environment
and attach them to everyday objects. Not only this supports
Weiser’s vision [12] of technology that assists people in
their daily life, but it also feeds the opportunity to let users
invent their own smart objects supporting their activities. For
example, a health conscious person could install a sensor on
a cookie jar that can measure the number of cookies taken
out of the jar and warn if a threshold has been reached. Since
we cannot envision all possible cases of how technology
can enrich a person’s life, we must rely on the creativity of
people to make their own vicinity (re)act smart. However,
most end-users are not capable of developing the software
needed to make their objects behave smart.

Although initiatives have been taken to empower users
in creating ubiquitous applications for quite a while [4],
[3], [8], [6], we are still confronted with a barrier for mass
deployment and usage of end-user development tools which
might be due to the fact that they merely target technically
skilled people. In addition, we witness a lack of distribution
channels enabling visionary users to communicate their ideas
with developers who can help realizing them. Initiatives such

as Quora1 illustrate the success of crowd-sourcing, yet up till
now we are not aware of such platform targeted at building
smart environments. In this paper we focus on supporting
the diffusion of smart objects by the people for the people. To
this end, we allow ordinary users to prototype their own DiY
projects and delegate the development task to expert users,
hoping that one day prototyping and development tasks will
seamlessly merge together. We bring ordinary users in touch
with a forum of DiY experts who can provide assistance to
realize their case and e.g. give advise on the type of sensors
and actuators that could be installed.

Figure 1. D-TALE fosters user-driven innovation by bringing people who
have ideas about making their environment a smarter place in touch with
experts in the field. By introducing high-level concepts whose implemen-
tation(s) can be reused, D-TALE aims to make the gap between ordinary
individuals and technical experts smaller.

The main contributions of this work are illustrated in
figure 1 and can be summarized as follows. First, we present
D-TALE from an end-user’s point of view and explain how
users can prototype several aspects of a DiY project (sec-
tion IV), using a motivating scenario (section II) as running
example. Second, we highlight D-TALE from a developer’s
point of view and discuss our efforts towards a crowd-
sourcing community where experts – called DiY’ers – assist
end-users with the development of their projects (section V).
We introduce high-level concepts such as ‘the number of
cookies in a jar’ that abstract away underlying technologies
such as the sensors and application logic beneath. By con-
tributing such concepts to the community, we aim to shorten
the distance between ordinary users and DiY’ers. We also
report on the difficulties we encountered when transforming
user created prototypes into actual applications (section VI)

1http://www.quora.com/



and finally, we performed a preliminary evaluation of our
approach by means of a case study (section VII).

II. THE CHICKEN OR THE EGG?

In this section we present a motivating scenario that
illustrates how smart objects help to enhance a specific
task for which it is unlikely that an out-of-the-box solution
exists. The scenario describes the situation of grandmother
who takes care of three chickens. Behind a fence in her
garden, the chickens live their life and produce eggs in an
old henhouse. On average, these hens produce one egg in
two days, but it is hard to predict the number of eggs in the
henhouse at a given day. Hence, every few days grandmother
checks the henhouse for eggs and collects them. As this
takes quite some effort considering her age, she would like
to know in advance how many eggs are awaiting in the
henhouse so she can decide whether it is time to collect
them. Besides, she would like to get informed if one of
her chickens tends to bread on eggs as she knows that this
kind of behaviour prevents other chickens from entering the
occupied nest. To help grandmother with her ‘chicken or the
egg problem’, we need to keep track of the current number
of eggs in the henhouse and warn about possible breeders
on a display inside the house. To measure this information,
we can think of several DiY solutions that involve one of
the following sensor devices: a camera, a weight sensor, a
temperature sensor, etc. Consider for example the case where
a temperature sensor is installed in each nest in the henhouse.
When a hen enters the nest, the sensor will measure the
chicken’s presence as a sudden increase in temperature.
Similar, when the hen leaves the nest, the temperature will
decrease again. By measuring the time a hen is on the nest
(i.e. the time between a sudden increase and decrease of
the nest’s temperature), we can assume an egg has been
produced (e.g. time less than 10 minutes) and detect when
a hen is eager to bread on eggs (e.g. time more than 10
minutes). This sensor data is then sent to an application
running on the display in the house where it is processed
and visualized. Note that using just a temperature sensor,
the application is still unable to detect when grandmother
has collected eggs. Hence grandmother should inform the
application to reset the egg counter (e.g. by pressing a button
on the display) or we need to extend this project with extra
sensors to detect when eggs are collected.

III. RELATED WORK

Empowering end-users to create personalized smart ob-
jects requires a sound ecosystem with a coherent interplay
among hardware, software, toolkit and interfaces. End-user
programming in desktop computing has a rich history of
research, but in the domain of pervasive computing it is still
very prospective. Early seminal work includes the Jigsaw
Editor [8] which uses a puzzle metaphor to allow non-
expert users to configure pervasive services intuitively by

assembling available components, and the SpeakEasy [5]
platform where end-users can compose pervasive services
spontaneously. Other work looked at end-user deployment
of sensors in a physical environment in order to meet
changing household demands [2], [1], [9]. It shows that users
understand the semantic association of physical devices and
software components when assisted by clear installation
guides. Some work also addressed support for personalizing
behaviour through rule-based or recognition-based tools.
Rule-based tools like iCAP [4] and Alfred [6] provide
a visual tool or sound macros which allow end-users to
define conditional rules to connect input and output events.
Similarly, recognition-based tools or more formally ‘Pro-
gramming by Demonstration’ systems like CAPpella [3] use
machine learning techniques to allow end-users to associate
rules with real-world events. Exemplar [7] also shows that
events can be derived from patterns recognized in continuous
sensor data after teaching the system about these patterns,
i.e. by providing examples. While these approaches are valid
for rapid prototyping, they primarily focus on facilitating
initial configuration tasks and are less suited for casual users
with no or a limited technical background.

Taking lessons from the state-of-the art, we adopt a
community-driven approach where an individual can partic-
ipate in the prototyping process either by doing it herself or
by leveraging the skills of expert communities. Our approach
enables an individual to specify her needs in a structured
fashion using highly abstracted tools, henceforth performing
the very basic stage of programming. The output from these
tools provides the foundation for the community developers
to perform the advanced programming using our proposed
system and thus responding to the naive users prototyping
needs. This two-sided participatory development approach
atop of our platform empowers ordinary individuals to
realize their personalized smart objects.

IV. PROTOTYPING DIY PROJECTS

D-TALE provides a platform and integrated tools that
support end-users in prototyping smart objects. We treat
users as engineers of their own smart environments and help
them express their ideas in a structured way. By sharing
prototypes with DiY’ers, users can engage in a dialog with
a technical expert. Experts can then give feedback, iterate
over a prototype and provide assistance to come up with
a working application that can be deployed in the user’s
environment. Prototyping a DiY project is achieved in three
iterative mock-up phases which are illustrated in figure 2
and discussed in the next sections.

A. Situation mock-ups

Situation mock-ups let users virtually augment their en-
vironment with sensors and actuators. They help people
to provide insight in the environment wherein their DiY
project will be deployed. To this end, the D-TALE editor



Figure 2. Situation mock-up (a), behaviour mock-up (b) and interaction
mock-up (c) of a smart henhouse.

integrates photos (or drawings) of the user’s environment as
a convenient means to quickly represent a situation and share
it with others. This set of integrated images corresponding
to the user’s virtual environment can then be augmented
with DiY components. These components are selected from
a toolbox and are for instance dragged on an image to
indicate which sensors and actuators should be installed
where. As such, we allow users to model their DiY project
in a virtual environment before starting to implement it in
the real world. Figure 2(a) shows a situation mock-up for a
henhouse augmented with a temperature sensor.

• Tag tool: some parts of an image illustrating a situation
deserve extra attention because it reveals objects that
play an important role in a DiY scenario. These can
be marked using the tag tool and augmented with
descriptive labels (i.e. tags), similar to tagging people
on a social networking site such as Facebook.

• Sensor tool: the sensor tool maintains a link to a
repository of hardware components that can be used
for measuring particular concepts. A sensor selected
from the list of available components can be dragged
on an image to indicate where it would be installed in
the physical environment.

• Actuator tool: similar to the sensor tool, the actuator
tool is aware of a set of components that can be used for
actuating purposes. Examples include an actuator for a
television that supports commands to change its video
source or an actuator for an interaction device enabling
the deployment of a user interface component.

• Search tool: the search tool is used to look up con-
cepts as illustrated in figure 3. A user looking for
a way to measure the presence of a chicken in a
nest can use the search tool to find out that others
measured the ‘presence’ concept before and shared their
implementation. For instance, it can be seen that a
weight sensor embedded in a chair was used in an
office environment to detect whether colleagues are
sitting behind their desk. If a concept implementation is
dragged on an image, the sensors and actuators required

by the implementation are added to the mock-up and
installation tips are displayed.

By restricting the set of available DiY components to
sensors and actuators that are at hand on the market, users
are forced to think in terms of available technology such
that unrealistic ideas are filtered from the beginning. Never-
theless, it can be hard for a user to find a suitable sensor for
measuring a particular property. By looking at what others
have built using a given sensor, users can get familiar with
the sensor and become inspired by its possibilities. Hence
we put effort in a semantic search feature that assists users
in selecting appropriate sensors given a concept they would
like to measure such as whether a chicken is on the nest or
not. Depending on the situation at hand, a concept can have
several implementations associated, new ones can be pro-
vided anytime and existing ones can be reused. A dedicated
installation guide linked with a concept’s implementation
helps the user to figure out how to install sensors and
actuators. Alternatively, situation mock-ups from projects
that make use of the concept can serve as examples.

Figure 3. Searching for concepts.

Moreover, physical sensors can be connected to situation
mock-ups for simulation and testing purposes. Sensor data
will appear in overlay on the image(s) with the corre-
sponding sensor component and actuator components are
presented with a small interface for sending commands to
their counterpart in the real world. Apart from sharing mock-
ups with DiY experts, sharing real-time sensor data and
actuator controls is equally important as it provides DiY
developers with a realistic testbed to configure application
logic for a specific environment.

B. Behaviour mock-ups
Behaviour mock-ups allow people to express how they

want their augmented environment to react on events. To re-
lieve users from programming the environment’s behaviour,
we ask users to describe an application’s behaviour on a
high level using natural language such that expert users
with programming skills can understand the needs of a
particular DiY project. Figure 2(b) shows a behaviour mock-
up describing a set of rules for the scenario discussed in
section II. For each rule, it can be specified whether this
is a minimal requirement for the project to succeed or an
optional rule that can be switched on or off. As these rules
are described on a high level – e.g. ‘the time a chicken is
on the nest’ is used instead of ‘if a weight sensor measures
an increase during a period of time’ – they are independent
of the hard- and software that is used to realize the project.



C. Interaction mock-ups

Interaction mock-ups enable users to specify how they
want to interact with their environment. To grasp this
information, we let users design their own user interface
prototypes and share them using the D-TALE platform. For
example, the interaction mock-up shown in figure 2(c) is
merely a visualization of the current number of eggs in the
henhouse accompanied by a potential breeder notification
and a reset button to set the counter to 0 after having col-
lected the eggs. Note that interaction mock-ups are closely
connected to behaviour mock-ups since a control interface
could be used to enable or disable a particular behaviour.

V. TOWARDS A DIY COMMUNITY

By sharing projects and the concepts they introduce, D-
TALE allows users to find out what others have created and
reuse concepts that were implemented before. If additional
help is needed, users can rent a DiY’er to support their case.

A. What did other users build?

Previously accomplished DiY projects could serve as an
important source of inspiration to develop an individuals’
ideas. We support different ways to search for projects:

• starting from a sensor or a set of sensors that were
used in a project. This is similar to asking the system
‘What did others do with this sensor?’.

• starting from an actuator or a set of actuators that
were used in a project. This provides an answer to the
question ‘How did others incorporate this actuator?’.

• starting from tags that categorize a DiY project and
the concepts that were measured. Using search engine-
style keyword phrases such as ‘chicken eggs henhouse’
we search for high-level concepts (e.g. number of eggs
in a nest) and project descriptions (e.g. grandmother’s
henhouse project) by matching tags that were attached
to projects (i.e. situation mock-ups) and concepts. Since
we make use of linguistic relations in our search
algorithm (see section VI-A), search results are not
limited to exact matches of given keywords but will
also include semantically equivalent results.

• starting from a combination of the above. This search
strategy is particularly useful if a user wants to build a
case from a specific set of sensors and actuators and/or
if she has a clear idea of the scope of her project.

Existing projects can be reused as templates from which
users can instantiate a personalized version. This is achieved
by adjusting mock-ups to reflect their own needs and
substituting the hardware components that were used in
the original project with their own sensors and actuators.
In this case, high-level concepts that were used in the
original project are reused in the new project along with
their implementation that transforms raw sensor data into
something meaningful.

B. Rent a Do it Yourselver

In section VI-B we have discussed some of the problems
users are likely to stumble upon when converting a prototype
into a working application. These issues merely deal with
the (in)capability of end-users to program their own appli-
cations. Even simple DiY projects might be too complex
and domain-specific to fit within the scope of end-user
programming tools, in which case assistance from experts
will be indispensable. Hence we believe the option to ‘rent
a Do it Yourselver’ is a major requirement to effectively
realize a successful DiY community. Even if ordinary users
get acquainted with tools for composing smart application
logic, it might just cost them too much time and effort. Users
might rather want to pay a fair rate to an expert user who
can deliver a qualitative solution in fewer time.

A DiY’er can contribute to the community in several
ways. First, he can iterate over mock-ups and collaborate
with users to come up with a realistic prototype. For
instance, a first version of the situation mock-up shown in
figure 2(a) might have listed a random temperature sensor
that was picked by a user to express her idea. In a second
iteration, the sensor might be replaced by a particular type
of temperature sensor that is considered best suited for the
given situation by a DiY’ers. Second, a DiY’er can deliver
new concepts to the community which are extracted from
projects and generalized for (re)use by a broader audience.
This includes sharing implementations for a concept and
annotating them with a step-by-step installation guide. To
motivate DiY’ers to engage in projects and to ensure the
quality of their work, an incentive program should be incor-
porated in D-TALE [10]. Incentives not only have proven to
stimulate contributers to acquire a high rating, but they might
also trigger ordinary users to participate in the community.

VI. IMPLEMENTATION AND TECHNICAL CHALLENGES

In this section we discuss the architecture of D-TALE
and outline the major difficulties we faced when creating a
working application from a prototype.

A. Architecture and models

Figure 4 shows an overview of D-TALE’s architecture
and the models it employs. The two major models, i.e.
the project and concept model, define a semantic structure
upon concept and project instances and their respective rela-
tions. We make use of light-weight ontologies for mapping
equivalent concepts, building up a catalog of hierarchically
organized concepts that evolves over time and maintaining
links between projects and concepts. Moreover, by adding
tags linked with the WordNet2 lexicon to newly created
content, we can avoid ambiguity (i.e. differentiate between
words with different meanings) and improve the accuracy of
search results by employing linguistic relations. Adequate

2http://wordnet.princeton.edu/



search results are important to stimulate reuse of existing
concepts as much as possible. Additional models are used
to describe sensors and actuators. For instance, SensorML
profiles specify a.o. the datatype and unit of outputted data.

Furthermore, the architecture is composed of a set of
repositories. The project repository stores information about
situation mock-ups, behaviour mock-ups and interaction
mock-ups per project. The concept repository stores high-
level concepts, contributed by end-users. Each concept can
have several implementations, each depending on one or
more sensors and actuators. Concept implementations are
further annotated with an installation guide indicating how
e.g. sensors should be installed for optimal results. The
projects in which a particular concept was used act as
examples that enrich a concept’s installation guide. The
data repository aggregates sensor data originating from a
user’s personal environment for i) collaboration with expert
users and for ii) sharing information with others. Similar
to Pachube3, applications can subscribe to sensors and get
notified of data updates. Since each repository has an open
REST interface, tools can connect with them to retrieve and
store information. For instance, a tool can push new concepts
into the concept repository or subscribe to sensor data via
the data repository’s REST interface.

Figure 4. D-TALE architecture and models. Design and development tools
interact with project, concept and data repositories through REST interfaces.

B. Transforming prototypes into working applications

Even though D-TALE enables users to express the de-
sign and functional requirements of the hard- and software
needed to realize a project, there is still a difference between
a prototype of an application and its actual implementation.
From the experience we gathered when building working
applications from prototypes, we have compiled a list of

3http://www.pachube.com/

three main reasons that might still prevent ordinary users
from creating their own DiY applications:

• Meaning derivations: many sensors produce raw data
which needs to be transformed into something mean-
ingful such that applications can start using it. Trans-
formations include simple conversions from a discrete
arbitrary number that to be converted into an official
measurement unit (e.g. degrees Celcius), but also more
advanced sensor data processing might be required to
derive facts from continuous sensor data such as when
and for how long a chicken has been on the nest.

• Component deployment: to run transformation blocks,
logic that steers smart object behaviour and user inter-
face components, an execution environment is needed.
However, the multitude of devices typically available
in a ubiquitous environment makes it a non-trivial task
to decide upon which components should be installed
where [11]. For example, a component that collects
sensor data should run in the home network whereas
a transformation block could basically run anywhere.
Besides, the deployment of user interface components
is challenging due to the variety of typical interaction
devices (e.g. various screen sizes and modalities).

• Programming behaviour: in section III some end-
user development tools for programming behaviour in
a ubiquitous environment were discussed. The applica-
bility of these tools is typically limited to specific target
domains in order to keep them usable. However, since
the domain of a DiY project is not known in advance,
it can be cumbersome to program behaviour within the
boundaries of a generic end-user development tool.

D-TALE mainly contributes to the first issue. Since high-
level concepts share implementations that include trans-
formation blocks, they can be reused. Hence, the more
populated the concept repository becomes, the higher chance
an ordinary user can create realistic DiY prototypes that can
be translated into working applications with minimal effort.

VII. CASE STUDY

In section II, we introduced the scenario of a DiY project
dealing with a smart henhouse. Throughout the paper, we
have explained D-TALE’s prototyping process using this
project as running example. In this section we describe how
we built a working application from the mock-ups depicted
in figure 2 and explain how high-level concepts are extracted
from it and contributed to the community. We used a Phidget
SBC board with embedded WiFi chip as execution environ-
ment and developed a small SDK for the SBC that provides
methods to interact with D-TALE’s open REST interface. On
the SBC we installed an application that transforms input
from an attached temperature sensor into three outputs: i)
an output that indicates whether there is a chicken on the
nest based on sudden temperature increases/decreases, ii) an
output that counts the number of eggs in the nest and iii) an



output that notifies about breeders. When sharing is enabled,
this information is forwarded to the data repository depicted
in figure 4 and made available on the D-TALE platform. This
allows compatible tools like the D-TALE editor to access
information related to a project and e.g. visualize live sensor
data on top of situation and interaction mock-ups for testing
purposes. To support switching sharing on/off and resetting
the egg counter, we programmed the SBC board to listen
on an input port for incoming commands. Furthermore, we
developed an iPad application with a graphical user interface
whose design adheres to the interaction mock-up shown in
figure 2(c). This application fetches information about eggs
and breeders directly from the Phidget SBC board. Pressing
the reset button sends a reset command to the SBC.

From this project, we can extract the following concepts
and share them with the community: ‘chicken on nest’ (e.g.
categorized under a ‘presence’ concept), ‘chicken is breed-
ing’ and ‘chicken laid egg’. These concepts share the same
implementation, namely the application that was developed
for the SBC. By adding a description of the implementation’s
hardware dependencies (i.e. a Phidget temperature sensor)
and an installation guide that explains how to install them,
these concepts can be reused in other projects. For example,
the SBC implementation for the ‘chicken is breeding’ con-
cept can be found using the search tool illustrated in figure 3
and reused in a DiY project that aims to discourage breeders
to stay on the nest.

VIII. CONCLUSIONS AND OUTLOOK

On the one hand, D-TALE provides end-users with a
forum to express the requirements of a DiY project they want
to accomplish using mock-ups. The result of three mock-up
phases is a prototype that can be iterated upon by DiY’ers
and converted into a working application. On the other
hand, high-level concepts can be contributed to a community
established by the D-TALE platform. By stimulating the
reuse of concept implementations (e.g. by means of step-
by-step installation guides), we expect amateur and expert
users to close in on each other. Still, an incentive strategy and
privacy mechanism should be further explored to motivate
people to participate in the community and gain confidence.

We conclude with an outlook to two future extensions for
D-TALE. First, we aim to incorporate additional constraints
in our prototyping tools. For example, if power constraints
(electricity available?), network constraints (wired or wire-
less network within reach?) and budget constraints (what
is the maximal price the user is willing to spend on this
project?) are taken into account, prototypes become more
personal and implementations generated from the prototype
are more likely to fit in the target environment. In the case
study outlined in section VII, we could make use of powered
Phidget components because there is a power plug available
in the henhouse. Yet, for a user on a smaller budget, a Phid-
get SBC controller might be considered too expensive, etc.

Second, we see an opportunity in building a social network
of personal smart objects that share information with others
using D-TALE. Looking at the popularity of social networks,
we can imagine social communication channels go beyond
people and shift to smart objects as well. For instance, users
might want to share facts about their pets such as when they
sleep or walk around or compete with each other in how
‘green’ (energy conscious) they are. The notion of concepts
and the ability to reuse their implementation puts D-TALE
on the front line to provide such social features.

REFERENCES

[1] S. Antifakos, F. Michahelles, and B. Schiele. Proactive
Instructions for Furniture Assembly. In UbiComp’02, pages
351–360, 2002.

[2] Chris Beckmann, Sunny Consolvo, and Anthony LaMarca.
Some Assembly Required: Supporting End-User Sensor In-
stallation in Domestic Ubiquitous Computing Environments.
In UbiComp’04, pages 107–124, 2004.

[3] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and
Daniel Hsu. a CAPpella: Programming by Demonstration of
Context-Aware Applications. In CHI’04, 2004.

[4] Anind K. Dey, Timoty Shon, Sara Streng, and Justin Kodama.
iCAP: Interactive Prototyping of Context-Aware Applications.
In Pervasive’06, pages 254–271, 2006.

[5] W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and S. Izadi.
Challenge: Recombinant Computing and the Speakeasy Ap-
proach. In MobiCom’02, pages 279–286, 2002.

[6] Krzysztof Gajos, Harold Fox, and Howard Shrobe. End User
Empowerment in Human Centered Pervasive Computing. In
Pervasive’02, pages 1–7, 2002.

[7] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R.
Klemmer. Authoring Sensor-based Interactions by Demon-
stration with Direct Manipulation and Pattern Recognition.
In CHI’07, pages 145–154, 2007.

[8] Jan Humble, Andy Crabtree, Terry Hemmings, Boriana Kol-
eva Karl-Petter Åkesson, Tom Rodden, and Pär Hansson.
Playing with the Bits: User-Configuration of Ubiquitous Do-
mestic Environments. In UbiComp’03, pages 256–263, 2003.

[9] Fahim Kawsar, Tatsuo Nakajima, and Kaori Fujinami. De-
ploy Spontaneously: Supporting End-users in Building and
Enhancing a Smart Home. In UbiComp’08, pages 282–291,
2008.

[10] Uuong-Sik Lee and Baik Hoh. Sell Your Experiences: a
Market Mechanism Based Incentive for Participatory Sensing.
In PerCom’10, pages 60–68, 2010.

[11] Geert Vanderhulst, Kris Luyten, and Karin Coninx. PerCraft:
Towards Live Deployment of Pervasive Applications. In
IE’10, pages 191–196, 2010.

[12] Mark Weiser. The computer for the 21st century. Scientific
American, 265(3):66–75, 1991.


