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Abstract
Current smartphones and smartwatches come equipped
with a variety of sensors, from light sensor and inertial sen-
sors to radio interfaces, enabling applications running on
these devices to make sense of their surrounding environ-
ment. Rather than using sensors independently, combining
their sensing capabilities facilitates more interesting and
complex applications to emerge (e.g., user activity recogni-
tion). But differences between sensors ranging from sam-
pling rate to data generation model (event triggered or con-
tinuous sampling) make integration of sensor streams chal-
lenging. Here we investigate the opportunity to use deep
learning to perform this integration of sensor data from mul-
tiple sensors. The intuition is that neural networks can iden-
tify nonintuitive features largely from cross-sensor correla-
tions which can result in a more accurate estimation. Initial
results with a variant of a Restricted Boltzmann Machine
(RBM), show better performance with this new approach
compared to classic solutions.
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Introduction
With the advancement of electronics and processor minia-
turization, a new generation of smart devices is emerging
for personal monitoring and private data processing. A
common characteristic across these devices is a rich set
of embedded sensors allowing them to run interesting ap-
plications to benefit their users. These simple, numerous
sensors provide the opportunity to help with more complex
inference tasks by combining capabilities across comple-
mentary modalities; for example, as seen in [8]. But due
to their intrinsic nature and sensing characteristics (e.g.,
sampling rate and statistical properties) integrating sen-
sor streams is often very challenging. Extracting relevant
features and finding correlations between these features
across sensing modalities to improve inference accuracy is
therefor a pressing problem of immediate interest.

The focus of this work is to investigate the ability for deep-
learning to advance the state-of-the-art in multimodal sens-
ing on mobile and embedded devices.

Deep-learning [3] is an area of machine learning that is
revolutionizing several domains from computer vision to
speech recognition and many others. This fast growing area
of research has the potential to influence key topics like
sensor data fusion, with study of this learning paradigm
applied to mobile devices only recently begun [6, 4].
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Figure 1: RBM-specific deep
multimodal learning architecture.

One attractive characteristic of deep learning is the ability
to transform close to raw sensor data into a dense repre-
sentation of features through different activation patterns of
artificial neurons (i.e. units) within a deep neural network.
This network is used to perform inferences (e.g., estimat-
ing the activity class) directed by the activation pattern of
neurons in the network, and often achieves higher accuracy
than classic modeling methods.

With evidence from deep architectures on dual modali-
ties like text mixed with images [11] and audio linked with
video [9, 7], similar impressive gains should be attainable
with other combinations of modalities; for example, in our
case multiple cheap sensors present on mobile and wear-
able devices. The goal of this work is to provide the initial
answers to whether these algorithms can increase the ac-
curacy of ubiquitous tasks (e.g., user activity recognition)
using sensor data from wearable devices, which is not
well explored in the literature. We start this exploration by
using a multimodal RBM architecture (a promising deep-
learning algorithm) and initial results seem promising, while
resource requirements make this architecture viable to re-
source constrained computation units like wearable devices.

Deep Learning for Multimodal Sensing
The multi-layer feature representation of deep-learning ar-
chitectures allows them to extract more complex informa-
tion than readily used shallow methods. Common shallow
methods require a selection of hand crafted features to be
extracted out of sensor data as a pre-processing stage, with
performance being affected by the quality of these features.

As an alternative, uni-modal deep architectures do not have
separate layers per sensor, which prevents the network first
learning sensor-specific information before these concepts
are unified across all sensors. Previous work has shown
this intra-sensor relationship to be much stronger than inter-
sensor counterpart [10].

Multimodal RBM Learning
To understand the utility of deep learning for activity recog-
nition under systems with multiple sensors, this work stud-
ies the use of a multimodal version of Restricted Boltzmann
Machines [7] (RBMs) (presented in Figure 1). Prior con-
structions of this variety of RBMs have been used to fuse



pairs of text, video and audio data for the purpose of im-
age captioning [10, 11], and speech [7] or emotion recogni-
tion [5]. Instead, our objective is to empirically verify if these
multimodal RBMs are still suited for new sensing tasks and
if these can run on wearable devices.

Figure 2: Comparative
performance of the proposed
deep-learning architecture
(MM-RBM), a RBM architecture
with concatenated sensor streams
input and three shallow classifiers
(C4.5, SVM and Random Forest).
The proposed method
outperformes previous solutions for
activity recognition tasks on sensor
data inputs from multiple sensors.

Formalizing the inference process of RBMs: the state (AL+1
i )

of each individual RBM unit (xL+1
i ) within a layer (L + 1) is

dependent on the unit weights connecting the jth node in
layer L to the ith node in layer L + 1. In this fully connected
approach there is a connection between each (xL+1

i ) node
to all nodes (xL

j ) on layer L, weighted as wL+1
ij . Specifically

this relationship is computed as:

AL+1
i =

1

1 + exp(−
∑

j w
L+1
ij xL

j )
(1)

As shown in Figure 1, separate architectural branches (Mk)
exist for each sensing modality (sensor type) without any
inter-sensor connections between these initial layers until
later unifying independent sensor layers (Ul) in the final lay-
ers of the architecture. As an effect, all layers contribute to
the learning of a joint representation of all sensor modali-
ties. This aspect is expressed as:

P (v, h; Θ) =
1

Z(Θ)
exp(−E(v, h; Θ)) (2)

where v represents the visible units (input modalities), h
represents the hidden units inside the network, Z(Θ) is the
normalizing function, E is the cumulative state of the final
layer and Θ = {a,W} represent the set of RBM parame-
ters (a are the biases for the hidden layers).

In essence, feature learning is performed at the level of net-
work parameters, represented by the weights between the
nodes and network depth. Training is performed by back-
propagation, running several times over a training set and

gradually adjusting the network parameters to match the
expectation as observed from the training set. We perform
a learning method adopted originally from earlier studies of
such architectures [7].

This training process can be computationally expensive,
though fortunately this can be performed offline (i.e., on
cloud servers), only requiring the final weights and parame-
ters to be transferred to the wearable device.

Evaluation
We use a publicly available dataset [12], containing ac-
celerometer and gyroscope signals, collected from 9 partic-
ipants performing a set of common activities (sitting, stand-
ing, walking, climbing stairs, descending stairs, biking) and
annotated with ground truth information. Another important
characteristic of this dataset is that users perform these ac-
tivities with 6 different smartphones, which increases the
complexity of the inference task.

Under this dataset, the proposed deep learning architec-
ture, Multimodal RBM (MM-RBM) is formed by two hidden
layers on each of the sensor data streams (acceleration and
angular velocity). The extracted data are combined with a
hidden layer. Implementation of the deep learning architec-
ture is performed in Torch 7 [2], which interprets the model
into C, before being compiled for the platform.

Figure 2 shows the performance of the proposed MM-RBM,
along with a simple RBM with concatenated sensor streams
input (referred to as RBM in the figure) and the best per-
forming shallow classifiers evaluated on a leave one user
out approach (with training on all but one user) [12]. What
is important is that this performance is achieved without any
hand selection features, skipping a required process in the
case of shallow classifiers.



The implications of these results are important because it
suggests deep learning methods, such as the one we pro-
pose, are able to better extract discriminative information
from multimodal sensor data than more commonly used
shallow learners. Furthermore, their robustness across
users, as shown from training and evaluating on different
users, encourages their use in large-scale mobile sensing
applications.

Mobile Hardware FeasibilityFigure 3: Qualcomm Snapdragon
410c. This development board runs
a processor common to many
smartwatches. We measure the
performance of our algorithm on
this processor to replicate the
performance on typical wearable
device.

Latency (ms) 50
Memory (MB) 2.75
Energy (mJ) 97

Table 1: Resource requirements of
the Multimodal RBM. The low
resource demands of MM-RBM
makes the model feasible for
constrained devices.
Time and energy consumption are
indicated per inference.

To test the feasibility of running the proposed multimodal
deep architecture on wearable devices, we experiment with
the Qualcomm Snapdragon 410c development board. The
same processor is found in many smartwatches currently
on the market (e.g. LG GWatch R [1]) and includes a quad-
core 1.4 GHz CPU and 1 GB of RAM. The key finding is
that our multimodal RBM is practical for this platform, and
consumes a low enough amount of resources (see Table 1)
that is feasible for wearable and mobile use.

Conclusion
Using deep learning to combine different perspectives cap-
tured in signals of multimodal data seems very promising.
Results indicate this outperforms previous solutions for ac-
tivity recognition, with resource requirements suited for con-
strained devices.

Although we show performance under a single dataset, the
concepts for activity recognition we propose here can po-
tentially generalize to other activity domains. Furthermore,
we are looking to experiment with other types of networks
like Convolution Neural Networks.
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