Distributed Computing Lab
Department of Computer Science
Waseda University

Fahim Kawsar

A Document based Framework for User Centric
Smart Object Systems

A Dissertation submitted to the
Graduate School of Science and Engineering of Waseda University
in partial fulfillment of the requirements for the Degree
of
Doctor of Engineering in Computer Science

Fahim Kawsar
February 2009

Copyright () 2009 by Fahim Kawsar

"To my parents for giving me the faith to believe in myself."

Abstract

The proliferation of awareness technologies - sensors, actuators and perception algorithms -
has created novel design opportunities for everyday objects, and has enabled designers to re-
innovate the role of these well known artefacts with new affordances. Attaching awareness
technologies to everyday objects makes them perceptive of their operational and situational
context, which in turn enables them to provide value added services per se or via external
applications. A smart object system encompasses the synergy between these computationally
augmented smart objects and external applications and has emerged as one of the principal
technologies to embrace the recent paradigm of people centric computing.

This research has focused on the development of a software framework for building smart
object systems. The dissertation provides a theoretical foundation for smart object systems
and presents a set of requirements and component abstractions for a supporting infrastruc-
ture. A document based framework is developed where applications' requirements and smart
objects' services are objectified through structured documents. A runtime infrastructure pro-
vides the spontaneous federation between smart objects and applications through structural
type matching of these documents. This allows externalizing smart object management and
addressing heterogeneity issues away from the applications. The framework along with iden-
tified design processes reduces the complexity of building extensible smart object systems.

In addition, the dissertation at hand has also looked at what aspects of software architec-
ture can manifest themselves as a part of the user experience. Particularly this work argues
that by involving end-users in the deployment and administration of smart object systems, it
is possible to elevate end-user experiences. Accordingly, this research exposes user centric
architectural qualities by slightly shifting framework's focus onto end-users. Furthermore,
the thesis reports a couple of usability studies where end-users were actively involved in
deployment, configuration and management of several smart object systems. The implica-
tions of these studies illustrate the design considerations of building software architectures

for human-centric smart object systems.

Acknowledgements

Tatsuo Nakajima has given me a unique opportunity in my academic career. First by accepting
me in his laboratory and then by providing me with continuous supervision, adequate research
facilities and the liberty to work independently. | would like to express my sincere gratitude

to him. Thank you very much.

I owe many thanks to the rest of my thesis committee for their support and suggestions. Yoshi-
aki Fukazawa and Shigeki Goto have offered outstanding reviewing and advice on this work.

Perhaps this research would never be at this stage without Kaori Fujinami. He has guided
me from the very beginning of this work by sharing interesting ideas, useful comments and
valuable suggestions. | am really grateful to him for all his supports. Simo Hosio was actively
involved in the later part of this work and was instrumental in reducing my work load signifi-
cantly. Thank you very much Simo.

This work has been vastly improved due to constructive criticisms, and helpful suggestions
from many different people. Especially, Liviu Iftode, Michael Beigl, Gerd Kortuem, Jukka
Riekki, Achilles Kameas, Susanna Pirttikangas and Jin Nakazawa have guided me substantially
to shape up the work presented in this thesis. Special thanks to Jong Hyuk Park for his contin-
uous support and encouragement.

I would like to express my sincere appreciation to all members (past and present) of DCL, spe-
cially to Eiji Tokunaga, Hiroo Ishikawa, Tetsuo Yamabe and Kimura Hiroaki. Living in a different
country alone is very difficult. My living in Japan has become much easier because of the
friendly environment of DCL. Every time | had a problem, | found a helping hand in DCL, which

| really appreciate and will cherish. Thanks to all of you wonderful people.

| have also been very fortunate to have a great group of friends at Waseda. This includes
my Tatsumi friends, TIEC mates, and many others, too numerous to name. Thanks to all of
you guys for dragging me away from work to have fun and to raise your hands always when
| needed support. Special thanks to Wonny Tjon for helping me get past all the self-doubting
that inevitably crops up in the course of a Ph.D.

Finally, | would like to dedicate this work to my parents. | consider myself extremely lucky
for the family | have. My parents have provided me with immense liberty from the very early
stage of my life. Perhaps this has always been my thrust to do best for the justification of my
own decisions. Today, at this point | just want to say that it would be never possible for me
to come here without your endless support and love from childhood to now. Thank you very
much. Thanks to Liza Apa and Nahid Bhaia for their continuous support throughout my life.
You people are really special to me. Thanks to my two little nieces, Maisha and Ramisha. It
will take a while for you girls to read and understand this thesis but you two have been my

inspiration always.

vii

Contents

1

Introduction
Research Motivation

11
1.2
13
14

Research Focus

Projected Contributions

DissertationRoadmap

Background: Smart Object Systems
2.1 The Vision: Ubiquitous Computing
2.1.1 Context and Context-Awareness

2.2

2.3

2.4
2.5
2.6

Smart Objects

2.2.1 Definition
2.2.2 Properties of Smart Objects
Exploration of Research Projects on Smart Objects
2.3.1 Digital Everyday Smart Objects
2.3.2 Non-Digital Everyday Smart Objects . .
Augmented Household Objects
Augmented Room and Building Structure
Augmented Objects in the Workplace
Electronic Tag Augmented Objects

23.2.1
2.3.2.2
2.3.2.3
23.24
2.3.25

Augmented Wearable Objects

2.3.3 Summary of the Existing Research . . .
Classification of Smart Object Systems

Sensor Network and Smart Objects

ChapterSummary

A Framework for Smart Object Systems

3.1 Design Issues for Smart Objects
3.1.1 Design Requirements for a Smart Object Model
3.1.2 Related Work on Smart Object Model .
3.1.3 A Core-Cloud Theoretical Model for Smart Objects
Design Issues for a Smart Object System Infrastructure
3.2.1 Design Requirement for a Smart Object System Infrastructure

3.2.2 Existing Support for a Smart Object System Infrastructure

3.2

3.2.2.1
3.2.2.2

Three Models of Architecture

N o N =

o ©

11
12
12
15
16
16
17
18
19
19
20
21
21
22
24
25

27
27
28
31
32
34
35

37

Distributed Component and Device Integration Infrastructures 38

DCOM and CORBA
UPnPandlini

38

Contents

SpeakEasy 39

XWeb e 39

PatchPanel 40

InterPlay e 40

3.2.2.3 Pervasive Computing Middlewares 40

Schilit's System Architecture 40

ContextToolkit 41

Technology for Enabling Awareness 41

Gaia 41

Aura . . L e e e e e e e 42

IROS . . . e 42

Java Context Aware Framework 42

Sentient Computing, 43

HP CoolTown it 43

EasyLiving 43

StickeNote 43

Context Fabric 44

3.2.3 Drawbacks of Current Approaches 44

3.2.4 A Document Based Solution Framework 45

3.3 Framework SupportforEnd-Users 48
3.3.1 Related Work on Supporting Tools for End-Users 50

3.4 ChapterSummary o e e e e e e e e e e 51
4 Implementation of the Framework 53
4.1 Smart Object Wrapper e 53
4.1.1 3-Step Design Methodology for Smart Object Augmentation 54
4.1.1.1 lllustration: Design of A Smart Mirror 57

4.1.2 Augmentation Presentation: Implementation of Core-Cloud Model . 58
4,121 CoreComponent. 59

4.1.2.2 Profile 60

4.1.3 ProgrammingModel 60
4.1.4 Representative Documents oo 0oL 63

4.1.5 Location Modalities of Smart Object Wrapper 65

4.1.6 SmartObjectlifeCycle 66

4.2 Application DevelopmentProcess 67
4.2.1 3-Step Application Development Process 67

4.2.2 ProgrammingModel o 69

4.3 FedNetInfrastructure L 71
4.3.1 Logical Architectureof FedNet 71
4.3.1.1 Smart ObjectRepository 72

4.3.1.2 ApplicationRepository L. 72

4313 FedNetCore i 72

43.14 AccessPoint Lo 73

4.3.2 Physical Architecture of FedNet: Distributed Management 73
4.3.3 Specific Featuresof FedNet 75

4.4 Framework Support forEnd-Users 76
4.41 End-UseriInteractionTools 77

Contents

4.4.1.1 Graphical User Interface Interaction Tool

4.41.2 Tangible User Interface Interaction Tool

Hardware

Interaction Mechanism

4.5 ChapterSummary e

Evaluation

5.1 Evaluation of the Framework
5.2 Quantitative Evaluation of the Framework

5.2.1 A Prototype Home Entertainment Smart Object System

5.2.1.1 AScenario oo

5.2.1.2 Description of the Smart Object System

5.2.1.3 Quantitative Measurements

5.2.1.4 Summary of the Quantitative Evaluation

5.3 Qualitative Evaluation of the Framework
5.3.1 Revisiting the Smart Object Design Factors

5.3.2 Reuvisiting the Infrastructure Design Factors

5.4 Evaluation of End-User Aspects through User Study
5.4.1 Two Sample Smart ObjectSystems
5411 AScenario

5.4.1.2 Descriptions of the Smart Object Systems

5.4.2 Study Methodology
5421 Participants

5.4.2.2 StudySessions

5.4.3 StudyResults,
5.43.1 SystemPerformance.

5.4.3.2 End-Users' Performance

5.4.4 ImplicationsoftheUserStudy

5.5 ChapterSummary

Discussion

6.1 Cross Domain Applications
6.1.1 Distributed ComponentSystems
6.1.2 PeertoPeerComputing
6.1.3 Service Oriented Computing
6.2 Further Look at DesignAspects
6.2.1 High Level Abstractions
6.2.2 SeparationofConcerns
6.2.3 Interfaceand Protocol
6.2.4 Simplicityand Features
6.2.5 Some Noteson Evaluation
6.3 Further Look at End-User Aspects
6.4 ReactiveorProactive
6.5 ChapterSummary e

Conclusions

7.1 ResearchSummary i

Xi

Contents

7.2 Future Research Directions e

7.21
7.2.2
7.2.3
7.2.4
7.2.5

Specification and Description of Smart Object Services
Integration of Location Information
Incorporating Security Aspecto oL
Architectural Qualities for Improving User Experience
End-UserTools e

7.3 ConcludingRemark e

A Document Type Definition (DTD)
A.1 Document Type Definition for Smart Object's Documents

Al1l
Al.2

Document Type Definition for Smart Object Description Document
Document Type Definition for Profile Description Documents

A.2 Document Type Definition for Application's Document

B Specification of Programming Interface
B.1 Language Interface for Smart Object Development

ProfileClass

B.2 Language Interface for Application Development

Task Class o e e
AccessPointClass
XmlProcessorClass,

C User Study Material
C.1 Post-study Questionnaire e
C.2 Post-study Interview Questions,

Bibliography

xii

119
119
119
119
121

123
123
124
125
125
125
126

127
127
129

131

List of Figures

11
1.2
13

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
53
5.4
55
5.6
5.7
5.8

Evolution of Personal Computers and Mobile Phones 3
End-user Role in Personal Computers. 3
Ideal Smart Object SystemModel 4
Classification of Smart Object Systems 23
Affordances of Physical Artefacts 29
Example of SmartObjects 30
Core-Cloud Model for Smart Objects 33
A Conceptual Document based Framework 46
A Conceptual Document based Framework with End-User Tool 50
3-Step Design Methodology for Augmentation Role Selection 55
Constructionof aSmart Mirror 57
Smart Object Wrapper Architecture 58
Sample Code implementing Sensor Type Profile 61
Sample Code implementing Actuator Type Profile 62
Smart Object Description Document 63
Profile Description Document - ForSensors 64
Profile Description Document - For Actuators 65
Location Modalities of Smart Object Wrapper 65
Life Cycle ofaSmartObject 66
3-Step Application DevelopmentProcess, 67
Task Description Document e 69
Sample Task based ApplicationCode 70
FedNet Architecture e 72
Internal Structure of Smart Object Repository 74
Snapshots of Graphical User Interface InteractionTool 78
Tangible User Interface InteractionTool 80
Bootstrapping and Access Point FormationTime 87
Communication Latency e e 88
Sample ApplicationCode 91
Apparatus forthe User Studies 95
User Study Sessions e e 98
User Study Results with Graphical User InterfaceTool 100
User Study Results with Tangible User InterfaceTool 101
Subjective Responses e e e 101

xiii

List of Figures

Al
A2
A3

B.1

Document Type Definition for Smart Object Description Document 120
Document Type Definition for Profile Description Document 120
Document Type Definition of Task Description Document 121
Structureofa Profile 124

Xiv

Chapter 1

Introduction

Chapter 1

Introduction

The relation between humans and everyday objects is long standing. Historically, everyday
objects have established purposes and have played vital roles in our everyday lives. The re-
cent progression of computing technologies affords us to rethink the roles of these everyday
objects and in fact poses us with interesting research and design opportunities to instrument
them in a way that dramatically enhances their well established features.

The notion of "Ubiquitous Computing" was introduced by Weiser [Weiser, 1991] to describe a
scenario in which, literally, computing is everywhere. This should not be taken in the narrow-
minded sense of "a computer on every desk", but in the rather subtler one of computers be-
coming embedded in everyday objects, e.g., a chair, a mirror, a desk, a lamp, a cup etc. This
embedding has two direct implications. Firstly, it enables computing devices to pervade in our
everyday life in such a way that people do not notice them anymore as separate entities as
they become a part of our environment. This blending allows them to operate in the periphery
of human, enabling people to focus on the primary task at hand [Weiser and Brown, 1997].
Secondly, it creates novel design opportunities for everyday objects. Instrumenting everyday
objects with computing enable designers to re-innovate the purpose of these well known ob-
jects and to extract new affordances from them to make them "smarter". Part of this vision is
already becoming a reality - as the convergence of pervasive technologies (e.g. miniaturiza-
tion of the micro processors and proliferation of wireless internet, short-range radio connec-
tivity, real time localization, sensor networking etc.) results in the integration of processors
and tiny sensors into everyday objects and fabric of the environment. We now interact with
our clothes to exchange emotion [Baurley et al., 2007], with our furniture for personalized in-
formation services [Tokuda et al., 2004, Fujinami et al., 2005], with our umbrellas for weather
forecast?, etc. Information technology rich everyday objects and spaces are radically changing
the style of how we learn, think, interact and behave as social human beings.

At the other end of the spectrum, the emergence of these instrumented smart objects chal-
lenges us in multiple aspects. As these everyday objects are appearing as computer aided

http://www.ambientdevices.com/products/umbrella.html

2 | Chapter 1: Introduction

smart objects, issues such as design methodology and usability seek a new rational approach.
It is important to understand the design rationales of smart objects: what augmentation is
suitable for a traditional everyday object, what are the ways to instrument them, what are
the ways to describe the instrumented features and how to interact with them. Everyday day
objects' form and interaction factors have evolved over the years and have intrinsic perceptual
properties. Thus, it is necessary to keep the balance between their contemporary roles and
newly augmented features. Simultaneously, down the stream issues like development model,
abstraction, integration and universal interoperability pose significant research challenges. It
is essential to understand how to build applications for smart objects, how to integrate mul-
tiple smart objects into one or more applications and how to form synergy among them.

The dissertation at hand looked at these system issues for building smart object systems. Pri-
marily, this research provides a theoretical foundation and discusses the design processes and
programming models for developing smart object systems. A document centric framework is
designed for building reusable and extensible smart object systems with necessary infrastruc-
ture. A number of smart objects and applications are prototyped to evaluate the feasibility
and applicability of the approach. The dissertation also discusses what aspects of the frame-
work could be part of the user experience. Specifically, this work argues that by involving
end-users in the administration of smart object systems, it is possible to elevate user experi-
ences. A couple of user studies are reported to exposes how can we involve end-users in the
deployment, configuration and management of smart object systems in a generic manner.

1.1 Research Motivation

After the formal proposition by Weiser [Weiser, 1991] in early 90's, the ubiquitous computing
has progressed significantly from the technology perspectives. Tagging everyday objects with
sensors, actuators and building an instrumented environment are recent practices in industry
and academia. In fact, the smart object (i.e., everyday objects augmented with computing
to provide value added services.) domain has matured over the years. The combination
of Internet and technologies like near field communications, real time localization, sensor
networking etc. are bringing smart objects into commercial use. Several successful prototypes
and applications have already demonstrated and deployed. However, the lack of commonality
among the design principles and the underlying infrastructures of these projects are hindering
the exciting future of smart object systems. The primary reason behind this phenomenon is
missing rationales for the design and integration of smart objects. Although the processor and
communication technology bases are quite solidified in this domain, software architectural
aspects like development process, infrastructure platform, programming methodology are still
widely open issues. The prime motivation of this research work is to look at these software
architecture aspects for developing smart objects and applications for them.

Historically, the evolution of computing in the last few decades could be seen as the prime in-
dicator for laying out the software architectural research challenges for smart object systems.

Chapter 1: Introduction | 3

In the early 80's when the personal computer was first introduced, it was a stand-alone device
with a few bundled software. Those machines offered little extension supports and a very few
third party applications were available to them. However, with the advent of general purpose
operating systems, the explosion of Internet and the proliferation of low cost hardwares, more
companies are now involved in developing innovative softwares and manufacturing personal
computers and peripheral accessories (Figure 1.1).

Early 80's

Early 90's Present
Specific Vendors
Built in Apps

Limited Extensibility '

LI, ! Numerous Vendors - :
p . , .
\u')' .-ﬂ,l kIJI 5 Million of Apps B 'ItA'H n ?tne Many Add-ons, Sensors
¥ o 3 Support for Extension uiftin sontwares ry,,,sands of softwares
Present
Evolution of PC Platform Evolution of Mobile Phone

FIGURE 1.1: Evolution of Personal Computers and Mobile Phones (Image Courtesy to Google)

The end-users' role has also changed in parallel. Now average computer users can buy a soft-
ware or download an application from Internet and can install it in their personal computers
easily. Furthermore, they can attach peripherals (e.g., a video camera, a microphone, etc.)
seamlessly to get the fullest functionalities from their desired applications as depicted in Fig-

ure 1.2.
oy 1 Extended by Endusers
O 2,
N
WO L=

Basic Text Chat Voice Chat Video Conferencing ‘

FIGURE 1.2: End-user Role in Personal Computers(Image Courtesy to Google). By incremen-
tally adding new peripherals in a plug and play manner end-users can extend the basic func-
tionalities of an application.

We are seeing the same phenomenon in mobile computing too. In the early 90's when the
mobile phone was introduced, it was a mere cordless phone. However, as the network infras-
tructures improved and market became saturated, mobile phones have undergone a meta-
morphosis. It has become a fashion accessory, a mobile office, a music player, a camera, etc.
With the release of various open development toolkit, we are experiencing thousands of inno-

vative third party applications for mobile phones (Figure 1.1). Most importantly the end-users

4 | Chapter 1: Introduction

are actually involved in transferring their mobile phone into a multipurpose device: they can
now download and install their desired applications with a single touch and can extend the
basic functionalities of their mobile phones.

This research argues that to mature the notion of smart objects and to bring them out of the
laboratory, smart object systems have to go through the same metamorphosis as personal
computer and mobile phone did. It is imperative to have common design and development
methodologies to develop reusable and extensible smart objects and applications for them
independently following the application model of personal computers and mobile phones.
The methodologies should enable a smart object to be instrumented in multiple ways for
serving multiple purposes depending on the instrumentation variations and applications that
run on it. Similarly applications should be developed in such a way that they could be installed
in any compatible smart objects.

Lamp Application Q
£ A A lhttpz-’":;

Light Sensor

A Regular Table Lamp Smart Table Lamp

Extended by Endusers

FIGURE 1.3: Ideal Smart Object System Model. Any suitable application can be added to a
compatible smart object at any time; Smart object's features can be extended by adding
new peripherals; These installations and extensions are carried out by end-users.

Considering smart objects are parts of our environment, they should retain their physical
properties and interaction metaphor. These objects should be easy to setup, adaptive to
users' needs, and interchangeable with new models. Ideally, smart objects should be iden-
tical to existing home appliances e.g., a table lamp, a dish washer, a TV etc. A user may buy
one or multiple physical smart objects and applications for them and should be able to install
them very easily just like other home appliances. In addition, the user should be able to incre-
mentally enhance the smart object functionalities by upgrading its features or installing new
applications. Consider a hypothetical table lamp application that proactively turns the lamp
on and adjusts its brightness adapting ambient room lighting. A user can initially buy a regular
lamp, and few weeks later he/she can buy a light sensor, attach it to the lamp and download
this application into the lamp to make it proactive (Figure 1.3). There are several advantages

Chapter 1: Introduction | 5

in involving end users to build smart object systems in this fashion as observed by Beckmann
and his colleagues including less cost, greater user-centric control, more acceptance, better
personalization and frequent upgrade support [Beckmann et al., 2004]. Furthermore, learn-
ing from the evolution of the personal computers and mobile phones, it could be easily con-
curred that such end-user involvement is a crucial success factor for smart object systems.

Enabling end-users to be involved in the deployment, extension and maintenances processes
of smart object systems can essentially elevate user experiences as they become more inti-
mate with the system. Thus it is important to provide simple, easy, useful and usable interac-
tion tools that can assist end-users in performing smart object administration tasks. However,
such involvement also requires specific desigh methodologies (e.g., plug and play smart ob-
jects, loose coupling between the applications and smart objects, etc.) to be addressed at the
development phase of the smart object system. Thus, a software framework for supporting
the development of smart object systems has to be carefully designed so that it ensures the
system level design requirements as well as requirements for supporting end-user involve-
ment in a balanced way. These requirements motivate this research work to focus on the
development of common design methodologies with a suitable infrastructure and end-user
tools for building user-centric smart object systems.

1.2 Research Focus

There are a large number of research problems in the context of smart object systems. This
work specifically looked at a subset of these problems and explored the system design is-
sues related to smart object: how an effective infrastructure for smart object system can be
designed, and how it will appear to developers through an effective programming model.
One intriguing factor of this research work is bringing end-user aspects in the design of the
framework, i.e., what aspects of software architecture can manifest them as a part of the user
experience.

The research questions raised above have lead to the following thesis statement:

"Providing a software framework with design methodologies and program-
ming abstractions for building user-centric extensible smart object systems"

Consequently, this work is centered around three aspects:

e Development of a theoretical model for smart objects considering the identified design
requirements.

e Development of a framework for building reusable and extensible smart object systems
with effective programming model.

6 | Chapter1: Introduction

e Investigation of specific quality attributes of a software framework that can elevate user
experiences with smart object systems.

Some previous research has addressed certain aspects inisolation or in relevant domains, e.g.,
a range of pervasive middleware infrastructures are available in the field. This work is the first
to develop a theoretical model for smart objects and to address an infrastructure specifically
designed considering the requirements imposed by the nature of smart object systems. In ad-
dition, this is the first work that looks at the end-user deployment and administration aspects
both from architectural and interaction tool perspectives and exposes several design factors
for building human-cenrtic smart object systems.

The work presented in this thesis has followed a bottom up iterative approach. A prototype
framework initiated the research, which was redesigned thrice during the course of this re-
search period.

1.3 Projected Contributions

This research contributes to the field in a number of ways. The expected contributions of this
thesis are

1. An in-depth investigation of a range of smart object systems to formalize their design
rationales resulting in the development of theoretical model for a smart object.

2. Identification of the requirements to support the development and evolution of smart
object systems and consequent development of a document centric framework along
with design processes for building reusable and extensible smart objects systems.

3. The concrete implementation of the framework and demonstration of its utilization in
a variety of smart object systems.

4. Introduction of the novel notion of end-user centric qualities for system infrastructure
and their implications in the design processes.

The first and general contribution is an investigation of existing works in the the domain of
smart object systems in an attempt to generalize their characteristics and properties. This
work explores the design methodologies and requirements for the construction of reusable,
extensible and plug and play smart objects and their integrations in generic context-aware ap-
plications. These exploration and formalization of the design processes are applied to develop
a theoretical model for smart objects.

The second and third contributions and indeed the main contributions of this work are an
in-depth investigation of a suitable framework for building user-centric smart object systems.
The goal is to provide a suitable system model and programing abstractions using which reusable,

Chapter 1: Introduction | 7

extensible and plug and play smart object systems can be built. Thus the research focused on
three aspects of the framework: an appropriate system model for representing smart objects,
a suitable infrastructure for the application developers that enable them to integrate smart
objects in their systems, and an effective programming model for both the smart object and
application developers. The combination of these aspects will result in faster and rapid devel-
opment of smart object systems. Furthermore, the programming abstractions built on top the
framework will allow the developers to design their systems in a highly structured manner.

The final contribution is a novel one and arguably the first in the field that tries to look what
aspects of a system framework could elevate end-user experiences. Two end-user interaction
tools are developed as framework services that allow end-users to involve in the deployment,
management, administration and extension of smart object systems. The usability studies on
these tools and the entire process of end-user involvement expose several significant issues
both for systems designers and interface designers for future smart object systems including
the evidence of the fact that the end-users might be involved in deploying and administrating
future smart object systems if appropriate interaction tools and supporting infrastructures are
provided.

1.4 Dissertation Roadmap

The rest of this dissertation is organized as follows.

Chapter 2 provides the detail background, classification and characteristics of smart object
systems. This chapter provides an in-depth discussion on existing works to extract the char-
acteristics across variety of smart object systems. This discussion provides the foundation for
developing a theoretical model of a smart object and for identifying the architectural require-
ments to build smart object systems.

Chapter 3 introduces the design issues for building user centric smart object systems. A the-
oretical core-cloud model for smart object is presented. This is followed by the discussion
on the architectural requirements for building smart object systems. Consequently, a docu-
ment based framework is presented explaining basic design decisions and by highlighting the
limitations of existing infrastructures. The chapter then discusses the architectural require-
ments for supporting end-user involvement in the construction and administration of smart
objects systems and explains in detail how the proposed framework design supports those
requirements.

Chapter 4 presents the implementation detail of the proposed framework. Each of the com-
ponents of the framework is discussed with concrete illustrations. The chapter ends by dis-
cussing multiple end-user interaction tools built as framework services to engage end-users
in the construction and administration of smart object systems.

8 | Chapter 1: Introduction

Chapter 5 provides the evaluation of the proposed framework from quantitative and qualita-
tive aspects. The performance of the framework and quality of service issues are discussed.
After that the chapter moves to the qualitative evaluation of the framework by revisiting the
design requirements. Finally, the end-user interaction tools and the entire end-user involve-
ment process are assessed through a couple of user trials involving end-users in building and

enhancing smart object systems.

Chapter 6 puts forth few issues for further discussion including the design decisions that are
considered in the current framework. The applicability of the proposed approach in other do-
mains, and the design implications of such human-centric approach towards system research

are also discussed.

Finally, chapter 7 summarizes the research of this dissertation. This chapter presents a set of
conclusions and research contributions of the presented work. The chapter ends by outlining
some potentially future research work.

Chapter 2

Background: Smart Object Systems

Chapter 2

Background: Smart Object Systems

The design of a new software framework for building a smart object system naturally lever-
ages off the characteristics of a smart object system and it's constituents. To have a formidable
understanding, this chapter discusses the background, notion and properties of smart object
systems by exploring the contemporary research. A range of projects will be introduced to
rationalize the features that are common and useful across smart object systems. This discus-
sion will provide the foundation to extract the design requirements for a smart object system
and a supporting framework.

2.1 The Vision: Ubiquitous Computing

Mark Weiser put forth the vision of Ubiquitous Computing in his article '"The Computer for
the 21st Century" published in 1991 [Weiser, 1991] .

"The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it."

The above statement instigated a paradigm shift in computing by opening a door to a new
way of thinking about computing technology. The vision is that - ubiquitous computing will
change the way we currently perceive technology. There will be no more desktop computers
but computing will be all around us to match our social behavior and will guide our every-
day activities. Computers will slowly disappear from our perception and will operate at the
periphery of human as a part of natural environment much like the information presented
today by clock, poster, street sign, etc. This will enable us to focus on our primary tasks, and
to switch our attention to computing only when it is appropriate. The central issue here is
that how can we make computer disappear from our perception? Weiser pointed out:

10 | Chapter 2: Background: Smart Object Systems

"Such a disappearance is a fundamental consequence not of technology, but
of human psychology. Whenever people learn something sufficiently well, they
cease to be aware of it." [Weiser, 1991].

This leads to the implication that, making computers disappear is about the deployment of
technology in everyday environment in a way that humans do not realize them as a separate
entities anymore. One obvious way to realize this is by making computers smaller in such a
scale that they could be easily embedded into everyday objects that form the natural human
environment. The proliferation of micro electronics in fact enables us to do that. Moore's
Law [Moore, 1965], drawn up in 1965 which states that the power of microprocessors dou-
bles about every 18 months, has held true with astonishing accuracy and consistency. Similar
convergence has been observed in storage capacity and communications bandwidth resulting
in the computer to be much more powerful, smaller, and cheaper. A direct consequence of
this technology trend is the integration of computing in the fabric of the environment and the
emergence of instrumented everyday objects (so called "smart objects”) to form intelligent
home, intelligent office, intelligent bus stop, etc. This instrumentation emerged as a natu-
ral choice to realize the vision of ubiquitous computing. Instead of deploying new devices of
varying size and scale in the environment, it is more cost-effective, useful and innovative to
integrate computing into the already available artefacts of our surroundings, thus making our
connection with digital world a lot closer. Beigl, Gellersen and Schmidt put this in a classical

way:

"Computers are becoming ubiquitous in our everyday lives but not as the com-
puters that we know. The computer that we know is a primary artefact, explic-
itly perceived and used as computer. Instead, the computers that will proliferate
further into our everyday lives will mostly be secondary artefacts embedded in
primary artefacts that have their own established appearance, purpose and use
in everyday experience." [Beigl et al., 2001].

Don Norman looked at this paradigm shift from design and human interface perspectives in
his theme of "Invisible Computer" and induced the notion of human-centric "Information Ap-
pliances" integrated into the environment [Norman, 1998].

" The proper way, | argue is through the user-centered, human-centered, hu-
mane technology of appliances where the technology of the computer disappears
behind the scenes into task-specific devices that maintain all the power without
difficulties.” [Norman, 1998].

Although he emphasized primarily on the home appliance designed and built to support a
specific task, his observations raised interesting design challenges for the emergence of in-
strumented everyday objects. The human-centric approach is indeed a fundamental design

Chapter 2: Background: Smart Object Systems | 11

challenge of ubiquitous computing. As micro-scale computers are being embedded into the
fabric of the environment, it is essential to ensure that this embedding is discreet, unobtrusive
and matches the social behavior of human. Henceforth, significant research efforts focused
on finding the proper balance among ease of interaction, perceptual complexity, computa-
tional overload and social acceptability to make sure that computing services are provided in
an appropriate way, i.e. considering proper timing, location, identity, intuitiveness and other
contextual attributes. Context-awareness is used to denote this property of computing and
plays the key role in designing the human-centric ubiquitous computing systems.

2.1.1 Context and Context-Awareness

Context has been in the spot light of the research community with the emergence of ubig-
uitous computing paradigm, primarily because it summarizes the rudimentary postulates of
human-centric invisible computing. There are dedicated works, for instance the Ph.D. thesis
in the field [Schilit, 1995, Dey, 2000, Pascoe, 2001, Schmidt, 2002] that defined and explained
the term "context" in the viewpoint of ubiquitous computing. All of these definitions are re-
lated and correct in their own contexts. However for the sake of discussion, the definition of
context and context-awareness given by Anind Dey [Dey, 2000] is highlighted here. He defined
context as:

"Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves." [Dey, 2000].

The key point of this application oriented definition is that context is always bound to an entity
and any information could be context as long as it is relevant to that entity. He goes on defining

context-awareness as:

"A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user's task." [Dey, 2000].

This definition says that any system can be context aware if it offers services utilizing the con-
text relevant to the user of the system. This is a very crucial attribute of human-centric systems
and plays a vital role in realizing the vision of ubiquitous computing, i.e., collecting context
information unobtrusively from the intelligent environment and in turn utilizing those infor-
mation to provide value added services to guide our everyday life. The next section provides
a deeper insight into the building blocks of this instrumented intelligent environment, i.e., the
smart objects that form the foundation for the proliferation of context-aware computing.

12 | Chapter 2: Background: Smart Object Systems

2.2 Smart Objects

The Oxford American Dictionary defines the terms Smart as "Having intelligence" and Object
as "A material thing that can be seen and touched". Combining them, it can be inferred that
a smart object literally means a tangible physical object with some sort of intelligence where
the intelligence comes from explicit augmentation of computing device. Although the tangi-
ble feature of a smart object is well agreed, the degree of its intelligence is still an open topic
for argument among the researchers. Some have seen this intelligence in physical object be-
ing aware of its situation and capable of sharing it's awareness, where others have seen it
in objects being autonomous and capable of taking self directed actions. As a result of this
most researchers have a general idea of what a smart object is and what are it's properties.
However, due to this vague notion of smart object, there is no specific design guidelines for
building a smart object, or reusing the design process, or using smart objects in applications
in a unified way. These in turn hinder the development of a supporting framework for smart
objects and their applications. A better understanding of smart object will enable designers
and developers to overcome these difficulties. The following sections first introduce the def-
inition of smart object by considering several contemporary definitions and then discuss the
properties that a typical smart object exhibits.

2.2.1 Definition

In the work that first introduce non-digital smart object, Beigl et al. defined smart object
as: "An everyday artefact augmented with computing and communication, enabling it to es-
tablish and exchange information about itself with other digital artefacts and/or computer
applications." [Beigl et al., 2001]. The key point of their definition is that the artefacts are
augmented to collect and share context information instead of utilizing those context to make
autonomous decisions. Mattern concurred with these features but stressed that - "Smart ob-
jects might be able not only to communicate with people and other smart objects, but also
to discover where they are, which other objects are in their vicinity, and what has happened
to them in the past.” [Mattern, 2003]. The prime point of his definition is the stateful feature
of the objects capable of tracking their interaction history on top of their self awareness and
sharing capabilities. A similar definition was proposed by Kortuem et al. by defining smart ob-
jects as: "Objects of our everyday lives, augmented with information technology and equipped
with sensing, computation and communication capabilities, that are able to percieve and in-
teract with their environment and with other smart objects." [Kortuem et al., 2007]. These
definitions primarily emphasize on capturing and communicating context and letting other
entities to exploit those contexts (e.g. a context-aware application) while retaining physical
object's original use and appearance.

Interestingly, these definitions largely focus on smart objects' capabilities in sensing and shar-
ing only without considering their role in reflecting action back into the real world, i.e., pre-
senting output, taking autonomous decisions to provide proactive services or adapting its

Chapter 2: Background: Smart Object Systems | 13

behavior. One obvious issue is the form-factor of these everyday objects for such actuation
services. Everyday objects evolved over the years to reach in their current shape and size.
Thus, actuation technology has to be very carefully designed so that the augmentation does
not modify their original appearance and interaction metaphor. However, smart objects not
necessarily mean only the non-digital everyday objects. Information appliances and tradi-
tional computing devices, such as mobile phone, PDA, mobile music player, etc. could also be
augmented with awareness technologies - sensors, perception algorithm, actuators - to pro-
vide value added services. As Norman pointed out while expressing his information appliance
model:

"Making a proper information appliance has two requirements: the tool must
fitthe task and there must be a universal communication and sharing." [Norman, 1998].

So, it is essential for smart objects to consider the actuation technology as a part of the aug-
mentation where applicable. In fact numerous research projects have augmented mobile
devices for context-awareness [Rekimoto, 1996, Hinckley et al., 2000, Hinckley et al., 2000].
Siegemund considered this reflective nature in his definition as: "A smart object can perceive
its environment through sensors and communicates wirelessly with other objects in its vicinity.
Given these capabilities, smart objects can collaboratively determine the situational context
of nearby users and adapt application behavior accordingly.” [Siegemund, 2004] . Unlike the
other artefact-centric definitions, Siegemund also emphasized the role of collaboration among
multiple smart objects.

Streitz et. al. looked at the smart object from two distinctive perspectives: one model is
system-oriented, importunate smartness where smart objects can take certain self-directed
actions based on previously collected information and the other model is people-oriented,
empowering smartness where smart objects empowers users to make decisions and take ma-
ture and responsible actions [Streitz et al., 2005]. The former model could be aligned with
Siegemund's definition, however the latter model could be interpreted as a design rationale
that aims to keep the user engaged and in control whenever possible, so autonomy is not a
desired feature for this class of smart objects.

Each of the above definitions have covered several quality attributes that define smart objects.
However, none of these definitions have touched two aspects of smart objects: first is the
granularity of the smartness and second is the augmentation of the human perception.

Let us look at the granularity issue first. Want et al. augmented physical objects with pas-
sive RFID tags so that they can be uniquely identified and information related to them can
be presented to their users [Want et al., 1999]. Similarly RFID tagged objects have been used
in supply chain management and other enterprise applications [Konomi and Roussos, 2006].
Typically for these objects, intelligence such as perception, reasoning and decision-making
are allocated at the infrastructure with appropriate tracking mechanism. So, can we consider

14 | Chapter 2: Background: Smart Object Systems

these objects as "smart" and self-aware? Of course in more sophisticated smart objects per-
ception is integrated into the object itself. The point here is that event though these tagged
objects do not have any self-awareness per se, they could still give the impression of being
smart through some intermediator. For example, a pack of cookies in the super market could
be embedded with a RFID tag containing a specific Internet address as digital information. If
a user can read this tag using his RFID reader equipped mobile phone by touching the cookie
pack, the mobile phone can independently access and display the associated information from
the Internet. The user will have the impression that the cookie pack itself has transmitted the
information, although in fact it has been supplied by the mobile phone via internet. This work
argues that jt is not necessary for a smart object to be equipped with active awareness tech-
nology capable of sensing and actuating per se, rather the notion of smart object covers much
lower granularity of computational unit, i.e., digital data. As long as digital data can be as-
sociated with a tangible object which augments its original purpose, it could be said that the
object is smart. In such cases, the self-awareness and sociality of the smart object could be

achieved passively via the utilization of a secondary infrastructure.

The second issue is more related to our understanding of everyday objects. Simply speaking,
would we be considering an augmented everyday object (i.e., a smart chair, a smart table, a
smart coffee cup etc.) to be smart if from the very first day of its existence in our life it were ca-
pable of playing those "smart" roles. Probably no. It would be called a regular everyday object
and the computation in it will never be visible to us, just like the regular electronic appliances
in our home, e.g., a microwave oven, a washing machine etc. Ideally, a smart object should
be conceptualized by humans in terms of the familiar everyday objects they are based on and
the finest smart object design would make us forget about its computational role completely
thus letting it to operate at our periphery. But, at the same time it is important to understand
and perceptually aware of the capabilities of a smart object. This is particularly important for
failing situations. Consider a regular chair, if one of its legs is broken, it is easily perceived by
us because we are completely aware of its functionalities. What if the chair is augmented with
some sensors (so that it can understand someone is sitting on it) and one of the sensors is not
working thus effecting its functional output. Without an explicit understanding of the aug-
mented capability of the chair, it is impossible to consciously perceive this failing situation. It
is thus imperative to have perceptual awareness of the augmented features of smart objects.
This work argues that for any everyday object to be considered as smart it is essential that
it augments human perception to some scale. The success of a smart object design depends
on minimizing this increase in the human perceptual complexity while retaining the physical
appearance and interaction metaphor as close as possible to those of the original one.

WIth these rationales and considering the previous definitions, this work puts forth the fol-

lowing definition of a smart object:

"A computationally instrumented tangible object with an established purpose that augments
human perception, and is aware of its operational situations and capable of providing sup-
plementary services without compromising its original appearance and interaction metaphor

Chapter 2: Background: Smart Object Systems | 15

significantly. Supplementary services typically include sharing object’s situational awareness
and state of use; supporting proactive and reactive information delivery, actuation and adap-
tive state transition."

This definition is chosen with three primary attributes: perceptual augmentation, device-
centric situational-awareness and supplementary services. The perceptual augmentation is
directly proportional to the degree of instrumentation that change the original appearance.
Situational-awareness is centered around the object itself, i.e., the context associated with
the smart object. Finally, a generic term, supplementary services is chosen to encapsulate a
broad range of smart object services that can be afforded through corresponding augmenta-
tions.

2.2.2 Properties of Smart Objects

Considering the definition proposed above, it is expected that a typical smart object should
possess the combination of the following properties.

e Unique ID: Each smart object is considered to have a digital presence, so it is essential
to uniquely identify a smart object in the digital world. Hence, each smart object must
have a unique ID. This ID could be the network interface address or other application
specific high level naming with appropriate resolution scheme.

e Self Awareness: Typically a smart object is augmented with awareness technology, thus
it is expected that a smart object should be capable of knowing its operational and sit-
uational states and should be able to describe itself. For some smart objects (e.g., RFID
tagged objects), this self-awarenss might be provided by a secondary infrastructure.

e Sociality: A smart object should be capable of communicating with other smart objects
and computing entities (e.g., a context-aware application) to share its self-awareness.
This sociality could be passive where computing entities can track the smart objects to
collect their awareness information.

e Autonomy: A smart object can have the capability to take certain actions. These proac-
tive actions could be as simple as changing its operational state (e.g., switching to off
state from on state) or as complex as adapting its behavior by autonomous decision
making, actions plans for self healing, self organizing and self sustainable. The degree
of autonomy depends on the type of smart object and its underlying environment.

e State-fulness: A smart object can maintain local memory to manage its states. This
memory can also contain static object models that provide general description of the
object, dynamic annotations added by the user or an application, and historic informa-
tion about an object's former states or uses [Schneider, 2007]. However, the granularity

and locality of this memory varies with the type of augmentations.

16 | Chapter 2: Background: Smart Object Systems

From human perception perspective, a smart object is expected to design with the following

properties.

e Preservation of Original Appearance and Functionalities: A smart object must retain its
original functionalities and appearances as much as possible. Physical objects evolved
over the years in physical appearance and acceptances by the end-users. So, augmenta-
tion should extend their physical usages and it is mandatory to decouple the augmented
features of smart objects from their original ones. A smart object must support its orig-
inal functions even if the augmented electronic parts are dead. For example: a smart
mirror is a mirror in the first case, we can augment the mirror with a display to show
personalized information. This display functionality is within the scope of its primary
role of reflecting peoples image and even if the display functionality is failed the mirror
is capable of reflection.

e Natural Interaction for Unobtrusive Realization: The required interaction with a smart
object should be identical to that of the original object. Humans develop a mental
model regarding the usage of everyday objects. It is essential to adhere this model
while augmenting a physical objects to ensure that the instrumentation is implicit and
does not require additional interaction. The interaction should be natural and should
activate the cognitive and cybernetic dynamics that people commonly experience in
real life, thus persuading them that they are not dealing with abstract, digital objects
but with physical real objects. This results in a reduction of the cognitive load, thus
increasing the amount of attention on content.

In the next section, a number of research projects that carried out interesting works on smart
objects are discussed in an attempt to rationalize the type of smart objects and their applica-

tions.

2.3 Exploration of Research Projects on Smart Objects

In a wide range of projects, everyday objects have been computationally augmented to pro-
vide supplementary smart services. Considering there are both digital and not digital objects
that from the everyday human environment, the augmentation could be observed from two
abstract perspectives: augmented digital everyday objects and augmented non-digital every-
day objects.

2.3.1 Digital Everyday Smart Objects

The TEA Project from TecO investigated Technologies for Enabling Awareness and their appli-
cation in mobile telephony to make personal mobile device smarter [Gellersen et al., 2000].

Chapter 2: Background: Smart Object Systems | 17

Their hypothesis was that the more a device know about its user, its environment and the
situation in which it operates the better in can provide assistance. Their initial prototype
augmented a cellphone with an awareness add-on device with a range of on-board sensors.
A three layer perception algorithm was applied to generate meaningful context about the
user out of raw sensor data (i.e., "in a meeting", "user is walking", etc.) to provide proactive
services to the mobile users. They showed that embedding such sensor boards in everyday
objects with a suitable perception algorithm could be used to collect rich context information

about users which in turn could be used to make the device smarter.

In handheld and mobile computing, several researchers have augmented personal mobile de-
vices with various kind of sensing technology for value added features. Rekimoto added tilt
sensors to a handheld to obtain context regarding the handling of the device [Rekimoto, 1996].
Hinckley et al. augmented a PDA with tilt, touch and proximity sensors to obtain operational
context and accordingly changing the orientation of the screen, activating the voice recorder
and other proactive services [Hinckley et al., 2000]. Schmidt et. al. explored the augmenta-
tion of orientation sensors in the handheld devices [Schmidt et al., 1999b]. Similarly, Yamabe
et al. showed their multiple sensors augmented PDA prototype "Muffin" capable of provid-
ing user-centric contexts autonomously [Yamabe et al., 2005]. A direct implication of these
research projects could be seen in the latest consumer hand held devices. However, the
contexts obtained from the augmented sensors in these projects are mostly used for user
interface extension and in turn to provide better user experience. As a result of this, one
interesting aspect of these projects is that all these sensors data were processed locally in
the device without involving any secondary infrastructure. Such local processing of sensor
data for value addition is also observed in Information Appliances the are stand alone self-
containted devices with specific functionalities. The integration of awareness technology en-
able these appliances to provide value added services in a more user-centric way. Example
of these appliances include Internet Fridge from LG Electronics, Visual Answering Machine
[Banks et al., 2007], Smart Coffee Machine [Aitenbichler et al., 2007] etc. This defines one
end point of the line where smart objects are stand-alone and equipped with awareness-
technology and self contained local perception algorithm to provide more user-centric smart

services.

2.3.2 Non-Digital Everyday Smart Objects

Over the years researcher have augmented various kinds of everyday objects ranging from
static and mobile artefacts of our everyday life to structural material of our environment with
awareness technology for providing value added proactive services. For the clarity of discus-
sion, in the following these objects are grouped into five different categories.

18 | Chapter 2: Background: Smart Object Systems

2.3.2.1 Augmented Household Objects

The Mediacup project from TecO was one of the earliest efforts of augmenting non-digital
smart objects where they studied the capture and communication of context in the environ-
ment using everyday object [Beigl et al., 2001]. Their goal was to collect context information
by augmented physical object in a transparent way i.e., without changing the function and
use of the object. This approach assumed a distributed system in which some objects are
augmented to collect context, while other objects are computationally augmented to exploit
that context. There were two distinctive features associated with the smart objects in their
approach: i) awareness of the real world environment and ii) ad-hoc sharing of that aware-
ness. In the first prototype, a regular coffee cup was instrumented with a computational unit
embedded inits base. The unit was composed of sensors, processor and communication com-

ponents and allowed the cup to collect its operational context (i.e., "cup is moving", "cup is
stationary", "cooled off", etc.) and to transmit it to a secondary infrastructure so that other
interested entities can utilize the transmitted context to provide value added services. Sev-
eral applications were built on top of this model using Mediacup as primary source of context.
The Mediacup project put forth two interesting issues for further exploration. First, the chal-
lenge of transparent instrumentation of awareness technology in everyday objects without
compromising their original uses. Second, the instigation of a paradigm shift regarding how
sensor enhanced applications should be built. By moving the perception algorithm and pro-
cessing of sensor data at the source of data (i.e., smart objects), the Mediacup project gave

an insight into how future smart object systems could be built.

Several contemporary research projects concurred with these design guidelines and augmented
various household objects. Fujinami et al. constructed a mirror augmented with a regular
display and a few sensors to present personalized information services in a contextual man-
ner [Fujinami et al., 2005]. Similarly, several other research groups have augmented mirror
with awareness technology for using it as a family portrait display [Terrenghi et al., 2008],
as a lifestyle feedback system [Nakajima et al., 2008], as an ambient display [Lashina, 2004,
Hitachi, 2008], and as an assistive makeup tool [Iwabuchi and Siio, 2008]. MIT's "Things That
Think" initiative! investigated some novel applications with instrumented objects like kitchen
utensils, drawing brush, bottles, etc. Kameas et al. built several everyday objects including
chairs, alarm clocks, desks, lamps etc. for providing various proactive services using two kinds
of interaction supports: artefact to artefact and user to environment [Kameas et al., 2004].
They also showed a two-step process for building instrumented objects: attacment of the
hardware into the physical object followed by the installation of the software to determine
the functionalities of the instrumentation. A similar approach was taken by Kawsar et al. to
instrument chairs, stand lights and coffee jars and pots to create a smart workspace. These
smart objects collected context information to take autonomous decisions for supporting their
users in a pleasant way [Kawsar et al., 2005]. Digital Decor project had taken a user-centric
approach and augmented traditional drawer and coffee pots to use as a smart storage and a

 http://ttt.media.mit.edu/

Chapter 2: Background: Smart Object Systems | 19

media for informal communication respectively where users were explicitly required to inter-
act with the system for such services [Siio et al., 2003]. In these projects, smart objects were
the constituents of one or multiple applications that integrate those objects to provide value
added services. Another interesting observation is the variety of usage of a same physical
object with different instrumentations for different purposes.

2.3.2.2 Augmented Room and Building Structure

Various research groups have investigated the augmentation of awareness technology into the
building structures. One advantage of using building structure is the flat surface that enable
embedding display of various sizes for providing ambient feedback on the basis of the sensed
context. In the Roomware project Streitz and his Ambiente-Team constructed computer-
augmented objects resulting from the integration of room elements; walls, doors and fur-
niture with computer-based information devices [Streitz et al., 1998]. Tokuda and his group
introduced u-Textures to build custom furniture [Tokuda et al., 2004, Kohtake et al., 2005].
They proposed a new form of material with sensing, actuating, display, computing, and com-
municating capabilities that can be assembled to build wall, floor, partitions or various types
of Smart Furniture. (e.g., chairs, tables, shelves). Similarly other research groups have built
smart floor [Orr and Abowd, 2000, Suutala et al., 2004] and room walls with embedded dis-
plays [Streitz et al., 2005] in an attempt to make context aware environment. One broad pre-
sumption in this class of smart object is that these augmented objects form part of the fabric
of the space and usually are not modified by the dwellers. Like, augmented household ob-
jects, these smart structural components are constituents of one or multiple larger proactive
applications.

2.3.2.3 Augmented Objects in the Workplace

The Mediacup team continued to explore the augmentation of non-computational objects and
introduced Smart-its [Gellersen et al., 2004] as an awareness platform that can be attached
to everyday objects. One of the projects that used their platform was The "Cooperative Arte-
facts" where Smart-Its were used to build prototypes of augmented chemical containers that
can detect and alert potentially hazardous situations. The embedded Smart-Its are config-
ured with sensors to measure the proximity of containers, and are programmed to share and
evaluate knowledge across containers [Strohbach et al., 2004]. This project highlighted co-
operative model of smart object based applications where a group of smart objects create a
synergy among them by sharing their situational awareness to each other without having a
dedicated applications for providing centralized control.

Kortuem et. al. investigated the application of smart objects in the safety critical indus-
trial workplaces [Kortuem et al., 2007]. They utilized sensor augmented construction drill ma-
chines to monitor the usage history and to alert the workers accordingly whenever the safety

20 | Chapter 2: Background: Smart Object Systems

thresholds are crossed. Along with the organizational aspects, they emphasized on the archi-
tectural issues related to this class of application and showed a smart object based approach
for industrial workplace monitoring provides better solutions over sensor network approach.

One of the constrains of the instrumentation of everyday objects is attaching the output capa-
bility since embedding display might change an object's appearance. Some researcher have
taken a proxy approach to overcome this limitation by utilizing secondary display to redirect
the outputs of smart object. For example, Molyneaux et. al. utilized low-cost, small projectors
for augmenting chemical containers with non-invasive displays in a workplace environment
[Molyneaux et al., 2007] .

2.3.2.4 Electronic Tag Augmented Objects

Another common approach to augment non-digital physical object for some computational
service is to tag them with electronic labels so that they can be referenced by other ap-
plications and devices. A well-suited technology for such tagging is RFID tags as they are
cheap, small in size, and can be attached to any physical objects in an unobtrusive way. Roy
Want and his colleagues augmented books, documents, photo-cubes and wristwatches with
RFID tags in an attempt to provide value added digital information relevant to those ob-
jects in nearby portable computers unobtrusively [Want et al., 1999]. Their primary motiva-
tion was to investigate such tagging mechanism for bridging the gap between the physical
and digital world. A similar approach was taken in HP CollTown project where physical ob-
jects were tagged with RFID for linking them with their virtual presence in the digital world
[Deborah and Debaty, 2000]. Lampe et al. showed the potential of RFID in the movable as-
set management, where assets were tagged with RFID tags and a secondary monitoring tool
was used to track them in an inventory applications[Lampe and Strassner, 2003]. Similarly,
Konomi and Roussos have augmented high value apparel products with RFID tags at the Mit-
sukoshi department stores in Tokyo for item-level tracking across their apparel sales floors for
efficient material handling processes [Konomi and Roussos, 2006]. Visual tags have also been
used to create smart objects, however mostly in the augmented reality applications. Reki-
moto et al. used low cost visual tagged physical objects for associating digital information
with them and for indoor navigation [Rekimoto and Ayatsuka, 2000]. Some other researchers
have also shown that even simpler technology like barcode can be used to augment physical
objects for value added services [Ljungstrand et al., 2000]. For these kinds of tagged smart
objects perception, reasoning and decision-making are allocated at the infrastructure. So, in
a strict sense the smartness of this physical objects lies in the digital data attached to them
that they can share autonomously with the help of a secondary infrastructure. These objects
do not have any local processing units except the electronic tags, and do not possess any in-
telligence per se. However, they obtain passive smartness once they become a part of an
application.

Chapter 2: Background: Smart Object Systems | 21

2.3.2.5 Augmented Wearable Objects

Although in the wearable computing domain explicit dedicated computing devices (e.g., Head
Mounted Display, Camera, Palmtop etc.) are used to support their users in an improved and
proactive way, a few projects have investigated augmenting wearable belongings, e.g., shoes,
textiles etc. for providing contextual services. For example, Paradiso instrumented a footwear
with a range of sensors to collect context information and built various applications utilizing
those contexts [Paradiso et al., 2000]. His motivations was to expose the shoe as an expressive
user interface. This exploration directly showed the potential of such wearable belongings for
value added services. Kawsar et al. constructed a wearable teddy RoonRoon with multiple
built-in sensors to provide proactive notifications [Kawsar et al., 2007b]. They were primar-
ily concerned with instrumenting wearable fashion accessories to collect context information
which could be used by other portable devices, e.g., mobile phone. Another work that is worth
of mentioning is the COMRIS (Co-Habited Mixed Reality Information Spaces) parrot by Van de
Velde where a physical embodiment interface in the form of a parrot acted as a wearable ad-
visor [Velde, 1997]. Its focus domain is large public gathering like conference, exhibition etc.
It could suggest the wearer about the interesting events. Although, both these projects in-
troduced dedicated artefacts for proactive services, their idea could be easily transported to
textile or other wearable objects (e.g., bracelets, ear-ring, spectacles, etc.). A few researcher
also investigated augmented textiles. For example Baurley et al. showed how regular tex-
tile could be augmented with awareness technology for exchanging emotional expressions
using mobile phone messaging [Baurley et al., 2007]. These projects highlighted the fact that
appropriate applications with supporting technology could allow embedding perceptual tech-
nologies into wearable human belongings to make them smart.

2.3.3 Summary of the Existing Research

The research projects described in the earlier sections highlighted some premier works on
smart objects and showed various application areas where smart objects have been used.
There are several design commonalities that could be extracted from these projects. In the
following these key characteristics are listed.

e The augmentation scopes for smart objects are not well defined. There are various
instrumentation choices for a smart object to afford a variety of services.

e Typically smart objects embedded with awareness technology are used to collect con-
text information in a transparent fashion, i.e., without compromising their physical prop-
erties and interaction metaphor.

e Most of the smart objects provide context information by locally processing sensor data,
i.e., shifting the perception algorithm to the source of data.

22 | Chapter 2: Background: Smart Object Systems

e For smart objects instrumented with an electronic tag, it is mandatory to have a sec-
ondary infrastructure that provides the communication foundation for smart objects to
share their situational awareness.

e Context information collected by smart objects are usually consumed by secondary ap-
plications and/or other smart objects. Some smart objects can consume their perceived
context information and can provide proactive actuation in a stand-alone fashion.

e The applications that run on smart objects are typically context-aware.

e Considering the spatial distribution of smart objects and applications that integrate
them, the system level characteristics (e.g., distribution, transparency, etc.) of a smart
object systems are similar to the philosophies of a typical distributed system.

Some smart objects are stand-alone where some are constituents of a larger system. Consid-
ering the modality of the smart objects, we can categorize these systems into some groups
for a better understanding of the requirement of a supportive framework. The next section
presents a classification of smart object systems.

2.4 Classification of Smart Object Systems

Smart objects may operate individually, or collectively to attain specific purposes. When
working collectively a network of smart objects is formed which is often referred to as a smart
object system?. Typically, in a smart object system, context-aware applications run atop a
single or multiple smart objects embedded with awareness technologies (sensors, actuators
and perception algorithms) where applications uses these objects to collect context informa-
tion or to perform some services that cause changes in the real world (e.g., adjusting the
air-conditioner based on sensed temperature). For some smart objects these applications
could be integrated into them so that they can run in isolation without requiring any infras-
tructure support. On the other hand, for application that use spatially distributed multiple
smart objects for their context-aware services an infrastructure is generally required. Hence-
forth, smart objects systems could be classified into following three categories as shown in
Figure 2.1.

1. Stand-alone Smart Objects: These are self contained smart objects independent of
any infrastructure and are capable of perception, reasoning and decision making au-
tonomously as shown in the category 1 of the Figure 2.1. The awareness technology
along with contecxt-aware services are typically embedded into the object per se. Ex-
amples are Smart Coffee Machine [Aitenbichler et al., 2007], commercial smart objects
from Ambient Device?, etc.

20ften the terms "smart object" and "smart object system" are used interchangeably.
3http://www.ambientdevices.com

Chapter 2: Background: Smart Object Systems | 23

Category 1 20 50 Stand-alone smart objects with
Stand-alone @ @ one or multiple functionalities

Smart Objects

Category 2 SO
Co-operative .
Smart Objects @

Co-operative smart objects, each
with one or multiple
functionalities

[ave | | aee | j [aee | | app | [aee]
ot Et;jt:crfsd [= J [= j i S0 50 50 Y(_so
OO WO/ I (b ()
One application uses only One application uses Multiple applications use multiple
one smart object with one or multiple smart objects each with smart objects each with one or
multiple functionalities one or multiple functionalities multiple functionalities

50: Smart Object, F: Functions, APP: Application

FIGURE 2.1: Classification of Smart Objects Systems

2. Co-operative Smart Objects: Smart objects that are capable of communicating with
peers to share their self awareness for taking autonomous actions collectively thus cre-
ating a co-operative ecology of smart objects. A secondary infrastructure is often used
in these types of systems. Co-operative smart objects are shown in the category 2 of
Figure 2.1. Cooperative artefacts [Strohbach et al., 2004] in the industrial work place is
an example of this class of smart objects.

3. Infra-structured Smart Objects: These smart objects are constituents of a larger system
and might not be able to work individually. Typically, one or multiple context-aware
applications integrate these objects into a proactive system utilizing a secondary infras-
tructure. There could be different use cases for infra-structured smart objects as shown
in the category 3 of the Figure 2.1.

e One application could use one smart object equipped with one or multiple aug-
mented functionalities. This type of smart object system is identical to stand-alone
smart objects except the fact that the application is independent of the smart ob-
ject and an infrastructure is used to snap the application into the smart object.
AwareMirror [Fujinami et al., 2005] is an example of this category of smart object
system.

e One application could use multiple smart objects equipped with one or multiple
augmented functionalities. Usually, applications are independent of the smart
objects and any suitable smart objects that could satisfy application requirements
could be used with the help of a suitable infrastructure. Examples of this class

24 | Chapter 2: Background: Smart Object Systems

of system include Ambient Gaming Project [Nakajima et al., 2008], Pleasurable
Smart Workspace [Kawsar et al., 2005], etc.

e Finally multiple applications could use multiple smart objects equipped with one
or multiple augmented functionalities. Similar to the previous category, in this
class of system applications are independent of the smart objects and any suitable
smart objects that meet application requirements are used utilizing a suitable in-
frastructure. Examples include intelligent office [Andreoli et al., 2003], intelligent
home [Helal et al., 2005], etc. equipped with multiple smart objects and applica-
tions.

This classification shows that majority of the smart object systems usually require a secondary
infrastructure for creating a synergy among its constituents, i.e., smart objects and applica-
tions.

2.5 Sensor Network and Smart Objects

Before moving to the next chapter, It is imperative to discuss the relation between smart ob-
jects and sensor networks. Wireless Sensor Networks (WSN) or shortly Sensor Networks are
composed of low-power, distributed, tiny embedded sensor nodes that are capable of col-
lecting and disseminating observations across large and remote physical environments and
are connected through self-healing, self-forming wireless networks with flexible topologies.
Sensor nodes are distributed through out the target environment either at random or as an
embodiment of physical objects. Due to limited resource, each sensor node is capable of only
a limited amount of computation. Usually there are a small number of gateway nodes in a
WSN that are responsible for streaming the sensor data off the network or for interrogating
the network state.

Considering smart objects are constructed with awareness technology (sensor, actuator, per-
ception algorithms), it could be easily concurred that the technology foundation for smart
objects and sensor networks is very identical. In fact, often smart objects are build by em-
bedding sensor nodes in everyday objects or even forming a small network within the object
itself depending on the complexity of the augmentation. However, there are four distinct
differences between smart objects and sensor networks. These are:

1. Each of the smart objects has an original established purpose and it retains that role
even after the augmentation. The instrumented feature of the object (e.g., sensing or
actuating) is its value addition. On the other hand, sensor network is dedicatedly built
for observing physical phenomena without any additional purposes.

2. Smart objects retain their original appearance and interaction metaphor. They are con-
ceptualized and manipulated by humans in terms of the object they are based on. A

Chapter 2: Background: Smart Object Systems | 25

sensor network, whereas, is not designed to be interacted with thus it is practically in-
visible to humans.

3. Typically each of the nodes in a sensor network is identical to other nodes and in most
of the the cases they all have same properties. Sensor nodes in the smart objects could
be similar but not identical and change from smart object to smart object significantly.

4. Finally, from the architectural perspective, a sensor network is dependent on its in-
frastructure completely for routing and data diffusion. However, as pointed out in the
earlier sections, a smart object could be stand-alone or co-operative in nature, thus ain-
frastructure is not compulsory for a smart object. Even for the cases when smart objects
become a component of an infrastructure, the emphasis is on the network discovery,
and exchange of services instead of routing and data diffusion.

2.6 Chapter Summary

This chapter introduced the notion of smart objects, its background and properties. Consid-
ering a number of contemporary definitions and design rationales, the definition of a smart
object was given with three cardinals: perceptual augmentation, device-centric situational
awareness and supplementary services. A few key properties of smart objects were high-
lighted in the light of the proposed definition. Then, a range of smart object projects in dif-
ferent application domains were discussed to extract the design commonalities across smart
object systems. These projects have given a deeper insight into different types of smart ob-
ject systems and their specific features. A number of issues have been learnt through these
projects including the characteristics of smart objects in different types of applications, in-
frastructure requirements, and modality of systems. Essentially, we have seen that the typi-
cal applications that run atop smart objects have the context-aware property. Furthermore,
the co-operative and infra-structured systems are very much identical to a typical distributed
system. These issues are very crucial for extracting the design requirements for building an
infrastructure for smart object systems.

Chapter 3

A Framework for Smart Object Systems

Chapter 3

A Framework for Smart Object Systems

The last chapter introduced the notion of smart object systems and discussed the specific
characteristics that they exhibit. A range of smart object systems were discussed in an attempt
to understand what features are common and useful across smart objects systems.

There are multiple design factors that need to be addressed while designing a framework for
smart object system. Each of the constituents of a smart object system (e.g., smart objects,
supporting infrastructure, and application) has its own design requirements. This chapter
looks at these design factors in detail. For the clarity of discussion these design issues are
divided into three parts. First, the chapter will discuss what are the specific design factors
that we need to consider while building a smart object and how those design considerations
can be reflected in the system through a suitable theoretical model. This will be followed
by the design requirements of a supporting infrastructure to build applications that leverage
smart objects to provide context aware services. Existing architectures in the literature will be
introduced to highlight their limitations in supporting smart object systems. Then the design
decisions for the conceptual framework will be presented. Finally, the chapter will look at
the required framework qualities to build user-centric systems and how these qualities are
accommodated in the proposed framework.

3.1 Design Issues for Smart Objects

The last chapter introduced a range of smart objects systems and their constituents smart
objects. A number of design considerations and classification of smart object system have
also been illustrated for providing a formidable understanding of the nature of smart ob-
ject systems. Considering the characteristics of smart objects, it could be implicated that the
smart objects pose several design challenges for constructing a theoretical model and design
methodologies that can be shared across multiple smart object systems. These design issues
are very crucial for the development of a system model that can be used to represent smart

27

28 | Chapter 3: A Framework for Smart Object Systems

objects. The following subsections will discuss these design issues and will follow up by pre-
senting the design decisions that are taken in this work.

3.1.1 Design Requirements for a Smart Object Model

The nature of smart object systems, deployed environment, and potential user base pose
the following five design requirements that need to be addressed for designing a theoretical

model for building generic smart objects.

1. Decoupling Smart Features: Any physical object - in whatever shape or size - has certain
affordances that affect how people use it. These affordances allow people to intuitively
come up with new ideas to augment the same object to provide different value added
services. This trend is observed in the object augmentation history by different research
groups as illustrated in the last chapter, e.g., the augmentation scopes of the smart ob-
jects are not well defined. In fact it is hard to confine the augmentation scope. Consider
Figure 3.1, depicting two ideal situations, a) a single everyday object capable of playing
multiple functional roles and b) multiple objects sharing an identical functional role. In
Figure 3.1(a) we have a smart table providing two supplementary functions: an ambient
display and a proximity detector. In Figure 3.1(b) we have a mirror whose display func-
tionality can be triggered by any of the three smart objects, e.g., a toothbrush, a comb
or a razor. The suitable augmentation of these objects depends on the underpinned
scenario, regardless of the multiple functionalities that can be afforded. Thus an im-
portant design challenge is to model smart object in a way that enables these smart
objects to play different roles while retaining their original usage. Smart objects should
be designed in a generic manner such that the smart features are independent of the
physical object. It should be possible to apply the same feature in multiple physical
objects.

2. Service Unification - Sensing and Actuating: In the last chapter we have seen that typ-
ically smart objects are used to collect context information by embedding suitable sen-
sors. In most cases smart objects contain the processing unit to run the perception
algorithm to generate context information out of raw sensor data. Also, many smart
objects are used to push the environment states via actuation either utilizing their own
sensed context information or by external applications that integrate them. So smart
objects usually can do both: sense the physical phenomenon (pull) and actuate to cause
the phenomenon (push). This is a crucial design factor for developing a theoretical
model for smart objects and corresponding programming abstractions for the devel-
opers. From a system perspective, it is imperative to provide a unified notion of smart
object features that can represent both sensing and actuating capabilities.

Chapter 3: A Framework for Smart Object Systems | 29

~

\ - Ambient Display —
\ Application A

{ ApplicationB)
Proximity Detector

(a)

B candidate

‘ Artefacts

(b)

FIGURE 3.1: A single artefact with multiple roles and multiple artefacts with similar
roles

3. Reusability: One of the reasons that limits smart object research with in laboratory
prototypes is the ad-hoc design process that designers apply to build their smart ob-
jects. As a result, it is very difficult to reproduce the same smart object in a differ-
ent setup. Consider Figure 3.2 that depicts some of the smart objects we have seen
in the literature like Mediacup [Beigl et al., 2001], Ambient Umbrella', Music Bottles
[Ishii., 2004], AwareMirror [Fujinami et al., 2005], Intelligent Spoon?, Smart Furniture
[Tokuda et al., 2004] etc. Unfortunately, none of these smart objects are capable of
interacting with each other on the go, and cannot be integrated into one common ap-
plication without special care. The design practices of one project are rarely carried over
to the next. Thus one fundamental design challenge is to provide a design methodology
along with a system model that could be used by various research projects to construct
smart objects that are reusable in other projects. This has to be both from augmenta-

tion and system perspectives.

4. Plug and Play: Smart objects are the augmented versions of physical objects and these
physical objects are typically ready to use from the outset. It is important to ensure
that smart objects are developed in the similar fashion. Ideally, a user should buy a
smart object, bring it home, power it up (if necessary) and it should immediately serve
him/her. In the last chapter, we have seen three kinds of smart objects, while stand-
alone smart object could be designed to exhibit such plug and play capability, it poses
significant engineering challenges to enable co-operative and infra-structured smart ob-
jects to support plug and play feature.

 http://www.ambientdevices.com
Zhttp://www.media.mit.edu/ci/projects/intelligentspoon.html

30 | Chapter3: A Framework for Smart Object Systems

(Mediacup) (Ambient Umbrella) (Music Bottles)

- =

(Intelligent Spoon) (AwareMirror) (Smart Furniture)

FIGURE 3.2: Prototype smart objects from various research projects

5. Incremental Deployment and Extension: Smart objects are basically part of our envi-
ronment. Typically we incrementally organize our physical environment with furniture
and appliances according to our preferences and styles. Previous studies have shown
how end-users continuously reconfigure their homes and technologies within it to meet
their demands [O'Brien et al., 1999, Rodden and Benford, 2003]. To support the evolu-
tionary nature of physical spaces it is essential that smart objects can be deployed and
extended incrementally. As argued in the first chapter, ideally this deployment and ex-
tension tasks should be carried out by the end-users. Thus it is very important to con-
sider the design issues for smart objects so that they can support such incremental de-
ployment and extension. This challenge is further extrapolated if we consider the Do-It-
Youself (DIY) approach that are popular to a specific user base. Recently, many users are
engaged in constructing their furniture by themselves. Commercial vendors like IKEA3
actively support this practice. Some researchers have also investigated how such end-
user involvement in furniture construction can be supported [Antifakos et al., 2002] by
providing proactive guidelines. It can be concurred that in the future, end-users will
be involved in constructing smart objects in the similar fashion. So, it is imperative to
develop system model and design methodologies for smart objects taking deployment
and evolution aspects into account.

Based on the above discussion, it can be said that a theoretical model is needed to provide
foundation that enables developing -

e Smart objects that are capable of hosting multiple smart features while decoupling the
augmented smart features from its original purpose.

e Smart objects that can both sense to pull and actuate to push environment phenomena.

3http://www.ikea.com

Chapter 3: A Framework for Smart Object Systems | 31

e Smart objects that are reusable.
e Smart objects that are plug and play.

e Smart objects that are incrementally deployable and extensible.

3.1.2 Related Work on Smart Object Model

Chapter 2 introduced a range of smart object systems existing in the literature. As discussed
all of these works have taken an application oriented approach and have constructed the con-
stituent smart objects in an ad-hoc fashion without focusing on building a common model
for representing smart objects. For example, in the Mediacup[Beigl et al., 2001] project, a
regular coffee cup was instrumented to provide the state of the cup as context information.
Although the Mediacup project and its succeeding Smartlts [Gellersen et al., 2004] provided
solid insight into the augmentation of physical artefacts with sensing and processing, they
did not provide any generic representation model that can enable smart object to be usable
with any general purpose applications. Furthermore, they did not consider the requirements
presented above. MIT's "Things That Think" initiative* similarly prototyped several applica-
tions with instrumented objects but unfortunately their smart objects are tighly coupled with
specific applications, making them hard to reuse in other applications. Tokuda and his group
introduced Smart Furniture and u-Textures to build custom furniture [Tokuda et al., 2004],
however their approach is also closed and tightly coupled with their underlying scenarios. The
same is true for other projects in this area where various objects are augmented for provid-
ing value added functionalities [Strohbach et al., 2004]. These objects work fine in a specific
scenario, however this assumption of scenario specific objects leads to a close development
model, thus inhibiting these instrumented objects to be reused in other applications in a plug
and play fashion. Interestingly, there has been very little work in the literature that addresses
the deployment and extension issues for smart objects.

From an application's component point of view, there are several context-aware system in-
frastructures that tries to model smart objects as context provider or actuator. We will discuss
these system infrastructures in detail in the later part of this chapter. At this point it can be
emphasized that none of those architectures (as we will see) considered all five design re-
quirements presented above. These infrastructures focus on representing smart objects as
application components and model those objects in their domain specific way, regardless of
the characteristics and properties of smart objects [Dey et al., 2001, Sousa and Garlan, 2002,
Roman et al., 2002, Brumittet et al., 2000, Fox et al., 2000]. For example Context Toolkit pro-
vide a widget notion to encapsulate smart objects [Dey et al., 2001]. Although widgets are
reusable, they are not capable of hosting augmented features in a plug and play manner.
Adding a new feature to an existing smart object requires regeneration of the widget. Thus
it can not satisfy the design requirements presented in the previous section. Nevertheless,

*http://ttt.media.mit.edu/

32 | Chapter 3: A Framework for Smart Object Systems

these infrastructures are not predominantly written for smart object systems, thus it would
be fair to say that the specific requirements for a common smart object model were not con-
sidered in these systems.

3.1.3 A Core-Cloud Theoretical Model for Smart Objects

Section 3.1.1 introduced five design requirements that are essential to build smart objects
and to integrate smart objects in applications. All these requirements are system related and
a suitable model that can reflect these features must be generic enough to be ported across
a range of systems. The design requirements essentially signify that objects' intelligence can
not be confined strictly and smart features must be decoupled from the underlying physical
object. Additionally, these features should be unified in a way that can be reproduced and
reused with other semantically identical smart objects. Furthermore, these features should
be plug and play, i.e., should enable one to attach a feature to an object freely.

Looking at the properties of smart objects (introduced in Section 2.2.2 of Chapter 2), it can be
concurred that all objects do share some common features. A suitable smart object should
decouple distinctive smart features from these common features. Accordingly, in this work,
a core-cloud model is developed where the common features of smart objects are combined
together in a core that acts as a runtime for supporting the smart features of the objects.
These smart features are designed in way that can be freely added to the core without con-
sidering the syntactic or semantic heterogeneity. Each smart feature is called a service profile
in this model. Recalling the definition of smart objects from Chapter 2, these service profiles
typically include capability of sharing an object's situational awareness and state of use; sup-
porting proactive and reactive information delivery, actuation and adaptive state transition.
A single or a group of service profiles are combined together to form a cloud around the core.

To make a smart object plug and play, it is essential that the service profiles can be plugged in
to the core spontaneously. Furthermore, this attachment of profiles into the core should be
time independent, i.e., a profile can plugged into the core of a smart object at anytime. This is
very crucial to support the extensible design requirement of a smart object. Furthermore, if a
service profile can be built in this fashion, then it can be reused with other smart objects that
are suitable for the profile. Since there is no dedicated dependency between the cloud and
the core, this design allows to decouple smart features (service profiles) from the underlying
objects completely.

Consequently, the core-cloud model in context follows a plug-in architecture, whereas the
core is a generic runtime binary present in every smart object and any cloud (one or multiple
service profiles) can be plugged into the core. A service profile is also packaged as a generic
binary and can be attached to a core dynamically. Figure 3.3, depicts the conceptual core-
cloud model for a smart object.

Chapter 3: A Framework for Smart Object Systems | 33

E g Core part of the model is common
to all smart objects and provides

the runtime and hosts one or

multiple smart features as clouds.

Cloud consists of the smart
features that run atop the Core.
Cloud can contain one or multiple
smart features.

Feature is the augmented smart
capability that a physical object
can provide. A single feature or a
group of features form the cloud
and plugged into the core.

FIGURE 3.3: Core-Cloud Model for Smart Objects

The core contains the basic features that are generally common among the smart objects
including

e Communication Module: It enables a smart object to communicate with the external
world (peers and applications). Each smart object implements a communication proto-
col, e.g., IEEE 802.11x, Bluetooth etc.

e Notification Module: It enables a smart object to provide perceptual feedback of its
internal states.

e Static Memory: A local memory that is available to support stateful smart objects.

e Client Handler: A common service interface for external entities interested in smart
objects' services. It delegates the requests to appropriate profiles.

e Profile Repository: The plug-in runtime that hosts the service profiles as clouds.

Cloud is a combination of the multiple features (services) that can be afforded from an object.
From a designer's point of view, this cloud based approach gives us the liberty to make the
smart object design independent of its perceived affordances.

This simple design approach to model smart objects elegantly satisfies the five design require-
ments presented in section 3.1.1. By decoupling service profiles from the core, this model
allows the development of smart objects that can play different role at different application
context. Two identical physical objects can provide different functionalities if they are built
with different service profiles. On the other hand two different physical objects can provide
identical functionalities if they are built with same profiles. In addition, the cloud notion allows

34 | Chapter 3: A Framework for Smart Object Systems

a smart object to provide multiple features by hosting multiple profiles. This design solves the
absence of design rationale and reusability issues i.e., the core can be shared among multiple
smart objects where as the clouds are scenario dependent thus allowing developers to build
specialized smart objects. Each service profile is independent of the runtime core, and pack-
aged as a generic binary. This enables reusing the same profile implementation in multiple
smart objects. The generic binary attribute also makes a smart object plug and play. Since
there is no dedicated dependency, a smart object can be deployed independent of its service
profiles. Furthermore, service profiles can added to the smart object incrementally due to
the dynamic snapping feature of this model. A by product of these design decisions is the
support for incremental deployment and extension. A smart object can be initially deployed
with or without smart features and can later be extended by adding suitable profiles. This
model also gives us a cleaner programming abstraction for building stand-alone, co-operaive
or infra-structured smart objects as we will see in the later sections. Please, note that, this
model can be applied to all class of the smart object systems that have been introduced in
section 2.4. Chapter 4 will discuss the detail implementation issues of this core-cloud model
and will explain how this model fits elegantly with the rest of the framework in context and
allows building various classes of smart object systems.

3.2 Design Issues for a Smart Object System Infrastructure

Typically applications that run on the smart objects are proactive, and are similar to the philoso-
phies of context-aware applications [Dey et al., 2001]. Thereby, these applications run atop
distributed smart objects embedded with awareness technologies (sensors, actuators and
perception algorithms) where applications uses these objects to collect context information
or to perform some services that cause changes in the real world (e.g., adjusting the air-
conditioner based on sensed temperature) including adaptation of their own behaviors. For
stand-alone and co-operative smart objects, context-aware applications are usually integrated
into the object per se where as for infra-structured smart objects, context-aware applications
utilize spatially distributed smart objects.

A context-aware application that run atop or within smart objects usually consists of the fol-
lowing components:

e Basic Application Component: This component takes care of the basic application be-
havior, e.g., application logic, interfaces, etc.

e Communication Component: This component manages the access to smart objects
and utilization of their services. Typical functions performed by this component include
locating, managing, configuring and interacting with the smart objects. Different smart
objects may have different communication and data protocols. It is the communication
component that handles this heterogeneity and provides application with an unified

access.

Chapter 3: A Framework for Smart Object Systems | 35

e Perception and Adaptation Component: This is where application handles the context
data derived from the smart objects by applying application specific context reasoning
and modeling policies. Applications use this context information to adapt application
behavior accordingly and to further interact with the smart objects via communication
component to actuate smart object services.

Although the first component is entirely application dependent, the last two components are
recurrent and usually supported by a suitable infrastructure. Typically, such infrastructure
handles the access issues by providing a discovery mechanism and provides Application Pro-
gramming Interface (API) to interact with the smart objects transparently, and there by tries
to separate the application from the underlying components (smart objects in this case). Such
interactions typically include but not limited to:

e Data Dissemination, Aggregation and Interpretation: Infrastructure provides applica-
tions with appropriate support for accessing smart objects' data, aggregate and inter-
pret them following application logic in either or both asynchronous (Event based sub-
scription) and synchronous (Polling) communication modes.

e Service Actuation: Infrastructure provides applications with appropriate support for
executing smart objects' services.

e Configuration: Infrastructure is expected to provide applications with the support of
configuring smart objects.

For supporting these interactions a typical smart object system infrastructure provides suit-
able programming model through appropriate abstractions. Considering the constituents of a
smart object system (e.g., smart objects and applications) are distributed in a physical space,
the characteristics and utilization pattern of a smart object system is similar to the philoso-
phies of encapsulation and reuse behind component based frameworks, e.g., Component Ob-
ject Model (COM) [Iseminger, 2000], Java Beans [Englander, 1997] as well as more network
friendly descendants like DCOM [Krieger and Adler, 1998], CORBA [Mowbray and Zahavi, 1995]
or Jini/EJB [Waldo, 1999, Monson-Haefel, 2001]. Thus many architectural issues related to
distributed component systems are applicable to smart object systems. In addition the highly
dynamic, heterogenous and fluid nature of smart environments put significant challenges for
designing a suitable framework.

3.2.1 Design Requirement for a Smart Object System Infrastructure

The characteristics of smart object systems raise a number of important architectural ques-
tions: how can we build application and smart objects for such dynamic environment? how
can we build context-aware applications to manipulate smart objects with no prior knowl-
edge? how can we manage those unknown smart objects? In the following these design
challenges are summarized.

36

Chapter 3: A Framework for Smart Object Systems

. Heterogeneity: Each of the smart objects might have different interfaces and might

implement different protocols, even semantically same smart objects (e.g. two smart
chairs from two different manufacturers) might be heterogenous from implementation
point of view. It is obvious that to proliferate smart object systems, application has to
be written independently without considering which smart object from which manu-
facturer will be used in the application. We can not expect an application to be written
with prior knowledge of all of the myriad sort of smart objects of different types that
it may encounter. The range of possibilities is simply too large and it is impossible to
consider all smart objects during the development period.

. Augmentation Variation of Smart Objects: Section 3.1.1 discussed that augmentation

of smart objects greatly varies. A single everyday object can provide multiple services
and multiple smart objects can provide identical services with different granularities.
Thus it is not possible to classify smart objects by object type. This is particularly im-
portant as this emphasizes that defining standard interfaces for smart object is not a

feasible solution.

. Management of Smart Object: In a conventional component framework applications

are responsible for managing (locating/spawnning/etc.) the components locally, i.e.,
applications needs to know the access and configuration semantics. Keeping such func-
tionalities at the level of application complicates the development process. Further-
more, for a dynamic environment like the one where a typical smart object system
runs, it makes very difficult for application to adapt to the smart objects that change

for mobility purpose or fail.

. Evolution of Smart Object System: Unlike the conventional distributed component sys-

tems where applications typically reside in the digital world, smart object systems are
deployed in the real world, i.e., our living spaces. An essential property of our living
space is its evolutionary nature and receptibility to continual change. To support the
evolutionary nature of the real world it is essential that smart object systems support
incremental evolution. It is necessary to have suitable programming abstraction that
will allow developers to extend smart object systems' functionalities in an incremental

fashion, ideally involving end-users.

. Effective Programming Model with Suitable Abstraction: In addition to the above fun-

damental design challenges, a suitable infrastructure for smart object system should
provide application developers with appropriate support for interacting with the smart
objects, i.e., collecting context information and/or executing services. A typical infras-
tructure provides this support through appropriate programming model with effective
abstractions that hides heterogeneity, provides transparent communication and allows
portability of the applications. Furthermore, the abstraction should allow the develop-

ers to extend the applications when needed.

Chapter 3: A Framework for Smart Object Systems | 37

3.2.2 Existing Support for a Smart Object System Infrastructure

The previous section introduced several design requirements of a supporting infrastructure
for building smart object systems. This section will put the spotlight on existing system in-
frastructures intended for context-aware computing, home computing, or other relevant do-
mains. It is natural that many of the features of the framework presented in this work are
leveraged off the architectures that preceded it. However, these infrastructures are not de-
signed explicitly for supporting smart object systems. Consequently, their support for building
smart objects systems are not adequate. Those limitations of existing infrastructures will be
discussed in the context of smart object systems which in turn provides the basis for pre-
senting a conceptual framework for building smart objects system adhering the design re-
guirements presented in the earlier sections. For the sake of clarity, the section will begin by
looking at the three basic architectural models as categorized by Winograd [Winograd, 2001]:
a widget model, a client-server model and a blackboard model. Most of the existing architec-
tures followed one of these models as their primary design principle. After discussing these
models and their tradeoffs, existing infrastructures will be presented.

3.2.2.1 Three Models of Architecture

A number of architectural models have been proposed in the literature for integrating dis-
tributed and inter-operating components in the context of context-aware computing, home
computing, collaborative systems and relevant domains. Winograd [Winograd, 2001] catego-
rized these models into three distinctive groups: a widget model, a client-server model and a
blackboard model. In the following these models are presented.

1. Widget Model: The widget model is adapted from the architecture of Graphical User
Interface (GUI) and identical to the notion of a device driver. It encapsulates a specific
component and provides high level abstraction using which an application can utilize
the resource though a central widget manager. A typical example of such widget is a
scroll bar of GUI that provides one dimensional position information to the application
along with some control signals abstracting the real hardware (e.g., a mouse). The in-
teraction among the applications and the underlying components are implemented in
terms of messages and callbacks. In this model, the applications are responsible for
component management (e.g., locating, spawning etc.) locally. Although such tight
coupling is efficient for a smaller scale application, it leads to complex configuration
and less robustness as the system component grows. The Context Toolkit by Dey et al.
[Dey et al., 2001] adopts this model in the context of context-aware computing.

2. Client-Server Model: The client-server model is more loosely structured where the
high-level service components are independent communicating entities. This model
is the backbone of the development of Internet-based softwares, where the client and

38 | Chapter 3: A Framework for Smart Object Systems

server reside at different network locations and communicates through Internet pro-
tocols. There is no central manager in this model and each component independently
manages its own connections, messages, failures, and so forth. This introduce the need
for resource discovery and uniform access mechanism, i.e. a client needs to find the
location of the appropriate service and the appropriate mechanism to access the ser-
vice. Although the cost of discovery and independent access mechanism makes this
model complex, it is more robust and easier to configure as each components is in-
dependent. In addition this model has a number of advantages over widget model
[Hong and Landay, 2001]. First, the platform independency of this model allows a wide
variety of clients to access a wide variety of service components. Second, the isola-
tion and independency of the components allow them to evolve gradually and mainte-
nance become easier. Third, the client-server approach enables sharing of component
services across multiple applications and devices.

3. Blackboard Model: The blackboard model takes a data-centric approach and provides
a common shared message board for the distributed components that are part of the
system to post messages and to receive the same using suitable callbacks. The nu-
cleus of blackboard model is the pattern matching technique and it varies from system
to system. All communication in a blackboard system goes through a centralized server
that applies pattern matching algorithms to route messages to appropriate subscribers.
Blackboard model has a long history in the artificial intelligence research. One of the
common approaches used by various systems relevant to smart objects systems is tuple
based blackboard that was introduced in Linda language [Gelernter, 1985]. The primary
advantages of the blackboard model are its simplicity and unified access mechanism.
The loose coupling among the components of a blackboard model enables the addition
and removal of component without any side effect. However, this model forces the par-
ticipating components to use a generic message structure regardless of their underlying
protocols and also suffers from communication efficiency.

There are a number of frameworks in the literature that provides support for building appli-
cations for pervasive environment. Considering the design requirements presented earlier
in this chapter, these infrastructures will be discussed from two perspectives: infrastructures
that were meant for device integration and infrastructures for pervasive computing in general.

3.2.2.2 Distributed Component and Device Integration Infrastructures

A range of systems have been proposed in the literature that provides distributed component
and device integration mechanisms. Some significant ones are discussed here.

DCOM and CORBA The challenge of heterogeneity is typically handled by existing frame-
works using interface standardization [Krieger and Adler, 1998, Mowbray and Zahavi, 1995].

Chapter 3: A Framework for Smart Object Systems | 39

A programmer writes a small software to interact with a specific component / device, e.g., a
networked printer. Any application can use the printer using this small software, as long as
both the components (printer component, and application) agree beforehand on exactly how
components will communicate with each other and the application manages this interaction
locally. If the application functionlity is extended to use another device, or the same device is
replaced by a new one then the application must be rewritten to interact with the new device

component.

UPnP and Jini On a more lower granularity level, UPnP> defines a standard set of pro-
tocols for specific device types (e.g., audio/vedio devices) for interoperability where as Jini
[Waldo, 1999] describes devices using interface description and language APIs allowing appli-
cations to utilize those interfaces. However, application that leverages these devices' services
still needs to know the interfaces, and any change at the device end causes the application
to fail. This is further complicated considering the nature of smart objects as mentioned ear-
lier. Itis very difficult to standardize the protocols for smart objects considering their diversity.
Furthermore, these infrastructures focus primarily on the developers rather than the eventual
users, consequently their support for user-centric system evolution is limited. For example, it
is hard to add features in an existing smart objects and using that feature immediately in the
application with these infrastructures.

SpeakEasy SpeakEasy [Edwards et al., 2002] utilizes mobile code to dynamically download
the heterogenous component interfaces at application ends. In this approach, mobile codes
(typed data streams and services) are exchanged among heterogeneous devices to create an
interoperable environment. End-users are assumed to have the knowledge about composi-
tion and considered to be the final arbitrator. The semantic mapping of devices is done by
the user considering the real world constrains and context. Devices and services must pro-
vide enough infromation about themselves in a human understandable form to let the users
connect the devices together using the infrastrcture. Generic applications are still need to be
written with the awarenss of the interfaces. SpeakEasy's primary focus is on service compo-
sition, so its design does not address issues like representation of smart objects, collection of
context, unified access, incremental extension of services etc. Moreover, such mobile code
based approaches are impractical considering the nature of the smart object systems, for ev-
ery new smart object an application encounters, it would need to download new codes, even

for components that are semantically same.

XWeb XWeb [Olsen et al., 2001] is one of the architectures that influenced this work signifi-
cantly. It uses a simple protocol and data format for connecting arbitrary devices. Every device
exposes an XML file to describe itself. These device states are accessible to other devices that
can speak XWeb protocol, and accordingly they can request XWeb to perform operations on

>Universal Plug and Play - http://www.upnp.org

40 | Chapter 3: A Framework for Smart Object Systems

each other. From an abstract point of view, XWeb can be seen as a logical extension of HTTP
for devices. The major advantage of XWeb is its simplicity. However, X\Web does not specify
how the XML files and the underlying physical resource are connected, and how the entire
system works together. In addition they did not consider the smart object system specific
issues as discussed in the earlier sections.

PatchPanel Patch Panel [Ballagas et al., 2004] is a programming tool that provides a generic
set of mechanisms for translating incoming events to outgoing events using EventHeap com-
munication platform [Johanson et al., 2002]. It allows new applications to leverage the ser-
vices of existing components. As we will see the proposed approach is close to Patch Panel as
the framework in context also seeks to support incremental integration. However, the pro-
posed framework exploits a document-based approach that enables incremental addition of
features to both smart objects and applications.

InterPlay InterPlay [Messer et al., 2006] is a home A/V device composition middleware and
uses pseudo sentences to capture user intent, which is converted into a higher level descrip-
tion of user tasks. These tasks are mapped to underlying devices that are expressed using
device description. InterPlay's overall design philosophy is very similar to the framework in
context from the spontaneous federation point of view. However, it does not address the
smart object representation and extension issues. Also, the application development support
is not clearly mentioned.

3.2.2.3 Pervasive Computing Middlewares

A range of middlewares for pervasive systems and context-aware computing are investigated
in the literature. In the following these systems are introduced and their supports for smart
object systems are discussed.

Schilit's System Architecture Schilit presented a system architecture In his Ph.D. thesis for
supporting the development of context-aware mobile computing application [Schilit, 1995].
This is one of pioneer works that stimulated context aware application development. Schilit
and his colleagues have developed numerous context aware applications in Xerox PARC that
inspired the community as whole to focus on context aware applications. Schilit's system deals
with the context awareness by Device Agents that maintain the status and the capabilities of
the devices, User Agents that maintain the user policies and Active Maps that maintain the
location information of the devices and the users. However, the system does not consider de-
vice (smart object in the current framework context) representation issues, i.e., that is how a
smart object can be constructed to provide a specific features. Also, because of the tight cou-
pling between context and device agents in the architecture, it is difficult to add new devices
with new capability limiting the extensibility of a system.

Chapter 3: A Framework for Smart Object Systems | 41

Context Toolkit Context Toolkit [Dey et al., 2001] focuses on the component abstraction by
providing the notion of Context Widget and Context Aggregator. Discoverer manages these
components and additionally there is a Context Interpreter component that performs the task
of context interpretation. Context Toolkit provides very low-level abstraction. The developer
needs to provide the details about the context source like location, port etc. Moreover, the
application is inherently dependent on the framework as the application is tightly coupled
with the architecture components like interpreters, aggregators etc. The primary problem
of Context Toolkit in the light of smart object system is the scope of Context Widget that
follows a one-to-one mapping, thus if a smart object provides multiple functionalities, for each
functions we need a new widget. On the other hand, objects that can actuate are represented
by a service model. Thus for a smart object that can both sense and actuate, we need two
different programming abstractions, widget and service. Furthermore, such widgets are not
capable of hosting augmented features in a plug and play manner. Adding a new feature to an
existing smart object requires regeneration of the widget. This limits the extension of smart
object services or leveraging new services using existing abstractions. Also, the management
of widgets is handled at the application level in the Context Toolkit which complicates the
development process and hinders the extension of applications and/or smart objects.

Technology for Enabling Awareness The Technology for Enabling Awareness (TEA) project
looks at how to provide context awareness to personal mobile devices [Schmidt et al., 1999a].
It follows a 3-layer architecture composed of a sensor layer - responsible for managing the raw
sensors (both physical and logical), a cue layer- responsible for providing abstraction from raw
sensor data (i.e., features) and finally a context layer - responsible for representing context by
fusing multiple cues. Applications can interact with the context layer to gather context infor-
mation to provide proactive services or to adapt their own behaviors. Although, this simple
architecture provides clear separation of concerns, there is limited support for application
developers to specify their requirements. In addition the developers need to manage the
interactions with TEA infrastructure locally at the application level which makes application
development and extension complicated.

Gaia Gaia is [Roman et al., 2002] meta operating system and its design philosophy is cen-
tered around the concept of Active Space that is capable of knowing all the avaialbe resources
and providing services to users in a contextual manner. Gaia is composed of five components.
An Event Manager that tracks all the events of the system, e.g., applications startup, users
entering etc. A Context Service based on first order logic that represents contexts and runs
always to capture the context of the environment. A Presence Service that can identify the
presence of an entity, i.e., human and objects using tag based recognition. A Space Reposi-
tory that is the registry of all the available devices in the environment. Finally a Context File
System that stores data with context (e.g., location, identity, etc.) based index. Gaia also spec-
ifies its own application framework based on MVC pattern [Krasner and Pope, 1998], where
each component is mapped to one or muliple underlying devices. A scriping language called

42 | Chapter 3: A Framework for Smart Object Systems

LuaOrb is provided to express the application requirement. Although, Gaia has covered a lot
of design requirements of pervasive systems, its primary shortcoming in the context of smart
object system is its device representation mechanism that is not suitable for wrapping a smart
object. In addition, the tight coupling among the applications and the underlying framework
makes it very difficult to port and extend applications or underlying components.

Aura The Aura architecture is built on the concept of user centric task to support mobile
users i.e., a task with all its resources and files can follow a user [Sousa and Garlan, 2002]. En-
vironment services can be dynamically loaded based on task requirement and can be adapted
to dyncamic changes e.g., sudden badwidth drop. The architecture is composed of four pri-
mary components. A Task Manager called Prism is the repository of all user tasks and provides
definition of tasks. These definitions are used by the other components to follow a user in con-
text. A Context Observer component is responsible for detecting context related to user and
physical environment. An Environment Manager is responsible for the registration of services,
for handling the task migration and for binding resources to a task dynamically. Finally the Ser-
vice Suppliers that are wrapped using predefined APIs to provide services of different types.
Example of services are text editing service, e.g., word, emacs etc. Like Gaia project men-
tioned above, Aura also approached to provide a generic platform for pervasive computing.
However, many technical aspects are not addressed in the project, e.g., how to handle smart
objects, how to handle heterogeneity of devices, how to build generic portable applications,
etc.

iROS Standford's Interactive Room Operating Systems (iROS) adopted a blackboard archi-
tecture to integrate multiple devices for multiple users in a shared physical space with defined
scope [Fox et al., 2000, Johanson et al., 2002]. The iROS is composed of three sub-systems:
Data Heap, iCrafter and Event Heap. Data Heap is responsible for moving data, and allows
any application to place data associated with the local environment. Event Heap is the un-
derlying communication infrastructure for applications within the interactive workspace. It
also provides the dynamic application co-ordination. Event Heap uses T-Spaces and provides
faster distribution of event tuples. iCrafter provides a system for service advertisement and
invocation, along with a user interface generator for services. The design philosophy of iROS
project, specially the two layers of blackboard as Event Heap and Data Heap are very close to
the design decision taken in this work. As explained in the earlier part of the chapter that such
blackboard approach provides a significant advantage from application development perspec-
tive due to the access and utilization unification. However, the iROS project did not address
the device representation issues that is very crucial for building smart object systems.

Java Context Aware Framework JCAF [Bardram, 2005] is Java based architecture following
the pattern of J2EE for context aware domain. It is mainly composed of two components,
context service and context client. Context service is analogous to J2EE server where context

Chapter 3: A Framework for Smart Object Systems | 43

client is analogous to J2EE servlet notion. Each context service encapsulates context infor-
mation while providing interfaces for its clients. It also has a security component to protect
the services. The architecture does not address the smart object specific design concerns,
e.g., providing a suitable representation model for reusable and extensible smart objects etc.
Also, there is no specification about how to handle the heterogeneity of the underlying con-
text sources while providing unified abstraction.

Sentient Computing The Sentient Computing project [Addlesee et al., 2001] utilizes Active
Bat location system to provide an architectural base for indoor applications exploiting a world
model. All location information is stored in a central database, which is used as the base for
providing generic services for application developers. However, they have only used location
predominantly as context information in their system. The major goal of this project was
to provide a virtual world model of the underlying physical world manipulating the location
information. Because of this specific focus many design concerns related to the smart object
systems are not addressed in this project.

HP CoolTown HP Cool Town [Deborah and Debaty, 2000] encapsulates the world by pro-
viding web presence of places, people and things. It enables interaction with these entities
primarily exploiting RF technology. Each entity is represented by its own website which is
updated automatically based on changes in the physical world. However, CoolTown is not
developed for supporting general context aware applications thus limiting its applicability in
smart object systems.

Easy Living The Easy living [Brumittet et al., 2000] research project is initiated to investigate
a suitable architecture for smart spaces that will support coherent user experiences as users
interact with a variety of the devices. The project utilizes a middleware called "InConcert"
that encapsulates the underlying devices and represents it in the application. In the process
of representation, it models the underlying real world thus associating the users with nearby
available devices for just-in-time service provision. There is partial support for context spec-
ification in the application space. Easy Living does not address reusable and plug and play
smart object representation, programming abstractions for application developers, unified
access mechanisms etc.

Stick-e Note The Stick-e Notes system [Brown, 1996] is an interesting work that provides
simple semantics for writing rules that specify what action to perform based on the acquired
context, mainly focusing on non-programmers to author context aware services. These rules
specify what actions to take when a particular combination of context is realized. However, it
is not clear how the context information is extracted or what sort of abstraction is provided
to hide the detail of context sources, i.e., smart objects.

44 | Chapter 3: A Framework for Smart Object Systems

Context Fabric Context Fabric [Hong and Landay, 2004] is an architecture that primarily fo-
cuses on privacy protection. Its objective is to assist the application developers to manage
the privacy of context information. Mainly location privacy is depicted in this work although
the approach can be extended to cover any context information that are privacy sensitive.
The architecture is composed of three data model - InfoSpace Server, InfoSpace and Context
Tuple analogous to Web Server, Website and Webpage notion of Internet technology. Each
user has his/her own InfoSpace where his/her personal information is collected and located.
This information is only shared with other InfoSpaces that are approved by the user. This
sharing follows a hierarchical manner, i.e., the user can explicitly specify the level up to which
he/she wants to share his/her information for contextual service provision. This work is the
first architecture that primarily focuses on client end security and data protection. However,
the detail of several system related issues like device representation, access mechanism, dis-
tribution etc. are not clear. So it cannot be said what system related functionalities it provides
beyond managing client end security.

3.2.3 Drawbacks of Current Approaches

The last section looked at several middlewares that provide infrastructure support for various
aspects of mobile and ubiquitous computing. However, this work argues that these platforms
can not fully accommodate the required features for smart object systems. In the following
the drawbacks of these systems are summarized in the context of a smart object system:

1. Tightly Coupled Presentation of Smart Object: Many existing infrastructures provide
widgets or device proxies to encapsulate smart object features. These component rep-
resentations are not capable of hosting multiple augmented features or do not allow
incremental addition of features to a smart object. Adding a new feature to an existing
object requires generation of a new device proxy or widget. This solution is inadequate
and impractical because for one physical object, we might end up in multiple compo-
nent representation, one for each augmented features. In addition they do not consider
the five design requirements essential for representing a smart object as discussed ear-
lier in this chapter. Thus it is not possible to develop reusable, extensible, plug and play
smart objects using these infrastructures.

2. Smart Object Management: Existing infrastructures typically specify their application
development processes strictly. These middlewares usually provide end-to-end support
for application developers. A range of API specification is provided to the developers
to perform the smart object management (e.g., locating, spawning, configuring, etc.)
and thereby to deal with the heterogeneity at the application level i.e., smart objects
are encapsulated into wrappers and an array of APls is provided to the applications
to manipulate them. Handling these issues at the application scope complicates the
application development process and makes the applications and smart objects virtually
incompatible in other environments.

Chapter 3: A Framework for Smart Object Systems | 45

3. Abstruse Programming Abstraction: Programming abstraction in the existing middle-
wares [Sousa and Garlan, 2002, Roman et al., 2002, Fox et al., 2000] is oriented to con-
text [Dey, 2001] predominantly. Actuation functions are often presented as actions of
infrastructure services. Thus to represent a smart objects that can provide context and
as well as perform some actions requires multiple programming abstractions (e.g., con-
text and service). This causes confusion in building applications with smart objects.

4. Inadequate Infrastructure Support: In chapter 2, three classes of smart object sys-
tems were presented. Although the infra-structured smart object systems could be sup-
ported by existing infrastructures discussed in the last section by providing a wrapper
that is tightly glued with the rest of the infrastructure, they have no clean support for
stand-alone or co-operative smart object systems with a single or multiple built-in func-
tions. Smart objects can not be accommodated natively as stand-alone objects and/or
co-operative objects in these infrastructure environments without special care.

5. Inadequate Support for Smart Object System Evolution: A byproduct of the above de-
ficiencies resulted in minimal support for evolution of smart object systems by existing
infrastructures. Due to the the tight coupling among the system components it is very
difficult to add/remove components from the system and replace application and/or
smart objects with updated versions over time. Consequently, it is very difficult to build
plug and play and extensible smart object systems using existing infrastructures.

3.2.4 A Document Based Solution Framework

In the previous section, a range of infrastructures and their limitations in supporting the devel-
opment of smart object systems were discussed. Primarily these infrastructures have limited
support for building smart object systems considering the design requirement imposed by
smart object systems. Nevertheless, most of these infrastructures were not built for support-
ing smart object systems, so it is expected that specific design requirements are not addressed
by them. In this section, a solution framework that addresses smart object specific features
is introduced with explanations of its design rationales.

As we discussed, two major design requirements for a smart object system framework are ad-
equate support for applications to handle heterogeneity and management of smart objects,
i.e., discovering, spawning, configuring etc. One way to address these issues is if we look at the
functional aspects at the application end only and leave the protocol heterogeneity issues at
the infrastructure end while enabling applications to use a generic access mechanism to man-
age the smart objects regardless of their types. Accordingly, a data-centric approach is taken
in the work to handle these issues utilizing documents. The proposed framework forces an
application to expose its functional tasks that need the service of a smart object (i.e., a compo-
nent) in a document without addressing how to access that smart object service. These tasks
are atomic actions that represent smart objects' services, e.g., “sense current light sensitiv-
ity", “turn on the lamp", etc. Similarly, a smart object is forced to expose its service features

46 | Chapter 3: A Framework for Smart Object Systems

via documents. A secondary infrastructure then connects the application to the smart objects
by matching the documents. However, applications and smart objects are not directly con-
nected. Instead they communicate to the intermediary infrastructure to delegate their service
requests and service responses respectively. This underlying infrastructure can provide the
technical building blocks to allow applications to use arbitrary number of smart objects as long
as they provide the functionalities that are expected by the application.

The infrastructure takes the management of smart objects away from the applications, so ap-
plications do not need to care for access, configuration or management issues. To facilitate
this, both the application and smart objects are forced to implement a standard communica-
tion protocol. The basic idea here is to combine the client-server and blackboard models of
architecture that we discussed earlier in this chapter. While the loosely coupled client-server
model ensures that the heterogeneity is handled away from the application, blackboard model
ensures the unified access and delivery of smart objects services appropriately.

Inthe earlier section, the core-cloud model for smart objects was introduced. The design chal-
lenge imposed by the augmentation variation of smart objects is thus handled by this model.
The core of a smart object is a generic runtime that can host any number of smart features as
plug-ins. This design allows developers to decouple smart features of a smart object and ap-
plying same features in multiple smart objects. Thus a smart objects might be used in multiple
ways under different circumstances for different applicatios/purposes. In addition, features
can be incrementally added to a smart object to extend its initial functionalities. Simulta-
neously, application's functionalities can also be extended by introducing new smart objects
or updated smart objects that allows some of the application tasks to leverage the features
of newly added or updated smart objects. The combination of these approaches, i.e., docu-
ment based framework for connecting applications with smart objects, and core-cloud model
for representing smart objects support the evolution and extension requirements for smart
object systems.

“ Smart Objects are designed

| F Smart Object following core-cloud model
Application)l Bl o —
Smart Object
D)
Application) N [T
E Smart Object
Application T @ @
N
Infrastructure Independent Infrastructure Independent
Applications _ . Smart Objects

F: Smart Feature D: Descriptive Document

FIGURE 3.4: A Conceptual Document based Framework

Chapter 3: A Framework for Smart Object Systems | 47

The conceptual document based framework is depicted in Figure 3.4. The framework consists
of a Smart Object Wrapper that implements the core-cloud model for smart objects, an Appli-
cation Development Model and a Runtime Intermediary Infrastructure called FedNet. Smart
object wrapper represents a smart object by encapsulating its augmented functionalities (e.g.,
proactivity of the table lamp) in one or multiple Profiles (cloud) atop a runtime (core) and
allows additions of profiles to be added incrementally. Applications are represented as a col-
lection of implementation independent functional Tasks. These tasks are atomic actions that
require smart objects' services. An infrastructure component FedNet, manages these applica-
tions and smart objects and maps the task specifications of the applications to the underlying
smart objects' services by matching respective documents (that express the applications and
the smart objects) thus externalizing smart object management and addressing heterogeneity
issues away from the applications allowing developers to focus on the application functional-
ities only. Primarily these two abstractions Profile and Task are used in the framework and
realized by corresponding documents. Thus, the proposed framework provides a very simple
programming model that allows application developers:

e To develop smart objects and profile through consistent abstraction with structured
documents without concerning the target application requirement.

e To externalize application's requirements and utilize smart objects without concerning
interfaces and the management of smart objects.

e To extend both applications and smart objects using primary abstractions.

The runtime intermediator, FedNet handles smart object management (Bootstrapping, Dis-
covery, Utilization) and provides mapping between application and smart object services based
on structural type matching thus separating the concerns of the application and the middle-
ware. These design decisions enable developers to write applications and to build smart ob-
jects in a generic way regardless of the constraints of the target environment. This results in
simple and rapid development of smart object systems.

This document centric design has been influenced by two successful approaches existing cur-
rently. First one is Internet which is an excellent example of document based system. The In-
ternet is a collection of millions of anonymously authored digital documents that are encoded
in a pre defined semantics that enable heterogenous platforms to exchange these documents.
The fundamental issue here is the pre negotiation of the semantics. The most widely used pro-
tocol for Internet, i.e., HTTP basically acts as the envelope for this documents and provides the
negotiation semantics to both the sender and recipient (i.e., servers and client browsers and
vice versa) through it's headers for a flawless communication. Henceforth, structured docu-
ment is the primary resource and HTTP (headers) acts as the connecting glue in the Internet
infrastructure. In the proposed approach, applications are considered as the consumers and
smart objects are considered as the resources. Thus if both are expressed and amended with

48 | Chapter 3: A Framework for Smart Object Systems

pre negotiated semantics using documents like HTTP headers, we can easily provide a run-
time association. The second influencing approach is the commonly used shell scripting to
connect arbitrary programs using the UNIX pipe facility where file handles (i.e., stdin, stdout,
stderr) are used to differentiate and route data [Leffler et al., 1989]. From an abstract view
point we can observe that this capability of semantic mapping by pipe facility is basically the
negotiation of input/output structure. Thus, a structured document with pre negotiated se-
mantics can perform the similar piping between application and smart objects. Henceforth,
documents can glue an application with underlying smart objects given the fact that they have
pre negotiation of their data semantics.

3.3 Framework Support for End-Users

As the technology is becoming mature and reaching end-users, it is essential to build smart
objects systems in a more human-centric way, i.e., we need to understand how we can involve
end-users in the administration of smart object systems. This work argues that end-user expe-
riences with smart object systems can be elevated substantially if we can involve them in the
deployment and administration of smart object systems. Most of the user-centric research
on smart objects looked at the interaction paradigms of smart objects systems and focused
in building suitable interfaces [Norman, 1998, Ishii., 2004, Norman, 1990]. However, it is also
essential to understand how to place and manage smart object systems into the environ-
ment. This is particularly important for the home where the dwellers have a greater control.
it is important to consider the existing mental models of end-users towards everyday object
and information appliances. One essential property of our home is its evolutionary nature
and receptibility to continual change [Rodden and Benford, 2003]. We incrementally organize
our homes with furniture and appliances according to our preferences and styles. Previous
studies have shown how end-users continuously reconfigure their homes and technologies
within it to meet their demands [O'Brien et al., 1999, Rodden and Benford, 2003]. Edwards
et al. observed that the networked home of the future will emerge in a piecemeal fashion
[Edwards and Grinter, 2001]. To support the evolutionary nature of our homes it is essential
that smart object systems facilitate the incremental deployment and ideally by the end-users,
i.e., the end-users should be capable of incrementally enhancing the smart objects function-
alities by upgrading its features or installing new applications. The dwellers have in-depth
knowledge of the structure of their home and their activities, resulting in a better understand-
ing of where and which physical artefact and application to deploy. Furthermore, involving
end-users in the process leads to higher acceptability and a greater feeling of having control
due to their active participations. It also reduces deployment cost as professional assistance
is not needed.

The above discussion raises important design challenges for the smart object system develop-
ers. Providing such end-user centric supports requires specific architectural qualities from the

Chapter 3: A Framework for Smart Object Systems | 49

framework that is used to build smart object systems. In the following four such requirements
are presented that have been identified during this work.

1. Plug and Play Smart Objects and Application: To support end-user involvement, it is
mandatory that the constituents of a smart object system (i.e., smart objects and appli-
cations) are plug and play. Consider, the current practice of deploying home appliances.
A user can buy a home appliance (e.g., a microwave, a toaster etc.) and can plug the ca-
ble to outlet to make the appliance work. Such simplicity enables end-users in actively
deploying these appliances. The same is true for personal computer peripherals (e.g.,
a microphone, a camera, etc.). A smart object system should be identical. Users should
be able to buy one or multiple smart objects and applications for them, and should be
able to deploy them in a seamless fashion.

2. Extensible Smart Objects and Application: In the above discussions, we have seen that
previous studies showed how end-users continuously change their homes by buying
new appliances and/or upgrading to new models to meet their needs and styles. Thus,
it is very important to enable this evolutionary quality in smart object systems. A user
can buy one smart object with specific features and can update the feature over time.
Similarly a user should be able to install one application in a smart object and replace it
with a new one to match his/her needs. So, smart objects and applications should be
developed in a such a fashion that they support this extensibility feature.

3. Loose Coupling among Smart Objects, Applications and supporting Infrastructure: To
involve end-users in the administration processes it is important that system compo-
nents are very loosely coupled and do no have any coherent dependency on each other.
Each component (i.e., smart objects and applications) should run independently in its
own isolated environment. This allows end-users to deploy them easily since there is
no architectural dependency that has to be maintained.

4. Support for a Suitable Interaction Tool for End-users: Since, majority of the smart ob-
ject systems have spatially distributed physical components, it is essential to have a
suitable process to deploy, configure and administrate the smart object systems. Most
of the smart objects might not have any user interfaces per se, e.g., smart objects that
are collecting context information. Thus, a proxy based approach is needed that allows
interacting with these smart objects through a secondary interface.

As we discussed earlier in this chapter, the proposed conceptual framework satisfy these re-
quirements elegantly. The core-cloud model enables the development of plug and play and
extensible smart objects as each service profile is packaged as a generic binary and can be
added to the core of a smart object at any time as plug in. Application is also independently
written as generic binary and its functionality can be extended over time with the introduc-
tion of new smart objects. FedNet acts as the underlying infrastructure that host all the smart

50 | Chapter3: A Framework for Smart Object Systems

objects and applications that are loosely coupled. Using the documents it creates the sponta-
neous federation among these components thus eliminating direct dependency. Such frame-
work design with suitable component representation (i.e., independent generic binary that
can run in isolation) meets the first three requirements.

The support for end-user interaction tools can be seen as the by product of the loosely cou-
pled design of the proposed framework as shown in Figure 3.5. Since all the installation, fed-
eration and run time data association are pushed to the infrastructure end, (i.e., to FedNet)
while smart objects and applications run in isolation, it is possible to build secondary tools on
top of the framework to administrate and monitor the components that run atop the FedNet
infrastructure, i.e., the smart objects and applications.

~ e
Application Deployment, Enduser| “Smart Object Deployment,
Configuration, Extension Tool Configuration, Extension

" — WY Smart Object
Apphcahon F ------------------
E
Appllcahon
g OO
E Smart Object
Applicaticm T
N
Infrastructure Independent Infrastructure Independent
Applications _ : Smart Objects

F: Smart Feature D: Descriptive Document

FIGURE 3.5: A Conceptual Document based Framework with End-User Tool

As a result of these architectural design choices and support for suitable interaction tool, the
proposed framework enables end-users to engage in the deployment and administration pro-
cesses of smart object systems. A couple of end-user interaction tools on top of FedNet using
different user interfaces are developed in this work and will be presented in chapter 4.

Before moving to the next chapter, let us look at the contemporary works that have investi-
gated end-user involvement in context-aware applications.

3.3.1 Related Work on Supporting Tools for End-Users

Most of the works that approached end-user support in pervasive literature have taken ei-
ther rule based or recognition based perspective to customize the pro-activity of the ap-
plication. Rule based tools like iCAP [Dey et al., 2006], Stick-e-notes [Pascoe, 1997], Alfred

Chapter 3: A Framework for Smart Object Systems | 51

[Gajos et al., 2002] provide visual tool, or sound macros to the end-users to define conditional
rules based on the context to connect input and output events. Similarly recognition tools,
or more formally Programming by Demonstration systems like CAPpella [Dey et al., 2004] uses
machine learning techniques to allow end-users to associate personalized rules with real world
events. These approaches are valid for rapid prototyping and also to personalize the pro-active
behavior of the applications. However, they do not provide any general guideline regard-
ing application or instrumented smart object deployment and extension by the end-users.
Moreover, their support are primarily for developers to assist rapid prototyping and are not
suitable for casual users with no or minimal technical background. As previous studies have
shown, the deployment process has to be very simple with minimal configuration complexities
[Beckmann et al., 2004, Antifakos et al., 2002]. Also, the process should resemble the current
practices as closely as possible with which the end-users are familiar, e.g., installing a home
appliance like a washing machine, a microwave etc.

One notable example is the Jigsaw Editor [Humble et al., 2003] that uses puzzle metaphor and
allows non expert users to configure services intuitively by assembling available components
(e.g., connecting a doorbell to a camera for taking a photo shot when someone rings the
bell). Their study shows that end-users understand the semantic association of devices and
can manipulate them in order to meet their changing house hold demands. The proposed
design is highly influenced by their findings and the overall approach of providing simple,
easy-to-use interaction tool to support deployment and administration is aligned with their
projection. However, the proposed approach extrapolates by allowing end-users to introduce
new applications or to extend existing smart object services using simple tools regardless of
the application or smart object types which simplifies end-users involvement considerably.
This in turn in possible because of the architectural qualities of the framework.

3.4 Chapter Summary

This chapter discussed the design issues for a suitable framework for building smart object
systems and presented a conceptual document based framework. After providing the design
requirements for representing a smart object as system component, the core-cloud model
for smart objects was presented. In this model, the functionalities that are common across
smart objects are combined together into a core. Specific smart features are then plugged
into this core as clouds. This simple model satisfies the basic design requirements, i.e., de-
coupling smart features, building plug and play, reusable and incrementally extensible smart
objects that can do both sensing and actuating. Then, the discussion was switched to the
design requirements for a suitable infrastructure for smart object system. Five basic design
concerns: handling heterogeneity, augmentation, management and evolution of smart ob-
jects and effective programming model were presented. A range of related infrastructures
were introduced and their shortcomings were highlighted. This was followed by the intro-
duction of the conceptual document based framework. The framework forces applications'

52 | Chapter 3: A Framework for Smart Object Systems

requirements and smart objects' features to be externalized through documents and employs
a secondary infrastructure, FedNet to create a spontaneous federation among the application
and smart objects using the corresponding documents. The framework along with the core-
clod model for smart objects elegantly satisfy the basic design requirements for a supporting
infrastructure to develop smart object systems. The chapter was concluded by looking at the
user centric design aspects and argued that involving end-users in the deployment and ad-
ministration of smart object systems can elevate user experiences. Accordingly, architectural
qualities to support this involvement were discussed. In the next chapter the implementation
and technical details of this proposed framework will be discussed.

Chapter 4

Implementation of the Framework

Chapter 4

Implementation of the Framework

Chapter 3 discussed the design challenges of building smart object systems. A range of sys-
tems were introduced that provide infrastructure support for smart objects systems and simi-
lar types of applications, e.g., distributed context aware applications. Leveraging off the previ-
ous works and design challenges a document centric framework was presented where smart
objects' services and applications' requirements are objectified through external documents
and a secondary infrastructure takes care of creating a spontaneous federation among these
objects and applications. This chapter looks at the implementation of the proposed frame-
work. Each of the framework components along with associated design methodologies is
explained in detail. After that, end-user aspects of the framework is discussed. Two interac-
tion tools built on top of the framework are presented that assist end-users in deployment
and administration of smart object systems.

There are three primary components in the current framework: i) Smart Object Wrapper to
construct and represent smart objects ii) Application Development Process to write applica-
tions for smart objects and iii) A secondary infrastructure FedNet, that provides the runtime
association between the applications and spatially distributed smart objects. In the following
sections, these three components are discussed in sequence.

4.1 Smart Object Wrapper

In chapter 3, a core-cloud model was presented that provides a theoretical foundation for
building smart objects. It was discussed that the core encompasses the common features
shared across a variety of smart objects where as the clouds are the specialized smart features
that can be applied atop the core. In the proposed document based framework this core-cloud
model is used to design smart objects and corresponding documents are used to externalize

their services.

53

54 | Chapter 4: Implementation of the Framework

The core-cloud model is realized by the smart object wrapper component in the implementa-
tion of the framework. This component is used to construct a smart object and to represent
it digitally. There are two steps involved in the construction process of a smart object:

1. Selection of Appropriate Augmentation: In the context of core-cloud model, clouds are
the specialized features of a smart object. It is imperative to select these features in a
systematic fashion so that they suit the physical object in context.

2. Representation of Smart Object: Once the augmentation role of the physical object is
selected, the object can be instrumented accordingly. An instance implementing core-
cloud model can represent the smart object digitally along with the corresponding doc-
uments.

Accordingly, this section first discusses a 3-Step design methodology for appropriate augmen-
tation of a physical object (i.e., the selection of the clouds) and then discusses the technical
details of the layered smart object wrapper component.

4.1.1 3-Step Design Methodology for Smart Object Augmentation

One intriguing factor is the selection of the smart features of a smart object, i.e., what aug-
mentation role is suitable for a physical object? Typically the selection of augmentation role
is highly influenced by the designers' intuitions and in most cases the selection process is
ad-hoc. This ad-hoc fashion limits designers to repeat the steps in developing smart objects
rapidly and consistently. In this section a 3-step design methodology is provided to formalize
this role selection method. This design methodology is adopted from Fujinami's 5-step sen-
sor selection framework [Fujinami and Nakajima, 2005]. The key point utilized for appropriate
role selection is providing the right balance among the required functionalities, physical prop-
erties of a physical object and its interaction metaphor. Several works in the existing literature
have looked at the augmentation selection considering only the sensing role of the smart ob-
jects. For example, Beigl and his colleagues showed the catalogues of sensors to select the
appropriate sensor for fabrication from target phenomena's point of view [Beigl et al., 2004].
However, it lacks analysis of the earlier stage in terms of suitability of the smart object aug-
mentation for the target phenomena. Furthermore, they did not consider the actuation role
of a smart object. In the following a 3-Step design methodology (Figure 4.1) is proposed that
considered both the sensing and actuating roles of smart objects while ensuring that the aug-
mentations do not alter their physical appearances, properties and interaction metaphor.

1. Step 1 - Clarify the Required Functionality: The first step in designing a smart object
is to answer the basic question, "What functionalities are required?" As discussed ear-
lier, this functional requirement cannot be confined since it depends completely on
designers' intuitions and target scenario in context. However, the core-cloud model

Chapter 4: Implementation of the Framework | 55

Clarify the Required
Step 1 [Functionality J

Analyze Physical
Step 2 [Object's Properties j

Analyze Physical Object's
Step 3 [Interaction Metaphor

FIGURE 4.1: 3-Step Design Methodology for Augmentation Role Selection

provides an elegant solution to this problem by separating the runtime from the fea-
tures thus allowing a smart object to support multiple functional roles. Thus in this
step a designer can only consider the functionalities that he/she expects the physical
object to support. These functionalities can be of two types: sensing and actuating.
The former is responsible for observing some real world phenomenon where the lat-
ter is responsible for causing some phenomenon in the real world. For example, in
AwareMirror [Fujinami et al., 2005] the required functionality is to show some super-
imposed data/image in a mirror, in Mediacup [Beigl et al., 2001] the required function-
alities are to identify the state of use and physical conditions of the cup. So, in the first
step a designer has to clarify his/her requirements for the augmentations in this fashion.

. Step 2 - Analyze Physical Object's Properties: Once the required functionalities are de-
termined, the next step is to analyze the target objects physical properties, i.e. size,
shape, surface etc. In this step, the designer has to be very careful in ensuring that the
augmentation does not alter the basic properties of the object, and that the physical
object retains its original purpose intact even after the augmentation. This is impera-
tive to make the augmentation natural as much as possible. For example, a mirror or
a window can be augmented to support ambient display functionality, as their form-
factors (e.g., flat surface) are appropriate for embedding display feature. This display
feature does not conflict with their original purposes and does not alter their appear-
ance significantly. Similarly, providing state-of-use context is suitable for a coffee mug
as demonstrated by Mediacup [Beigl et al., 2001]. However it is impractical to augment
a mirror for identifying "Being-Carried" context considering its size and shape. So, a de-
signer should assess carefully whether the target smart object can provide the required
functionalities naturally while retaining its physical properties. Schmidt has provided
an excellent insight into the context patterns that can be observed by augmenting dif-
ferent kinds of real world objects varying in physical properties [Schmidt, 2002] and his
observation can be used as a guideline for this phase to analyze the affordability of a

smart object for the required functionalities.

. Step 3 - Analyze Physical Object's Interaction Metaphor: The final step is to analyze
the interaction metaphor of the target physical object and to identify how the augmen-
tation will affect this interaction. The physical objects have evolved over the years for

56 | Chapter 4: Implementation of the Framework

their current interaction pattern and human has developed a specific mental model
on that. While augmenting a physical object, it is vital to ensure that the original in-
teraction metaphor is intact as much as possible. The augmentation may introduce
new ways to interact with the object, but it must not alter and conflict with its original
usage techniques. As Norman pointed out, a smart object may not be usable unless
it retains its original interaction metaphor[Norman, 1990]. One way to approach this
analysis is by first answering the questions: "How to use the object? How it affects the
real world?" The result of the analysis classifies the usage into primitives, which include
holding, opening, closing, bending, approaching, putting, removing, touching, leaving,
pushing, pulling, rotating, shaking, leaving, storing, extracting, etc. For example, in case
of sitting on a chair, a user's hip is "put" on the seat with some force, and the back is
lean on the back seat i.e., "touching". Each of these primitives relate to a physical phe-
nomena. So, once the original interaction primitives are identified, the designer should
consider how the augmented feature will affect these interaction primitives. Ideally,
the augmentation should exploit the original interaction primitives as much as possible.
For sensing type augmentation, identifying the phenomenon caused by the interaction
primitives provides the answer whether instrumentation can provide the right informa-
tion. For example consider a augmented table, when something is "put" on the table,
there might be a physical phenomena like the change of pressure on the surface, the
vibration of the surface, noise, the change of temperature on the surface, etc. So, if the
required functionality is to capture these phenomena to generate high level context,
then the interaction required by the augmentation fits perfectly with the original in-
teraction primitives of the table. Clarifying the interaction and corresponding physical
phenomena in such a fashion allows a designer to augment the appropriate functional-

ity to a smart object.

This 3-step design methodology provides a generic guideline regarding how to select the ap-
propriate augmentation role for a smart object. Once the augmentation roles are defined the
next phase is to physically augment the object by selecting appropriate sensors and actua-
tors. Selecting the appropriate sensors and actuators for physical augmentation depends on
many aspects, e.g. qualities, performance, form factor, cost, power consumption, availability,
aesthetics, etc. The trade-off depends on overall requirements of the prototyping or product.
Fujinami discussed these issues in detail in his sensor selection framework and his approach
can be applied for physical instrumentation of a smart object [Fujinami and Nakajima, 2005].
Please note that, in the context of core-cloud model this 3-step design methodology provides
a systematic way of selecting suitable clouds for a smart object. Itis discussed that each smart
object will have a common core that will provide the communication foundation and the run-

time for hosting these clouds.

Chapter 4: Implementation of the Framework | 57

4.1.1.1 |lllustration: Design of A Smart Mirror

In this section, the design of a Smart Mirror is discussed in the light of the 3-step design

methodology.

e Inthe first step, it is determined that a contextual display functionality is required from
a mirror. It is desired to augment a mirror in such a way that images and texts can be

super imposed on the mirror surface when someone is in front of it.

e Next, the physical properties of the mirror are identified. These properties include flat
surface, varying size, typically mounted on the wall or similar flat surfaces, etc. Also, the
primary purpose of the mirror is identified, i.e., reflecting image of the entity in front
of it. Here, the properties of interest are the flat surface and wall mountable attribute.
A regular computer display can easily be attached at the back of a mirror, considering
the display also has a flat surface. Also, attaching the display does not change mirror's
original purpose of reflecting image. For identifying someone's presence in front of the
mirror, a suitable sensing device (e.g., proximity detectors, motion detectors, camera
etc.) can easily attached on the frame of the mirror. This attachment does not conflict

or alter its physical properties.

e In the next step, the interaction primitives of a mirror are analyzed. Typically, to use a
mirror we just need to stand in front of it. A display has the similar interaction require-
ment, thus it can easily blend with existing interaction metaphor of a mirror. Most
importantly it does not conflict with the original interaction primitive. Similarly the
proximity sensing easily fits into a mirror's interaction primitive, since it only needs an

entity to be present in front of the mirror.

mial .
< O

Mirror Frame Mirror Frame Regular PC Display
with Acrylic Surface is attached at the
back of the Frame

The Final Mirror

FIGURE 4.2: Construction of a Smart Mirror

Since this contextual display functionality from a mirror satisfies all three steps, we can now
go for the actual instrumentation. The primary hurdle here is in finding the suitable mirror
surface that allows images and texts to be super imposed simultaneously reflecting the image
of the entity in front of it. If such a surface can be used, then the display can easily be attached
at the back of the mirror. One such surface is acrylic magic mirror that allows bright colors to

58 | Chapter 4: Implementation of the Framework

penetrate the surface from behind. Utilizing this feature, a smart mirror is constructed where
an ordinary computer display is attached at the back of the acrylic mirror surface. When the
display is turned on, bright colored texts and images can penetrate the acrylic mirror surface
and become visible from front. At the same time, the acrylic mirror reflects images of the
entities in front of it. For enabling contextual display feature, a sensing device needs to be
attached. In this construction an infra-red sensor is used because of its good performance,
small size, cheap price and well availability. The complete construction process is depicted in
Figure 4.2

4.1.2 Augmentation Presentation: Implementation of Core-Cloud Model

Once a smart object's augmentation scope is fixed, it is needed to create a suitable digital
representation. The smart object wrapper provides this digital representation and follows
the core-cloud model where basic smart object functionalities are combined in a core com-
ponent. This core primarily encapsulates the communication capability of a smart object and
provides a runtime to host the augmented features that can be added as plug-ins. In the last
section, we have discussed a 3-Step design methodology that can be used to select these aug-
mented features. In the context of smart object wrapper, each of these augmented features
is called a service profile of a smart object. These profiles are physical object independent
and represent generic services, For example: sensing room temperature could be one pro-
file, and multiple physical objects (e.g., a window, an air-conditioner, etc.) can be augmented
with a thermometer for supporting this profile. Core provides the runtime to host these ser-
vices profiles and makes them available to external applications. In the current document
based framework this externalization of smart object services are done through structured
documents. The basic architecture of the smart object wrapper is shown in Figure 4.3. In the
following the internals of this architecture is discussed.

(Sensor X Actuator)
Profile
(Profile Handler)

(Profile 1)(Profile 2)(Profile 3)

(Profile Repository) i
e Motification Module Client ‘ core
i| Memory Discovery Module Handler
(Communication Module)=

FIGURE 4.3: Smart Object Wrapper Architecture

Chapter 4: Implementation of the Framework | 59

4.1.2.1 Core Component

The core component of smart object wrapper encapsulates the common features (e.g., com-
munication, static memory, etc.) shared across smart objects and provides a runtime to host
the service profiles. The entire core is packaged in an executable binary and runs indepen-
dently. Inside the core the following modules are pre-packaged.

1. Communication Module This module is responsible for external communications of a
smart object and encapsulates the transport layer components. Upper layer modules
contact with this module to interact with the external world (Internet, peer objects,
applications, etc.). In the current implementation, primarily IEEE 802.11x (TCP/IP) and
Bluetooth (RFCOMM) are supported in this module. All the communications are XML
message based over HTTP where messages are encoded in prescribed document for-
mat.

2. Discovery Module Each object can advertise their services and can respond to query
requests of external applications or peers using this module. After deployment, discov-
ery module listens for broadcast messages and if the message requests match objects
functional profiles, it responds to the message by sending the identity of the object for
further communication using communication module. As we will see later in this chap-
ter, in the context of current framework this module is used by smart object to interact
with the runtime FedNet infrastructure.

3. Notification Module This module provides the service profiles with some common utili-
ties to indicate their status. Considering, these notifications largely depend on the phys-
ical augmentation (i.e. LED, Text Display, Vibration, Sound, etc.) the current implemen-
tation provides libraries for commonly used tools. Further tools can be accommodated
easily by extending this module.

4. Static Memory This is a shared space utilized by all the components for their data opera-
tions. Typically this module contains smart object's property data (color, shape, owner,
etc.), profile descriptions, client lists and other temporal data needed by the profile han-
dlers and corresponding profiles. In current implementation, this memory is managed
in the form of a XML database.

5. Client Handler This component is the request broker for the profiles' services and del-
egates the external requests to specific profiles. It maintains a cache of client list and
the corresponding profile information using the static memory module. It provides two
modes of communication for the external clients (peer smart objects, applications). In
Synchronous mode, the request is instantly processed and dispatched to clients (poll),
where as in asynchronous mode, the information is dispatched to interested clients in

an event based manner (subscription). Clients can subscribe to specific profile's service.

60 | Chapter 4: Implementation of the Framework

6. Profile Repository This component hosts the array of profiles and provides the plug-
in runtime for service profiles to be attached dynamically. It utilizes a dynamic class
loader to load the profiles dynamically when requested. Also, it maintains all the profile
descriptions that it hosts in the static memory which is used by the discovery module
to advertise the profile services.

4.1.2.2 Profile

A smart object can implement one or more profiles. Each profile implements a specific func-
tionality and has a profile handler which implements the underlying logic of the profile service,
i.e. providing context data by analyzing sensors' data that are attached to physical object or
actuating an action of the object (e.g., increasing the brightness of a smart lamp, changing the
orientation of smart blinds, etc.) The most basic profile is the one that tracks object's states
and notifies via the notification module. During the bootstrapping process, profile reposi-
tory dynamically loads the profile handlers and the profile descriptions which includes a brief
overview of the profiles. Though multiple profiles could be part of a single object, the pro-
file handler namespace is different. That means each profile handlers has its own client lists.
When client handler receives requests from applications it simply delegates the requests to
appropriate profile handlers. The profile handler has an abstraction layer that hides the het-
erogeneity of the underlying devices. Each profile is packaged as generic binary and get asso-
ciated with the core dynamically through the plug-in runtime of the core.

4.1.3 Programming Model

As discussed in the previous section, there are two components in the smart object wrapper:
i) the core and ii)profiles. The core is a generic component and is disseminated as a pre-
packaged ready to use binary. The constituents modules of the core can be extended by the
developers if needed. However, the profiles that a smart object can host are needed to be de-
veloped independently. In the earlier section, we have seen how a 3-Step design methodology
can be used to select the augmentation role for a smart object. Once the roles are selected,
it is required to develop the corresponding profile in the semantics of smart object wrapper.
Thus a suitable programming model is required for the developers using which they can easily
construct the profiles. In the current work, the programming model offered to the developers
utilizes a profile based abstraction, i.e, developers can encapsulate the specific functionalities
in one or multiple profiles. As shown in Figure 4.3 the profile consists of a profile handler and
a device (sensor or actuator) handler. Thus developers are required to perform two tasks:

1. Writing a module to handle the device (i.e., sensors and actuators) specific code (i.e.,
accessing the sensors, collecting sensor data, etc.). This module should generate the
higher level context and should execute the device functions as needed.

Chapter 4: Implementation of the Framework | 61

2. Connecting the above module with the smart object wrapper component. This compo-
nent should provide suitable support to represent the generated context in framework
specific ways. In addition, it should also interpret framework specific service requests
in device specific way.

While the first task is completely device specific, the second task is more recurrent and thus
suitable programming support is desirable. In the currentimplementation, the profile handler
provides this support, and exposes a template for the developers to plug in their device code
and context calculation/service actuation logic. Once developers attach their device specific
code to profile handlers, the entire profile can be packaged as generic binary that can be
plugged into the core. A profile implementation needs to inherit a base Profile class. This
class enables the core to load this profile and to further communicate (forwarding application
requests etc.) with it. Following Figure 4.4 and 4.5 show code snippets of how developers can
use the profile handler template to plug-in their device specific codes for sensor and actuator
type profiles respectively.

. public class ProximityProfile extends Profile {
protected String position,distance;

1
2
3
4. public ProximityProfile(String path)
5. {4
6
7
8
9

super{path);
position=""; distance=""};
new IRSensor(this); /* Handles the Protocol Heterogeneity */
}
1@.
11. public vold setSML(D /+ Sets the Profile Output in Predefined SML Syntax *
12. {
13. this.sml.setOutput("position”, this.position);
14. this.sml.setOutput(proximity”, this.distance);
15. this.notifyAccessPoint();
16. }
17. }

FIGURE 4.4: Sample Code implementing Sensor Type Profile

The code snippets in Figure 4.4 shows the partial implementation of the proximity profile of
the smart mirror illustrated in section 4.1.1.1. Here the mirror is instrumented with an infra-
red sensor and the class IRSensor (line 8) implements the protocol specific code to access the
sensor and to collect sensed data. Once the sensor data is analyzed for generating appropri-
ate context information the setSML()(line 11) function is invoked that generates the profile

62 | Chapter 4: Implementation of the Framework

output in framework specific way, i.e., following the syntax of Profile Description Document
(discussed in the next section).

1. public class DisplayProfile extends Profile {

Z

3. public DisplayProfile(String path)

4. {

5. super{path);

6 Display display = new Display(this); /* Handles the Protocol Heterogeneity */
7.}

8 * Parameter represents the service requests generically */
9. public String executeService(Service args)

12, {

11. String id = args.getIdentification();

1z, String state = args.getStateName();

13, Input input = args.getInput(id,state);

14, return(display.execute(state,input));

15. }

16.}

FIGURE 4.5: Sample Code implementing Actuator Type Profile

The code snippets in Figure 4.5 above shows the partial implementation of the display profile
of the smart mirror. As discussed, the mirror was instrumented with a regular display. So here
the class Display (line 6) implements the protocol specific code to access the display. Once
a service request (encoded in Actuator Modeling Language discussed in the next section) is
received from the external entities (e.g., applications, peer smart objects, etc.) the base Pro-
file calss parses the request and corresponding display function display.execute(state,input)
(line 14) is invoked to execute the display feature.

In chapter 3, we discussed that regardless of the type of services (e.g., sensing and actuating),
a unified programming abstraction is needed to develop reusable and extensible smart ob-
ject systems. Accordingly, in the current framework profile is used as the primary abstraction
for encapsulating both sensing and actuating. A profile is packaged as generic binary that al-
lows it to be snapped with the generic core at runtime. This generic binary and profile based
unification have two direct side effects: i) it enables a profile to be reused since a suitable
profile once developed can be used in multiple smart objects. ii) it enables a smart object to
be extensible as profiles can be added at anytime to a core of a smart object.

Chapter 4: Implementation of the Framework | 63

4.1.4 Representative Documents

In the earlier section, we have seen how profiles can be constructed that are dynamically
associated with the core. This association is done through documents, the inherent part of
the current framework. In addition, documents are also used to externalize the services of
smart objects that can be discovered and exploited by external applications and peer smart
objects. There are primarily two documents utilized for smart object wrapper, these are:

1. Smart Object Description Document (SODD): This document is the generic description
of the smart object in context as shown in Figure 4.6. It provides the meta information
regarding the smart object. However the most important part of this document is the
<profiles>node. The smart object core parses this node to dynamically load the profiles.
The node contains links to the generic binaries of the respective profiles. This document
is also used by the secondary infrastructure FedNet (as we will see in the later part of
this chapter) to discover the services of the smart objects and associate smart objects
with applications.

<7xml version="1.0"7>
<artefact>
<name=Mirror</name=
<vendor></vendor>
<profiles=
<profile name="Froximity"=
<codebase=ArtefactSpace/Mirror/ProximityProfile/Proximity|RProfile jar</codebase=
</profile=
</profiles=>
<fartefact>

FIGURE 4.6: Smart Object Description Document for a Mirror with Proximity Profile

2. Profile Description Document (PDD): Each smart object contains one or multiple pro-
files. These profiles are either sensor type or actuator type and usually have different
input and output specifications. However, to create synergies between smart objects
and applications, it is needed to have a pre-negotiations on the format of the moveable
data. In the current framework context, this issue is addressed by forcing each profile to
publishits input/output data format in structured documents so that the external appli-
cations and peer smart objects know how to interact with the profile's service. This doc-
ument is also used by profile handler to encode implementation output and to decode
service request inputs. Each PDD contains either a <detector> or an <actuator> node
based on the profile type. It also contains a quality of service (QoS) block which specifies
profile's quality. Furthermore, PDD contains an <installation-instruction> block that
provides hardware installation guidelines for end-users. The later part of this chapter
will discuss how this installation guideline is used to assist end-users in the deployment
tasks.

64 | Chapter 4: Implementation of the Framework

The sensor type profile's description follows the specification of the customized Sensor
Modeling Language (SML) adopted from SensorML!. It specifies the output format of
the profile with parameters as shown in Figure 4.7. The primary reasons of adopting
SensorML are its soft typed attribute, reference frame and parameters, with which the
semantics of different sensor data platforms can easily be understood and interchanged.

<7xml version="1.0"7>
<profile=
=name=Proximity</name:=
<purpose=Sensing the proximity </purpose=
<type=Sensor<type=
<detector>
<jdentification=IR Sensor</identification=
<referenceFrame/=
<inputs/=
<0Uutputs=
<output=
<name:position=/name:
<datatype>string</datatype>
<value/>
</output=
<output>
<name>proximity</name=
<datatype=int</datatype=
<value/>
</output=
</outputs=
</detector=
<QoS-attribute=>
<(os=>
<name=>latency</name=
<datatype=int</datatype=
<measurement-unit=millisecond</measurement-unit=
<high-threshold=100</high-threshold>
<low-threshold>50</low-threshold>
</qos>
</QoS-attribute>
<installation-instruction=
<instruction=
<SIME> /SN
---=-=-—-=[T10r2 Statements--------
<finstruction=
</installation-instruction=
</profile=

Profile Description Document for sensor type profiles. Sensor
Modeling Language is used in the <detector> node.

FIGURE 4.7: Profile Description Document for a sample Proximity Profile, Customized
SensorML is used in the detector node.

For an actuator profile custom designed Actuator Modeling Language (AML) is used as
shown in Figure 4.8. The <state> node is used to abstract the operational states of a
smart object's service. It contains the input parameters to change the states along with
required data type. Please note that the protocol to handle the underlying device is
implemented in the profile implementation.

10penGlIS Sensor Modeling Language (SensorML) Specification: http://www.opengeospatial.org

Chapter 4: Implementation of the Framework | 65

<actuator=
<identification= Display </identification>
<slates>
<state>
<name=showlmage </name:=>
<inputs>
<input=
<name:=Image</name=
<parameter=
=MIMEdatatype=image/jpg</MIMEdatatype=
<value=screen.jpg</value=
</parameter>
-- More Parameter ----
<finput=
-- More Input ----
<finputs=>
<outputs/=
</state>
</slates>

</actuator=

Profile Description Document for actuator type profiles.
Actuator Modeling Language is used in the <actuator> node.

FIGURE 4.8: Profile Description Document for a sample Display Profile. Custom de-
signed Actuator Modeling Language is used in the actuator node.

4.1.5 Location Modalities of Smart Object Wrapper

The smart object wrapper essentially is the digital identity of a smart object. So an obvious
issue is the location of this digital part. There are two choices as shown in Figure 4.9: i) At-the-

vy

(a) At-the-Edge (On Board) (a) At-the-Infrastructure (Off Board)

FIGURE 4.9: Location Modalities of Smart Object Wrapper

Edge (On-Board) and ii) At-the-Infrastructure (Off-Board). At-the-Edge means that a smart ob-
jectitself has a processing unit that hosts its digital representation (i.e., smart object wrapper)
where as At-the-Infrastructure means that a proxy, running in a separate location represents
a smart object and communicates with the smart object to retrieve sensor data or to actuate
smart object's functions using some communication protocol, e.g., Bluetooth, IEEE 802.11x,
etc. Both choices have pros and cons. While At-the-Edge approach provides pre-configurable,

self sustainable and aesthetic smart objects, it has minimal support for rapid prototyping, DIY

66 | Chapter 4: Implementation of the Framework

(Do-It-Yourself) approach and prone to limited capability. On the other hand, although At-the-
Infrastructure approach requires manual configuration and maintenance, the primary advan-
tages are the interoperability (through secondary infrastructures) and DIY support. Also, it
enables rapid prototyping.

4.1.6 Smart Object Life Cycle

In the earlier sections, the layered architecture of smart object wrapper that implements the
core-cloud model is discussed along with the programming model and expressive documents.
Both the core and profiles are packaged as generic binaries, and dynamically snapped with
each other at runtime. The entire life cycle of a smart object in the context of current frame-

work is shown Figure 4.10.
Develop Smart Object
with Core and Profiles As Generic
Binaries
Deploy Smart Objects
and Document

Run and use the Smart
Objects in applications

(Add new Profiles
Lto extend Functionalities

As Generic
Binary with respective Instrumentation

FIGURE 4.10: Life Cycle of a Smart Object

So, once a smart object is constructed with a core and suitable profiles it can be deployed with
associated documents that externalize the profile services. These documents are used by the
secondary infrastructure to let applications use the smart objects. Furthermore, the initial
functionalities of a smart object can be extended afterwards. From a developer's perspective,
the construction and extension of a smart object thus consist of the following three activities:

e Instrumenting the physical object by selecting appropriate roles applying the 3-Step
design methodology.
e Implementing the profile following the prescribed programming model.

e Externalizing the profile specification in Profile Description Documents (PDD) and writ-
ing the generic Smart Object Description Document (SODD) with appropriate <profiles>
nodes to let the smart object core dynamically load the attached profiles.

In the next section, we will look at the document based application development process that

enable applications to utilize these smart objects.

Chapter 4: Implementation of the Framework | 67

4.2 Application Development Process

In chapter 2, the classification of smart object systems showed that a majority of smart object
systems composed of one or multiple applications that integrate one or multiple smart ob-
jects to provide proactive services. It was also discussed that these applications are typically
context aware in nature and composed of three components: i) basic application component,
ii) communication component, and iii) perception and adaptation component. The first and
third components are basically application specific and usually differ from application to ap-
plication. However, the second component, i.e., the communication component is recurrent
across applications as it is responsible for communication and interaction with the external
environment, i.e., smart objects. Typically these interactions include accessing and managing
smart objects, aggregating context data, actuating services etc. Thus a supporting infrastruc-
ture that provides simple mechanisms to take care of these recurring tasks can dramatically
reduce the complexities of application development.

In the proposed document-based framework these recurrent actions are supported through
indirection using documents, i.e., application specifies their requirements in a high level struc-
tured document without considering how to attain those requirements. A secondary struc-
ture FedNet uses these documents along with smart objects' documents (explained earlier) to
create a runtime association between the application and the smart objects. The infrastruc-
ture provides an access point to applications with unified access mechanism for interacting
with the underlying smart objects. However, there is a 3-Step development process that an
application developer has to follow to enable an application to work in the current framework
context. In the following this design process is explained.

4.2.1 3-Step Application Development Process

An application developer can follow any library and implementation language to code the
execution logic of the application and to construct the application parts. To enable the appli-
cation to interact with the underlying environments, however, a developer has to follow the
semantics of the current framework. Essentially, there are three steps as shown in Figure4.11
that a developer should follow:

Structuring Applications by
Step 1 [Functional Tasks

Step 2 Externalizing Functional Task List in
p a Structured Document

Step 3 Accessing an Access Pointin a
P RESTful Manner

FIGURE 4.11: 3-Step Application Development Process

68

Chapter 4: Implementation of the Framework

1. Step 1 - Structuring Applications by Functional Tasks: An application is composed of

several functional tasks, i.e., atomic actions. In smart object applications, these atomic
actions may be: "turn the air-conditioner on", "sense the proximity of an object" etc.
The first step of the application development in the current framework context is to
structure the application in a collection of functional tasks that require the services of

smart object profiles (e.g., context data, service actuation etc.)

. Step 2 - Externalizing Functional Task List in a Structured Document: The next step is to

externalize application's requirements as a collection of functional tasks in a structured
Task Description Document (TDD). Each task specifies the respective profiles it needs
to accomplish its goal. Figure 4.12 shows part of the Task Description Document for a
smart display application. Each task also contains Quality of Service (QoS) requirements
for the target profiles. This document is used by the secondary infrastructure FedNet to
identify the required smart objects and to provide a spontaneous federation between
the application and smart objects. There are a couple of things that need further dis-
cussion at this point. As we see in the Figure 4.12, the application does not state a
specific smart object, rather it only puts forward its profile requirements. This enables
any suitable smart object to be used in the application as long as the object provides the
required service profile. The next point of interest is the description of a task. The task
can describe not only the specific service but also the required communication mode,
i.e., synchronous (poll) and asynchronous (subscription). These modes are specifically
important for aggregating context data from smart objects. The final point of interest
is the meta information regarding the application. This meta data contains the access
point identity and will be explained in the next step.

. Step 3 - Accessing an Access Point in a RESTful Manner: The final step in application de-

velopment is enabling an application to interact with smart objects in a unified manner.
Typically this interaction includes discovering and managing smart objects and access-
ing their services. However, in the current framework context the discovery and man-
agement processes are eliminated from the application scope. By externalizing smart
object service requests through Task Description Document, applications allow the sec-
ondary infrastructure FedNet to perform discovery of smart objects. However, applica-
tion still needs to access smart object services. Addressing this access issue at the ap-
plication level makes application development very complicated. In current approach,
this access mechanism is simplified by enabling an application to access a common point
for interacting with underlying smart objects, regardless of their types and protocol het-
erogeneity. When an application is deployed, the secondary infrastructure assigns an
access point to the application, and the identity of that access point is injected into
the meta data block of the Task Description Document as shown in Figure 4.12. An
application needs to access this point to send requests and to receive responses from
the underlying smart objects. During the application's instantiation time, the required
physical smart objects data semantics (<detector> and <actuator> nodes of the Profile
Description Document) are provided to the application from this access point by the

Chapter 4: Implementation of the Framework | 69

<?xml version="1.0" encoding="UTF-8" 7=
<application=
<name=Smart Display Application</name=
<app-purpose=Providing Personalized Infromation with Situational Awareness</app-purpose=
<hinaryPath=ApplicationSpace/SmartDisplay/SmartDisplay App.jar</binaryPath=>
<accesspoint=
=IP=10.0.1.3</IP>
=port=8824</port=
</accesspoint=
<task-list>
<task>
<id=T1</id>
<purpose=Measuring Proximity</purpose=
<required-profile-type=Sensor</required-profile-type=
<profile-name=Proximity</profile-name=
<communication-mode> asynchronous</communication-mode=
<profile-QoS-attribute=
<qos>
<name=latency</name:=
<datatype=int</datatype>
<measurement-unit=millisecond</measurement-unit>
<high-threshold=70</high-threshold=
<low-threshold>60</low-threshold=>
</qos=

</profile-QoS-attribute=>
<Mtask=

</task-list>
</application=

FIGURE 4.12: Task Description Document (partly)for a Smart Display Application

secondary infrastructure FedNet, to let the application prepare for the moveable data
accordingly. Considering the simplicity and proliferation of web technologies, the ac-
cess mechanism and data exchange protocol between the application and access point
are based on HTTP and XML following the Representational State Transfer (REST) ap-
proach [Fielding, 2000]. For continuous polling (i.e., subscription), auto discoverable
RSS feeds are used.

4.2.2 Programming Model

In the last section, a 3-Step development process is discussed for building applications inte-
grating smart objects in the context of current framework. Application developers can follow
any language and implementation platform for developing these applications as the interac-
tion protocols are based on generic web technologies. However, in the current implemen-
tation, a simple library in Java comprised of a REST features (simple HTTP/XML) and Auto
Discoverable RSS Parser is provided to the application developer that they can use to further
simplify the application development process.

70 | Chapter 4: Implementation of the Framework

One important aspect of the application development is the programming abstraction. As
discussed in the earlier section, the primary abstraction offered to the developers is Task.
Applications are structured based on the functional tasks (atomic actions) that require smart
object services. The offered library makes this task based application structuring simple. The
following code snippets in the Figure 4.13 illustrates this task based application development.

1. Enumeration<Task> vector = this.taskList.elements(}; /* Retrieve all the tasks *
z while{vector.hasMoreElements(){

3 Task task=(Task)vector.nextElement();

4 if(task.getID().equalsIgnoreCase("T1") && task.getProfileStatus()l{
5. /* Task 15 executable, profile 1s available *

6 AccessPoint.sendTaskRequest(xmlProc.generatefutgoingMessage(
7 Constant. TASKREQUEST, task.getID(}));

8 task.subscribe(this, "proximitylListener”);

9 1

19. }

11. /* Listener for Sensor type Profile, Parameter is structured

12. following Profile Description Document Semantics */

13. public void proximitylistener(String profileSML)

14, {

15. DetectorData data = xmlProc.parseIncomingMessage(profilesSML);
16. /* perform actions based on sensed data */

17}

FIGURE 4.13: Sample Task based Application Code

As we discussed once the developers identify the functional tasks, they need to externalize
them in a Task Description Document as illustrated in Figure 4.12. Then developers can use
the task reference accordingly in the application by using language interfaces provided in the
simple library. For example, in the above code snippets application retrieves all the tasks that
are externalized in the document (line 1) and then based on the availability of the smart object
that supports the profile requirements of the respective tasks, application can request specific
profile's service (line 4-8). Since the task request for sensor data in asynchronous mode, i.e.,
subscription, a corresponding callback function is stated (line 8). This function is invoked by
the underlying library using reflection mechanism to update the application with sensor data
encoded in prescribed format. Please note that applications only use the task reference here
without considering discovery, access mechanism, service actuation policies etc. All these
are moved away from the application scope and performed by the secondary infrastructure
FedNet. Applications are only responsible for utilizing the profile service. Such high level
abstraction completely hides the heterogeneity and distribution aspects making application
development very simple and rapid. Furthermore, there is no dedicated link between the ap-
plications and smart objects, enabling a smart object to be replaced by another that provides

Chapter 4: Implementation of the Framework | 71

similar profile service. This is very important in a dynamic environment where a smart object
typically runs, since smart objects may move away from the application scope or fail. In addi-
tion, this task based abstraction also enables applications to extend their functionalities over
time. There may not be any suitable smart objects for some tasks at the early stage of the
application deployment. However with the introduction of new smart objects those tasks can
be supported afterwards, thus allowing the extension of applications' functionalities. Such
extension of application features using existing abstraction (e.g., task) is very crucial for smart
object systems as discussed in chapter 3.

The final point of discussion here is the binary structure of the applications. Every application
in the current framework context is disseminated as generic binary. This is possible because
there is no hard dependencies between the application and the underlying infrastructure. Ap-
plications use generic web technologies in a RESTful manner to access the infrastructure (i.e.,
access point) and thereby smart objects. This allows applications to be packaged indepen-
dently. In the meta data part of the Figure 4.12, the <binaryPath> node specifies the path
of application binary. This binary path is utilized by the infrastructure components to enable
end-user activities. This will be further discussed in the later part of this chapter.

The next section will bring the spotlight on the secondary infrastructure that plays the key
role in providing the runtime association between the applications and smart objects in the
context of current document based framework.

4.3 FedNet Infrastructure

In the current document based approach both the applications and smart objects are infras-
tructure independent and expressed in high level descriptive documents. Thus to create a run-
time association between the applications and underlying smart objects, an intermediator is
needed that can connect the applications with respective smart objects. This intermediation
is done by FedNet in the current framework. FedNet provides this spontaneous federation by
utilizing the descriptive documents of the smart objects and applications that are discussed
earlier. FedNet can contact the communicator module of the smart object core using the se-
mantics described in the smart objects' documents for mapping applications' tasks. Similarly
application can contact FedNet using generic web access mechanisms in a RESRful manner.
In the following the internal architecture of FedNet is explained to illustrate how it provides
these supports to smart objects and applications.

4.3.1 Logical Architecture of FedNet

FedNet itself is packaged in a generic binary and composed of four components as shown in
Figure 4.14.

72 | Chapter 4: Implementation of the Framework

Application Repository Task Specification by
Documents
) G\’T—D 1] (FedNet Core)
e - _
T ™) (4]) Query Smart Object
; Spawn Access Generate Repository by
BRRlications itasky Point (3] Subset Matching Documents

="

Hook to
Application 9

-

P

1 i ey — Aoy =
: IS OP R0
O)

smart-object= ¥ profile

N p
g Smart Smart Smart
Smart Object E Object Objact ===+ Dbj:l:t
i c 1 2
Federation T

Application Specific Access Point

FIGURE 4.14: Logical Architecture of FedNet

4.3.1.1 Smart Object Repository

Smart Object Repository manages all the smart objects running in FedNet environment. Dur-
ing smart objects' deployment, the executable binary implementing the smart object wrapper
and the Smart Object Description Document (SODD) are submitted to this repository. When
a profile is added to a smart object, the profile information is dynamically injected into SODD
and the respective profile is attached to the smart object. Thus this repository has the infor-
mation of all the profiles available in the environment at any time.

4.3.1.2 Application Repository

Application Repository hosts all the applications that run on FedNet environment. During an
application's deployment, the binary executable and the Task Description Document (TDD)
are submitted to this repository. FedNet Core generates an access point for the application
and updates the respective TDD by dynamically injecting the identity of the corresponding
access point.

4.3.1.3 FedNet Core

FedNet Core provides the foundation for the runtime federation. When an application is de-
ployed the task specification is extracted from the application repository by the FedNet Core.
It analyzes the task list by querying the smart object repository using structural type matching
of documents and generates an appropriate template of the federation and attaches it into
a generic access point component for that application. This type matching basically involves
extracting the profile requirement from the Task Description Document and then searching
the smart object repository to find the appropriate profile using the Smart Object Description

Chapter 4: Implementation of the Framework | 73

Document and its constituent Profile Description Document. Since all these files are written
using XML, this searching is performed by using XQuery?. When an application is launched,
the access point is instantiated and the respective template is filled by the actual smart objects
available in the environment right at that moment thus forming a spontaneous federation.

4.3.1.4 Access Point

Access Point represents the physical environment needed by an application. FedNet assigns
a unique access point for each application rather than providing a common access point for
all applications. FedNet takes this approach considering the following two principles:

e Every application has unique runtime requirements for smart objects.

e Even though there are multiple applications deployed in the environment, there might
be cases when some applications are not running all the time. Thus maintaining a com-
mon access point involving multiple smart objects that are not used by the running
applications leads to high runtime cost (e.g., unnecessary resource consumption, man-
agement complexities etc.).

This means multiple federations of smart objects can co-exist in the environment. Simulta-
neously, each smart object can participate in multiple federations. When an application is
launched, the access point sends the federated smart objects' data semantics, (i.e., Sensor
Modeling Language and Actuator Modeling Language) to the application. This allows an ap-
plication to know the semantics of movable data in advance. From then on, the application
delegates all its requests to the access point which in turn forwards them to the specific smart
objects. The smart objects response to these requests by providing their profile outputs ei-
ther by pushing the environment state (actuation) or pulling the environment states (sensing)
back to the access point that are fed to the application.

4.3.2 Physical Architecture of FedNet: Distributed Management

The last section provided the explanation of the functional roles of the primary components
of FedNet infrastructure. From physical implementation point of view all these components
could be distributed, i.e., instrumented smart objects can run in their own nodes, applications
can run on the smart object nodes, or in separate nodes integrating multiple smart objects.
Similarly, FedNet components can run in a common node or can be distributed over a number
of nodes that collectively manage the environment.

The primary point of interest here is the structure of the smart object repository. It is dis-
cussed that all the interaction between applications and smart objects are mediated via Fed-
Net utilizing the notion of application specific access point. This interaction is done over

http://www.w3.org/TR/xquery/

74 | Chapter 4: Implementation of the Framework

generic web protocols (HTTP/XML) in a RESTful manner. Thus application does not need to
worry about the protocol heterogeneity at the smart object end. However, as we discussed in
section 4.1 that a smart object can have different transport protocols, and the specific instru-
mentation for supporting profiles may also introduce heterogeneous interfaces. For example,
consider a smart umbrella augmented with a temperature sensor that has RS232 serial inter-
face, and the umbrella itself has Bluetooth interface to connect to external entities to provide
the sensed temperature. Thus, smart object repository can host smart objects that might
have different transport protocols and data semantics. Earlier we have discussed, how the
programming model of smart object wrapper hides the sensor/actuator level heterogeneity
by using profile handlers. So, in this example, a suitable profile implementation will be able
to handle this RS232 interface, and to generate the sensor output in specific format following
the Profile Description Document (PDD). However, the smart object itself will have a commu-
nication module that implements Bluetooth interface, where as the entire FedNet communi-
cation (i.e, between applications and access point, between access point and smart objects)
is HTTP/XML based. Thus to enable unified communication among all these components, it is
needed to handle the protocol heterogeneity (e.g., discovery, data semantics, communication
etc.) introduced by smart objects.

The smart object repository handles this by using an IP based bridging mechanism. The struc-
ture of the smart object repository is shown in Figure 4.15. It is composed of five components
that are explained in the following.

Smart Object
Repository

Bluetooth

Discoverer

[' g \ (Protocol Transport Layer)
Smart Object = La % L otocol Transport Layer

Repasitory -7

= o ____>. Smart Object
- H - . UPI"H’

‘ % - . . (IP Transport Layer)

- -

FedMet
Directory

Smart Object
Repasitory

Bluetooth

IP Backbone

FIGURE 4.15: Internal Structure of Smart Object Repository

1. Discoverer: This component is responsible for implementing protocol specific discov-
ery mechanisms. For example, in case of Bluetooth it implements Service Discovery
Protocol (SDP).

Chapter 4: Implementation of the Framework | 75

2. Protocol Transport Layer: This component handles the device (sensor/actuator) spe-
cific transport protocols. For example, in case of Bluetooth nodes it implements Radio

Frequency Communications (RFCOMM) protocol.

3. Translator: Each protocol has its own specific data format. The translator component
translates this data format into the format of Profile Description Document and vice

versa.

4. IP Transport Layer: This layer is the FedNet specific interface and enables access points
to interact with the smart objects through IEEE 801.11x interface.

5. FedNet Directory: This is a static memory of smart object repository where it maintains
service information of all the available smart objects that it handles with in its scope.
This directory is updated periodically to reflect the availability of the smart objects. This
information is used by FedNet to map applications' tasks to smart objects' services.

In essence, smart object repository is composed of a collection of distributed nodes, where
each node is responsible for a specific native protocol (e.g., Bluetooth, UPnP, IEEE 802.11x,
RS232 etc.). All these nodes are connected to an IP backbone. However this is the case for a
large scale system; for a simpler system, one node can accommodate multiple native protocol

components.

4.3.3 Specific Features of FedNet

FedNet provides the runtime association between applications and smart objects. The earlier
sections illustrated how FedNet enables this association by using the descriptive documents.
There are a couple of issues that are hidden in this runtime association process. This section

brings those two issues under spotlight.

1. Discovery Service: In FedNet there is no dedicated discovery service for the applica-
tions. Application exports their task lists through Task Description Documents. When a
smart object joins the environment it notifies the FedNet about its profiles though its
respective Smart Object Description Document. In FedNet environment, both the appli-
cations and smart objects are explicitly deployed along with their documents. FedNet
uses these documents and perform structural type matching to map application tasks to
respective profiles to enable the spontaneous federation. Because of this indirection,
an explicit need for discovery service is eliminated from the application perspective.

2. On-Demand Resource Allocation: The environment resources are only allocated to an
application at runtime in FedNet, i.e., when needed by the application execution logic.
This on-demand federation enables a smart object to participate in multiple federa-
tions, since there is no hard-leasing method from the application instantiation time.
Simultaneously, multiple applications can use the same smart object. However, in the

76 | Chapter 4: Implementation of the Framework

case of conflicts among multiple applications for a single actuator type smart object
(e.g., a mirror display), a simple FIFO (First In, First Out) basis resolution logic is used to
break the tie.

4.4 Framework Support for End-Users

The earlier part of this chapter discussed the primary components of the proposed document
based framework. This sections brings the focus on end-users. Particularly, it will discuss how
the proposed framework exposes a few architectural qualities that elevate end-user experi-
ences with smart object systems built atop the framework.

In chapter 3, it was discussed that one way to elevate end-user experiences with smart ob-
ject system is to involve them actively in the deployment and administration tasks in a similar
fashion that mimic end-users current practice with furniture and other home appliances. In
chapter 1, we also discussed that how the existing personal computers and mobile phones en-
able end-users to involve in the deployment and extension tasks. These supports eventually
help the proliferation of these platforms. This work argues that, smart object systems should
have identical support for end-users. Enabling end-users in the deployment and administra-
tion tasks requires suitable support from the infrastructure that is used to construct the smart
object systems. Recall from chapter 3 that there are four primary architectural requirements
in providing end-users with the deployment and administration supports:

Plug and play smart objects and applications.

Extensible smart objects and applications.

e Loose coupling among the smart objects, application and the supporting infrastructure.

Support for a suitable end-user interaction tool to assist the deployment and adminis-
tration tasks.

The earlier part of this chapter discussed how the first three requirements are fulfilled by the
current document-based framework. Specifically, the smart object wrapper implementing
core-cloud model enables development of plug and play smart objects. Also, profiles can be
added to a smart object at anytime thus enabling a smart object to be extensible. Similarly,
it was discussed that applications are developed independently with task based structuring
which allows applications to be extended over time with the introduction of new smart ob-
jects. Furthermore, both the applications and smart objects are disseminated as generic bi-
naries along with respective documents without having any dedicated dependencies on the
underlying infrastructure. This in turn enables the secondary infrastructure FedNet to provide
the runtime association between smart objects and applications exploiting the documents. A

Chapter 4: Implementation of the Framework | 77

combination of these aspects enable the deployment and extension of smart objects and and
their applications with out any side effects.

Simultaneously, since each of these components (i.e., smart object, application, infrastruc-
ture) is a generic binary, it is possible to construct tools to manipulate them. In the con-
text of current work, these manipulations include deployment, configuration and extension
of smart object systems. So, if such tools can be constructed that enables these manipula-
tions in a seamless fashion than end-users can easily be involved in these tasks. Typically, this
tool should be identical to the "installer" concept of personal computer platform that enables
seamless installation of application in the personal computers. Accordingly, a couple of end-
user interaction tools on top of the current framework are designed in this work to support
end-users in the deployment, configuration and extension of smart object systems. In the
following these interaction tools are discussed.

4.4.1 End-User Interaction Tools

The end-user interaction tool is is needed to install the smart objects and applications into
the corresponding environments. In the language of the proposed framework the tool should
enable end-users to install the smart objects and applications into corresponding smart object
repository and application repository of FedNet and to add profile plug-ins into the smart
objects. Furthermore, this tool should enable the end-users to configure and control these
smart objects and applications. There are two fundamental design requirements that needs
to be fulfilled while designing tools for these tasks.

1. Contextual Feedback and Guidelines: It is necessary to provide feedback of users' ac-
tions and to guide the users with proactive suggestions [Antifakos et al., 2002].

2. Semantic Mapping of User Actions: To support distributed deployment with a singular
tool we need to identify which action is for which entity (smart object, application and
profiles) i.e., we need a selection phase followed by an action phase.

Following these design guidelines, two deployment tools have been constructed, the first is
using a graphical user interface and the second is using a tangible user interface.

4.4.1.1 Graphical User Interface Interaction Tool

The first tool supports end-users in the deployment process by providing a graphical user
interface. A Web 2.0 application is built atop the frmaework that allows end-users to deploy
smart objects and applications in the environment. This tool acts as an interface for end-users
to interact with FedNet and all the actions performed by the user are transformed into specific

78

| Chapter 4: Implementation of the Framework

(' 1; FedMet. Repository Fanel

.\}‘l FedNet Repository Panel

L Add New Applic

pplication Management =

n

¢ l- FedNet. Repository Fanel

B Add New

For running
and applic

FIGURE 4.16: Snapshots of Web based Graphical User Interface Interaction tool (a) Main
Panel, (b) Installing Application (c) Adding Profile

actions of FedNet as discussed in the earlier sections. The snapshots of this tool are shown in
Figure 4.16.

There are three parts dedicated for three categories of tasks involved in the deployment and

administration of smart objects systems. These are:

e Deploy and Extend Smart Objects: These functions are grouped under the Smart Object

panel. Each smart object and its profiles is disseminated as generic binary that can
be downloaded from a pre-designated address in the Internet or can be supplied in a
portable media (e.g., a CD, a Flash Memory Stick, etc). End-users can deploy a smart
object or extend a smart object service by attaching appropriate profile using functions
available in the tool.

e Deploy Application: These functions are grouped under the Application panel. Each

application is packaged as generic binary that can be downloaded from a pre-designated
address in the Internet. Alternatively, it can be supplied in a portable media (e.g., a CD,
a Flash Memory Stick, etc). End-users can deploy an application and associate it with a

specific smart objects or a group of smart objects using functions available in the tool.

e Configuration and Control: These functions are grouped under the Configuration panel

and allows end-users to configure a specific smart object or application. Furthermore,
end-users can start and stop an application or a smart object using these functions.

Each of the functions of this tool is guided by suitable textual and graphical user guidelines and

each user action is responded with proper feedback. For installing profiles, it is also needed

Chapter 4: Implementation of the Framework | 79

to physically instrument the smart object. The installation steps are provided in the Profile
Description Document (PDD) as shown in Figure 4.7 and 4.8. These steps are provided to the
user through textual feedback. If users make mistakes, a proper feedback is instantaneously
generated and appropriate steps are suggested. By using GUI based selection of applications
and smart objects, this tool can associate users' actions to respective components.

4.4.1.2 Tangible User Interface Interaction Tool

A pilot user study revealed several usability problems of the Graphical User Interface tool as it
contradicts end-users' conceptual model of installing home appliances. Although, the deploy-
ments tasks were identical to regular desktop computing, e.g., software installation, end-users
found it difficult to comprehend and suggested that the the process has to be more mechani-
cal and tangible. Also, the GUI suffered from fragmentation of attention as users had to switch
back and forth from GUI to physical artefact. Considering the implications a tangible interface
is designed for the deployment purpose. RFID (representing smart objects, application and
profiles) and RFID Reader with touch buttons are provided for end users' interaction. Follow-
ing the design guidelines, the tool provides visual (blinking LEDs) and sound feedback along
with speech guidelines. These are contextual, i.e. the possible next steps are provided based
on the user's latest activity and the state of the system. By using RFID identification for select-
ing applications and smart objects, the tool can associate users' actions into corresponding

components.

Hardware The deployment tool is built with a RFID reader, 3 touch buttons and 3 LEDs as
shown in Figure 4.17. The touch buttons and LEDs are connected to an interface kit. The
whole unit has a USB interface and can be connected to a regular PC/laptop that provides the
power, audio output and controls the unit.

Interaction Mechanism Each application, smart object and profile is disseminated as an
executable binary. Here the assumption is that each of these is packaged with a RFID card
that embeds a remote URL from where the binaries can be collected. There are six functions
(organized in 3 groups) that the end-users can perform using these cards and the deployment
tool.

e Deploy a Smart Object or Application: These functions can be performed by placing the
RFID card of the smart object/application and then pressing the green button as shown
in Figure 4.17-(a). During installation, the binary is downloaded from the remote URL
embedded in the RFID. Current implementation assumes that RFID contains a unique
number which is resolved by consulting a secondary file to extract the binary URL.

e Administrating a Smart Object or Application: These are performed by placing the RFID
card of the smart object/application and then pressing the red button as shown in Figure

80 | Chapter 4: Implementation of the Framework

P-C: Place the Card
T-X-B: Touch the X Button [X: G-Green, R-Red, Y-Yellow]

P-
Stepl | PC Stepl | PC Step 1 _cﬁ
Y-8

Step 3 P-C
(a) Install and Uninstall Process (b) Running and Closing Process (c) Association Process
" Card Reader
............ —— L Association Touch Button

Run/Close Touch Button

Blinking LEDs provide
contextual guidance and
feedback

containing binary™ Install/Uninstall Touch Button

(d) Deployment Tool

FIGURE 4.17: Tangible User Interface Interaction Tool

4.17-(b). Although most of the smart object applications are assumed to run continu-
ously, these explicit controlling functionalities are provided to the end-users since there
is no secondary user interface in the system. Thus if a user needs to stop an application
or smart object's functionalities for some reason (e.g., going for a vacation), they can

do so using these functions.

e Associating/Removing a Profile/Application: These functions are needed to associate a
profile or an application to a specific smart object. Note that the applications that are
not associated with any specific smart object can be installed following Figure 4.17-(a).
However, for the applications and profiles that are specific to one smart object an as-
sociation phase is needed. This is done by placing the target smart object card first into
the reader, touching the yellow button and then placing the newly installable profile's
or application's card into the reader as shown in Figure 4.17-(c). If a profile description
file contains hardware installation instructions, the tool provides audio guidelines to

support the installation.

In the next chapter, a usability study of these tools are presented where end-users are actively
involved in deployment, configuration and extension of a couple of smart object systems.

Chapter 4: Implementation of the Framework | 81

4.5 Chapter Summary

This chapter provides the implementation and technical details of the proposed framework.
Each of the component is discussed in detail with appropriate illustrations. The early part
of the chapter discussed how a physical object can be augmented by following 3-Step de-
sigh methodology to select the augmentation role and then using smart object wrapper to
provide its digital counter part. Then the task based application development process and
corresponding programming model were explained highlighting the library support for the de-
velopers. After that FedNet, the infrastructure that provides the backbone of this framework
was discussed in detail with illustrations of how it provides the runtime federation among the
smart objects and applications. Then the chapter focused on end-user aspects, and discussed
how the proposed framework provides support to involve end-users in the deployment and
administration of smart object systems. Two end-user interaction tools built on top of the
framework were also presented. In the next chapter the evaluation of the framework will be
discussed.

Chapter 5

Evaluation

Chapter 5

Evaluation

The last chapter had given a deep insight into the technical detail of the proposed framework.
Primary framework components were discussed with appropriate illustrations to show their
applicability in the domain in context. Furthermore, infrastructure support for the end-users
was also explored. Two end-user interaction tools were presented that allow end-users to
deploy, extend and configure smart object systems. This chapter brings the spotlight on eval-
uation aspects. Specifically, quantitative and qualitative evaluations of the framework will be
presented through deployed smart object system setup. Also a couple of user studies that
involve end-users in the deployment and extension of smart object systems will be reported
to show the effectiveness of the entire end-user involvement process and the usability of the
interaction tools. The chapter will end by discussing the implications that emerged from the
post analysis of the study results.

5.1 Evaluation of the Framework

Evaluating a framework developed for smart object systems is always tricky. This is because
the inherent quality of service requirement of a software framework for a smart object sys-
tem is not identical to a typical distributed system, even though both systems are identical in
nature from an architectural perspective. Chapter 3 discussed the design requirements of a
smart object system framework from three perspectives: smart object, supporting infrastruc-
ture for application development and end-user aspects. Each of these requires specific qual-
ity metrics for validating proposed framework's approach to meet the design requirements. A
least common denominator among these metrics is to develop real life proof-of-concept light-
weight and effective prototypes to expose the core features of the framework and to evaluate
how those features meet the design goals [Edwards et al., 2003]. In the current framework
context, these core features are the framework support for developing user-cetric smart ob-
jects, i.e., how efficiently smart objects and applications for them can be designed by using
proposed Smart Object Wrapper, Application Development Process and FedNet respectively

83

84 | Chapter5: Evaluation

and how effectively the framework exhibits user-cetric qualities to elevate user experiences
with smart object systems. While the prime concern here is to revisit the design requirements
and evaluate how the framework in context meets those requirements, a complementary as-
pect is to look at some quantitative performances of the framework from system perspective.
In the following sections, the assessment of the framework will be discussed from two per-
spectives: quantitative evaluation and qualitative evaluation. The assessment of user-centric
aspect of the framework requires involvement of actual users. So, a series of user studies will
be presented to show the effectiveness of the framework approach.

5.2 Quantitative Evaluation of the Framework

The proposed Framework is composed of three primary components: Smart Object Wrapper
that implements the Core-Cloud model for smart objects, a task-based application develop-
ment process and a document centric runtime infrastructure FedNet that creates a sponta-
neous association among the smart objects and applications. From quantitative evaluation
point of view, the point of interests are the performance of FedNet in forming the runtime
association and the overhead associated with the communication across the entire frame-
work. It has been discussed in Chapter 4 that both the applications and smart objects are
deployed in the environment as generic binary executables per se with no inherent depen-
dency on FedNet unless the applications require smart objects services. Thus, it is imperative
to look at how FedNet supports this runtime association and how the performance of the ap-
plication integrating smart objects are affected by this association. To look at these aspects, a
prototype home entertainment smart object system integrating a range of smart objects are
developed. In the following this prototype system and its constituents are explained followed
by the depiction of the runtime performance of the framework.

5.2.1 A Prototype Home Entertainment Smart Object System

In this section, first a hypothetical scenario is presented to illustrate the primary workflow and
capabilities of the prototype system. Then the implementation of the system is explained.

5.2.1.1 A Scenario

Alice recently got a UPnP HDTV and a Bluetooth Headset from her parents. Today when she
was telling her colleague Bob about the superb picture quality of her TV, Bob introduced her
an application that she can buy from the internet to make her entertainment room exciting
and smarter. It can automatically control room temperature and ambient room-light level,
can pause, restart a TV program, can increase-decrease TV volume while a conversation is

going on, and can redirect the audio stream of HDTV to external speakers or headsets. The

Chapter 5: Evaluation | 85

application requires some other smart objects (Chairs, Air-conditioner, Lights, Table, Window)
that are expected to be available in the room. She decided to buy the application. In the ap-
plication website, the roles(profile) of each smart objects are mentioned. However these roles
can be played by other compatible smart objects too. For example, the application assumes
that the window is augmented with a small weather box that can provide current room tem-
perature, humidity etc, that the application uses to control the air-conditioner. This weather
box can be installed under the coffee table or under any other artefact with a flat surface. Al-
ice already has a smart couch, that can identify if someone is sitting on it and a UPnP enabled
Air Conditioner. After the office, Alice went to the Tokyo Hand Creative store and bought one
stand lamp that matches the required profiles. She decided not to buy any other smart ob-
jects as she thought she could use her currently available smart objects for rest of the required
profiles. Instead she bought only the required service profiles for the rest of the smart objects.
Each profile comes with Do-It-Yourself hardware installable into smart objects and a RFID that
contains the software for that profile. Later that night, Alice came home, reorganized his new
entertainment room with the lamp(ambient light profile), augmented the window with room-
temperature profile and coffee table with ambient-noise profile and installed all these profiles
and the application using the RFIDs and her Tangible Interaction Tool in her home's FedNet
system. Alice could not wait to start her new entertainment center so she activated the sys-
tem. The application perceived the room condition and accordingly set the room temperature
and lamp brightness. Since Alice turned on the TV, the application fed the TV's audio stream
into Alice's new shiny Bluetooth Headset as she started watching a baseball game.

5.2.1.2 Description of the Smart Object System

The above scenario is realized by a few smart objects and an application that integrates these
objects. The entire system is composed of the following:

e Smart Couch: Aregular couch is augmented with state-of-use profile. The profile comes
with 6 force sensors and three photo sensors. All sensors are connected to a Phidget
Interface Kit [Greenberg and Fitchett, 2001] which in turn is connected to a Gumstix*
platform. The Gumstix runs linux and has Bluetooth and IEEE 802.11b interfaces. The
Gumstix contains the core and the newly attached profile binary. The couch once aug-

mented with state-of-use profile can identify when someone is sitting on it.

e Smart Lamp: A regular X10 stand-lamp that is augmented with ambient-light profile.
The profile comes with 2 Phidget photo sensors, an interface kit and a Gumstix platform.
The lamp with ambient-light profile can provide the brightness of the room.

*http://www.gumstix.com

86 | Chapter5: Evaluation

e Smart Window A regular window that is augmented with room-temperature profile that
can track the room temperature by analyzing indoor and outdoor environment tem-
perature. The profile comes with a Cooike sensor node [Hanaoka et al., 2006] that is
connected to a Gumstix platform over Bluetooth.

e Smart Coffee Table: A regular coffee table that is augmented with ambient-noise profile
that can track ambient noise of the room. The profile comes with a small microphone
unit that is connected to Gumstix platform over Bluetooth.

e UPnP TV and Air Conditioner: Due to the unavailability of the real device, simulated
UPNP TV and Air Conditioner were utilized using CyberLink? implementation of UPnP.

e Bluetooth Headphone: A regular bluetooth headphone with Advanced Audio Distribu-
tion Profile (A2DP)3 profile support. The headphone was also connected to a Gumstix
platform.

e JukeBox Friend Application: This application basically implements the scenario described
above. By perceiving ambient light level and room temperature via smart lamp and
smart window it can proactively adjust the room ambient brightness and room tem-
perature. If the TV is turned on, the application tries to sense the ambient noise level
by contacting the coffee table and accordingly sets the volume. Furthermore, if a Blue-
tooth headphone is found, the application redirects the TV audio stream into Bluetooth
headphone. Please note that, here the application contacts the respective profiles re-
gardless of the smart objects that host the profiles. Furthermore, for the purpose of
measurement the applications task requests were manually controlled through a sec-
ondary interface.

FedNet Infrastructure and the deployment Tool: The FedNet infrastructure runs in a laptop
computer (Apple MacBook Pro, 2.4 GHz, 4 GB RAM, Mac OSX 10.4, with IEEE 802.11b in-
terface). This machine is the host of the FedNet Core, Smart Object Repository, Application
Repository and the Access Point for the JukeBox Friend application. The deployment tools are
connected to this machine.

5.2.1.3 Quantitative Measurements

The whole purpose of building this smart object system is to evaluate the runtime perfor-
mance of FedNet. Intentionally, heavy-weight protocols like UPnP and Bluetooth were chosen
so that the approximate worst-case overhead of bootstrapping process, access point forma-
tion, communication among application components can be recorded. The application task
requests were manually controlled to see the performance of FedNet. In the following the
results are reported.

Zhttp://cgupnpjava.sourceforge.net/
3http://www.a2dp.info

Chapter 5: Evaluation | 87

Bootstrapping Time: The first concern is the bootstrapping time of FedNet, i.e., Smart Ob-
ject Repository, Application Repository and FedNet Core. In the current experimental setup,
the Smart Object Repository needs to contact six Gumstix platforms that represent the smart
objects and their profiles to set the repository with the availability of the profiles and to pop-
ulate the FedNet directory. Since other components (e.g. Application Repository and FedNet
Core) reside in the primary node, their initialization time does not add any overhead to the
overall system. Figure 5.1(a) shows the performance of this bootstrapping process for the
environment having six smart objects with gradual formation of the repository in a parallel
fashion. Please note that, here the native protocols are implemented in the smart object,
thus it is assumed that smart objects are already setup, i.e., Bluetooth discovery and Piconet
formation are already performed for smart window and Bluetooth headphone. As shown in
the Figure 5.1(a) on an average 5.32 seconds is required to create a FedNet environment with
six smart objects of varying native transport protocols for profiles and bridged to FedNet via
IEEE 802.11b. The variation of 180 milliseconds (approximately) were observed due to the
communication latency and occasional packet losses.

5600 - 1800
5540 - 1600
5480 1400
o 8]
g 3420 @ 1200
£ 5360 € oo
£ 5300 £ oo
9 5240 w
£ £ 600
= 5180 =
5120 400
5060 - 200
5000 0
1 2 3 4 5 6 1 2 4 8 16 32
Number of Smart Objects No of Task-Profile Couple
(a) FedNet Bootstrapping Time (b) Access Point Formation Time

FIGURE 5.1: Bootstrapping and Access Point Formation Time

Realtime Access Point Formation Time: The next concern is the Access Point formation time
by FedNet for specific application. Recall from Chapter 4 that an Access Point template is at-
tached to an application by FedNet Core during application deployment time. This template is
filled by actual smart objects (e.g., association between the application and the smart objects
by mapping application tasks to smart object service profiles.) when the application starts up.
Thus the Access Point formation time is directly proportional to the number of tasks that re-
quire service profiles of different smart objects. The Access Point formation process requires
FedNet to contact the respective smart object by consulting its FedNet directory and appli-
cation task specification and to create a link between the application tasks and smart object
profiles. The following Figure 5.1 (b) shows the Access Point formation time for 32 task-profile

88 | Chapter 5: Evaluation

couple with 6 six different smart objects. For analysis purpose, half of the task were push type
(actuate) and the rest half is pull type (sense). Approximately 1.2 seconds were required to
setup the 32 task-profile couple, i.e., establishing six communication channels between the
application and smart objects via Access Point. The initial 0.6 seconds can be considered as
the setup overhead for the FedNet Core to parse the application tasks and to map the tasks
to respective profiles by consulting its FedNet Directory.

<> Phidget Sensor
Cookie Sensor

UPnP Device

X10 Lamp | 200

o 240
UPRPALC. | 9]
v

E 180
£

UPRPTV | & 120
=
bt
8

60

Bluetooth Headphone* |
1 0
0 60 120 180 240 300 Packet.1 Packet 2 Packet 3 Packet 15
Latency in msec
Outward Latency Inward Latency
Applications to Smart Objects Smart Objects to Applications

*Bluetooth Discovery is not performed here. The latency is calculated after forming the pico net

FIGURE 5.2: Communication Latency

Communication Overhead: There are basically two types of communication links in the en-
tire framework. Outward link from application to smart objects through Access Point when
application requests the service of a smart object and Inward link from smart object to appli-
cation when smart object service profiles push service data to the application. The outward
link is synchronous where an acknowledge is being pushed to the application from smart ob-
jects. The inward link is asynchronous where application only receives subscribed smart ob-
jects service data without providing an acknowledgement. In both type of communication,
there might involve device level translation of data packets into FedNet defined data packets
if the smart objects native protocol is different than the primary transport protocol used in
FedNet. Figure 5.2 shows the communication latency both outward and inward for the smart
objects with different transport protocol. As shown, for X10 and Bluetooth headphones out-
ward communication latency is in the range 0-60 milliseconds. However, UPnP devices were
slow to response due to the fact of larger conversation time of the UPnP packets into Fed-
Net packets. For inward communication, there is always latency in the delivery of the first
packet. This is due to the activation of the communication link that was established during
Access Point formation period. However, after that the delivery latency of the packets was

Chapter 5: Evaluation | 89

reduced. In inward communication cases too, UPnP packets took longer time to be delivered
than Bluetooth or Phidget Sensor based packets due to the packet translation time of UPnP.

Overall System Performance: From the overall functionality perspective, FedNet and the tar-
get system provided a stable performance. Application and all the smart object profiles were
externalized through the Task Description Document and Profile Description Document. Fed-
Net provided the runtime association by structured type matching and consequent formation
of the Access Point to provide the foundation for inward and outward communications.

5.2.1.4 Summary of the Quantitative Evaluation

In the above section, the runtime performance of the FedNet in the light of a home entertain-
ment smart object system were discussed. The performance of FedNet can be considered sat-
isfactory taking into account that the target smart object system successfully operated with-
out any significant delay or failure during the experimental period. However, this experiment
was not meant to evaluate the functional aspects of the framework, rather to quantify the
performance of movable components of the framework. From that perspective, this quantifi-
cation adds little value to the evaluation of the framework. The next section will look at the
gualitative aspect of the framework and will assess the functional features of the framework

by revisiting the design requirements.

5.3 Qualitative Evaluation of the Framework

One effective metric of evaluating the functional aspect of a framework is to revisit the de-
sign requirements and to justify how the implementation of the framework meets those re-
quirements. This section revisits the design requirements for building smart objects and for
developing a supporting infrastructure that was introduced in chapter 3 and will validate how
implementation of the proposed framework, i.e., smart object wrapper, application develop-
ment process and FedNet runtime infrastructure meet those requirements.

5.3.1 Revisiting the Smart Object Design Factors

In chapter 3, five design requirements were presented for developing smart objects. A core-
cloud based theoretical model was proposed that meets these requirements. In the current
framework, smart object wrapper implements the core-cloud model. This section discusses
how smart object wrapper meets these design requirements and allows building reusable,
extensible and plug and play smart objects.

1. Decoupling the Smart Features: The core-cloud model essentially meets this design
goal elegantly where core provides the runtime to host the clouds. In the context of the

90

Chapter 5: Evaluation

proposed framework, smart object wrapper implements the core-cloud model, and the
core contains plug-in runtime that allows any augmented features (developed following
the framework's profile semantics) to be plugged in. These plug-in structure allows a
smart object to contain multiple features (service profiles) as well as same profiles can
be applied to multiple compatible smart objects.

. Service Unification (Sensing and Actuating): The notion of service profile in the con-

text of current framework is independent of any smart object and can implement any
functionality, i.e., a profile can be push (actuating)or pull (sensing) type. A smart ob-
ject wrapper handles all the profiles in an identical fashion regardless of their types.
Through this profile based abstraction, service unification is achieved.

. Reusability: It is the core-cloud model that provides the foundation for the reusable

smart objects. Core is the minimal runtime of any smart object, and in the current
framework context it is assumed that every smart object will be equipped with this core.
As long as this core is present, a smart object can host any service profiles through the
plug-in runtime. Similarly, profiles are built independently, thus can be applied to mul-
tiple smart objects. For example, a proximity profile capable of identifying the presence
of an obstacle/entity in front of it's host, can be applied to any suitable smart object that
needs this kind of functionality, e.g., a table, a door, a mirror, a drill, etc. Since there is
no inherent dependency between the profile and the core of a smart object, it is very
easy to reuse a smart feature to augment multiple smart objects.

. Plug and Play: The implementation of the core-cloud model, i.e. the smart object wrap-

per is structured in a highly modular fashion and it's components are disseminated as
generic binaries, i.e. the core of a smart object wrapper is a binary executable that can
associate with any profiles at runtime, where each profile is also exposed as generic bi-
nary executable. These binary representations allow a smart object wrapper to be plug
and play.

. Incremental Deployment and Extension: A by product of the above design factors con-

tributes to satisfy this design requirement. Due to the highly modular, binary represen-
tation and plug and play nature of smart object wrapper and profiles, it is reasonable
to claim that the the proposed core-cloud model and its implementation (smart object
wrapper) enable the incremental deployment and extension of smart objects. Consider
a smart lamp, initially it would come only with the core of a smart object wrapper. A
couple of weeks later a suitable profile can be added to this core to extend the func-
tionalities of the lamp. A few weeks later another profile can be added or the previous
profile can be updated. Since, each profile is free from any inherent dependency on the
core, the smart object wrapper naturally supports incremental deployment and exten-

sion.

Chapter 5: Evaluation | 91

In the later part of this chapter, two smart object systems integrating multiple smart objects
will be presented which will further demonstrate these issues and will validate the claims of

meeting the above five design factors by the proposed framework.

5.3.2 Reuvisiting the Infrastructure Design Factors

In chapter 3, five design requirements for a supporting infrastructure were presented. Above
section explained how the core-cloud model support the requirement of addressing augmen-
tation variation of smart objects. In the following, the rest four design requirements are dis-
cussed in the light of proposed document based framework.

1. Heterogeneity: One fundamental requirement for a infrastructure supporting distributed
systems is hiding heterogeneity and providing transparent distributed communication
from applications perspective. Typically the heterogeneity issue arises considering the
protocol variations of underlying components that the application uses. In the pro-
posed document based framework, applications are forced to externalize their runtime
requirements through document and to structure their application based on functional
tasks. It is FedNet that takes care of protocol heterogeneity issue while providing trans-
parent communication to the application. Consider the following code snippets (Figure
5.3) showing how an application interacts with the underlying component. As it is visi-
ble, application does not need to consider the underlying protocols of the smart object
that supports this task. At the same time, the distributed communication is completely
transparent to the application. From a device perspective the Profile Handler layer han-
dles the instrumentation specific heterogeneity and provides uniform communication
scheme through smart object core. This in turn is overlaid by Smart Object Repository
of FedNet to make sure all communications follow a uniform protocol, i.e., HTTP/XML.
Thus, the framework in context can elegantly handles the heterogeneity requirement.

1. Enumeration<Task> vector = this.taskList.elements(); /* Retrieve all the tasks */
2 while(vector.hasMoreElements()){

3 Task task=({Task)vector.nextElement();

4 if(task.getID().equalsIgnoreCase("T1") & task.getProfileFound()){

3. /* Task 1s executable, profile 1is available */

6 AccessPoint.sendTaskRequest(xmlProc. generateOutgoingMessageC

7 Constant. TASKREQUEST, task.getID()));

8 }

9. 1

FIGURE 5.3: Sample Application Code

2. Management of Smart Objects: In a typical distributed system, application needs to

handle the underlying component management issues (e.g., locating, accessing etc.). A

92

Chapter 5: Evaluation

useful infrastructure usually takes these issues away from the application and provides
simple mechanism to accomplish these tasks to simplify the application development
process. In the current framework, FedNet takes away these tasks completely from
applications and provide applications with task based abstraction only. For example,
in the code snippets in Figure 5.3, we can see that the application only requests the
respective tasks to Access Point that it wants to accomplish without considering how
to locate the smart object that can support this task. This discovery process in com-
pletely eliminated from the application's scope. Furthermore, the interaction of appli-
cation with underlying environment has a unified access mechanism (i.e., accessing
the access point assigned to the application by FedNet using a simple HTPP/XML based
communication scheme) regardless of the type of smart objects. This further simplifies
application development.

. Evolution of Smart Objects Systems: As discussed in chapter 2, a smart object sys-

tem can be stand-alone, co-operative or infra-structured while majority of the smart
object systems are composed of one or multiple applications that integrate one or mul-
tiple smart objects. Thus the evolution of a smart object system depends how easily
and efficiently, the application and smart objects can be extended. We have already
discussed how the core-cloud model enables the extensibility of smart objects by pro-
viding generic binary core that can host any number of profiles as binary plug-ins over
time. From application's point of view, this evolution of smart objects has two side ef-
fects: i) an application can provide basic services in the beginning and can incrementally
provide richer services as new smart objects are introduced. ii) an application can pro-
vide basic functional features in the beginning and can provide richer services over time
as new profiles are plugged into the core. Furthermore, since an application is devel-
oped in isolation without any dependencies on the underlying infrastructure, the entire
application and corresponding document can be replaced with an updated one to in-
crementally evolve a smart object system. Because of the fair loose coupling among the
components of the system and core-cloud model of smart objects, the current frame-
work supports the evolution of a smart object system very effectively.

. Suitable Programming Abstraction: We discussed in chapter 3 that an effective pro-

gramming model is needed for developers to build smart object systems. From applica-
tion developer's point of view, this abstraction should hide heterogeneity, distributed
communication, and should allow unified access mechanism. In the current framework
context, developers are offered a Task based abstraction for application development.
Applications are required to be structured based on atomic actions that require under-
lying components' (i.e, smart object) services. As shown in the code snippets of Figure
5.3, this task based abstraction can hide the heterogeneity and distributed communica-
tion aspects elegantly. Furthermore, by adding new tasks to an application, it is possible
to leverage off new functional features from an application using existing abstraction,
i.e., Task. From a smart object's perspective, the abstraction provided to the develop-
ers is Profile. Regardless of the type of services that the smart objects support (e.g.,

Chapter 5: Evaluation | 93

sensing, actuating, etc), every augmented feature is represented as a Profile and the
corresponding programming model allows developers to implement the feature using
this Profile based abstraction. Such abstraction enables a smart object to represent its
services in a unified manner, and which in turn is exploited by Task based applications.

The combination of these quality features also satisfy the architectural qualities required by an
infrastructure to enable end-users in the deployment and extension of smart objects, i.e., plug
and play and extensible smart object systems with loose coupling among system components.
Next section reports the usability studies on the entire end-user involvement process along
with the interaction tools.

5.4 Evaluation of End-User Aspects through User Study

The final aspect of the evaluation is validating the claim that the proposed framework elevates
the end-user experiences with smart object system by considering user-centric issues in the
architectural design. Chapter 3, discussed that one way of increasing the framework quality is
by considering how end-users will use the system that leverages off the framework and how
that experience can be enhanced. This work argued that to enhance user-experience it is im-
perative to involve end-users in the deployment, extension and administration of smart object
systems. This is particularly important for smart object systems as they will be a part of our en-
vironment where end-users have the ultimate control. Consequently, in the proposed frame-
work smart object systems are structured in a highly modular fashion, where components
are independent and are glued together via a runtime infrastructure FedNet. This modular
design allows the framework to provide foundation for involving end-users in the manage-
ment process of smart objects systems and enables design opportunities for building novel
interaction tools atop the framework. Thus an integral evaluation aspect of this work is this
end-user involvement and supporting tools. One way to evaluate the usability of the end-user
involvement process and the interaction tools is by inviting ordinary individuals to perform the
deployment and administration tasks related to smart objects systems. Consequently, a series
of user studies are designed and the detail of these studies are presented in this section.

Following the guidelines of Edwards et al. [Edwards et al., 2003] for evaluating ubicomp sys-
tems, a couple of proof-of-concept smart objects systems that include multiple smart objects,
profiles and application are re-developed following the approach of the framework in context
and are provided to end-users for real time deployment, extension and administration in two
separate studies. In the first study the smart object management task was assisted by the
GUI interaction tool, whereas in the second study TUI interaction tool was provided to the
participant for the management tasks. In this section, first the two proof-of-concept systems
are presented followed by the report of two study sessions.

94 | Chapter 5: Evaluation

5.4.1 Two Sample Smart Object Systems

In this section, first a scenario is presented to illustrate the concepts that form the basis of the
study. This will be followed by two systems that implement the scenario.

5.4.1.1 A Scenario

Alice recently moved into a new home and bought a new mirror augmented with a display for
her wash room. She found and downloaded an interesting application on the internet that can
show some information (e.g. weather, stock quote, movie listing etc.) in the mirror display and
installed it on the mirror. While reading the application manual, she realized that the applica-
tion has some advanced features that can be enabled by adding some add-ons in the mirror.
For example, if the mirror is augmented with a sensor that can recognize someone's presence
in front of it, the application can show the information only at that time, for the remainder
of the time it will switch to the power-save mode. Similarly if the mirror is augmented with
an input device, the application allows the user to interact with the application, e.g. to know
more detail about weather information. Alice decided to enable all these features one by one.
A week later she bought an infra red sensor and placed it in front of the mirror, now the ap-
plication automatically goes to the power-save mode when no one is in front of it. After a few
weeks, she bought a touch button and attached it to the mirror, so that she can interact with
the application more closely. Now, her mirror application is running in full fledged mode just
as she liked. A few months later she found a new application for her mirror that can monitor
her toothbrushing activities and can give feedback using the mirror display. The feedback is
conveyed allegorically through a virtual aquarium. She bought the application and installed it
in her mirror. She also bought a compatible toothbrush that work with her fancy application.
Now her toothbrushing becomes fun as well as more healthier than ever.

The above scenario is implemented using two smart object systems. In the following these
two systems and their constituents are described.

5.4.1.2 Descriptions of the Smart Object Systems

The first system is composed of the following

e SmartMirror: Aregular display is augmented with an acrylic mirror panel (Figure 5.4(a,f)).
The acrylic panel is attached in front of the display, and only bright colors from the dis-
play can penetrate the panel. The mirror display has an extension board for attaching
sensors. A Smart Object Wrapper instance represents the mirror.

e AwareMirror Application: This application runs in a mirror and displays some up-to-
date information [Fujinami et al., 2005]. The application's default functionality can be

Chapter 5: Evaluation | 95

enhanced if the mirror is augmented with Proximity and Bi-state Interaction profile. The
former enables the application to show information only when someone is in front of
it and the latter enables the users to interact with it, e.g., to know detail information.
This application adheres FedNet semantics, e.g., expresses tasks in a description file and
access the smart objects in a RESTful manner. (Figure 5.4(g)).

(a) Mirror with Extensible Interface (b) Toothbrush

(Floor, IR and Motion Profile (Touch and
Sensor) Force Sensor, Slider)

FIGURE 5.4: Smart Objects, Profiles and Applications, Manuals and Interaction Tools

The second system is composed of the following:

e Smart Mirror: Same as the above system.

e Smart Toothbrush: A toothbrush (Figure 5.4(b,f)) is augmented with a wireless 3D ac-
celerometer sensor [Hanaoka et al., 2006]. It can provide its state of use information
and is represented by an instance of the Smart Object Wrapper with a state-of-use pro-
file. The sole purpose of the state-of-use profile is to provide the usage state, e.g.,
toothbrush is in use, etc. profile plugged into it.

e Virtual Aquarium Application: This application has the objective of improving users -
dental hygiene by promoting correct toothbrushing practices [Nakajima et al., 2008].
The application turns the mirror artefact into a simulated aquarium. Fish living in the
aquarium are affected by the users toothbrushing activity if a toothbrush is available.
The application's default functionality can be enhanced if the mirror is augmented with
Proximity profile that enables the application to show the aquarium only when some
one is in front of it. This application adheres FedNet semantics. (Figure 5.4(g)).

96 | Chapter5: Evaluation

Profiles: Both systems' functionality can be enhanced by adding one or multiple profiles into
the mirror artefact. These are:

e Proximity Profile: This profile's purpose is to recognize the presence of an entity in front
of its host smart object. This functionality can be achieved in multiple ways, i.e., using
an infra-red sensor, a motion sensor, a camera, etc. Three implementations for this
profile (Figure 5.4(d)) were provided using infra-red sensor, floor sensor (Figure 5.4(c))

and motion sensor respectively.

e Bi-State Interaction Profile: This profile enables a user to interact with its host smart
object. It provides a simple two-state input facility suitable for applications that needs
binary input. There are multiple instrument choices for the profile implementation and
three implementations (Figure 5.4(e)) were provided for the study: one with a touch
sensor, one with a force sensor and the last one with a slider.

FedNet Infrastructure and the deployment Tool: The FedNet infrastructure runs in a laptop
computer. The web based tool runs on this machine and the tangible deployment tool is
connected to this machine.

5.4.2 Study Methodology

Each of these applications, smart objects and profiles is developed following proposed frame-
work semantics. Also, the same profile is built with multiple sensors. The successful deploy-
ment and incremental integration of these components by the end-users will highlight the
core features of the system and will reveal the usability of the overall process. To support
end-users in these tasks, two interaction tools are developed, one with Graphical User Inter-
face (GUI) and the other with Tangible User Interface (TUI) as illustrated in chapter 4. Thus,
involving end-users in a user trial will also reveal the usability of these two interaction tools
and will put forth future design issues. Accordingly, two user studies are conducted to un-
derstand the feasibility of the proposed approach. Both the study were identical from the
methodology point of view except the fact that in the first study the end-users were assisted
with the GUI interaction tool where as in the second study users were assisted with the TUI
interaction tool. It was decided to go for two completely different study sessions for the fol-

lowing reasons:

1. To ensure that the participants do not loose focus or motivation considering the tasks

involved in the study sessions might take long time.

2. Toensure that there is no learnability effect on the outcome of the study considering the

consecutive repetitions of the same tasks by two different tools might result in outliers.

Chapter 5: Evaluation | 97

5.4.2.1 Participants

50 individuals (28 Male, 22 Female, age range 19-42) with moderate computing skills (familiar
with web, email, and basic office applications) were invited through an open invitation in a
social networking site. 25 (12 Male, 13 Female, age range 19-42) of them participated in the
first study and rest 25 (14 Male, 11 Female, age range 22-39) of them participated in the
second study. Majority of the participants (94%) did not have any engineering background.
Users were screened such that their professions were fairly disperse (e.g., law students, house
wives, office workers, etc.) to balance the skill level. Furthermore, it was ensured that the
participants in both the studies have similar background.

5.4.2.2 Study Sessions

Each study session was held for 90 minutes for each participant and included four phases. In
phase one, the overall concept of smart object system and a tutorial on the respective deploy-
ment tool were presented. In phase two, the subject was given 10 minutes to get familiar with
the tool. Next, in phase three, the participant was given the following four tasks to complete
using the deployment tools and the respective smart objects, profiles and applications.

e Task 1: Deploying a smart mirror, i.e. addition of a smart object in the environment.

e Task 2: Installing either AwareMirror or Virtual Aquarium application on the smart mir-
ror and running the application.

e Task 3: Closing the application and the smart mirror. Then adding the Proximity Pro-
file* into the mirror by selecting one of the three implementations if the user selected
AwareMirror application or adding the smart object toothbrush if the user selected Vir-
tual Aquarium application. This task ends with running the smart object and the appli-
cation again.

e Task 4: Closing the application and the smart mirror. Then adding the bi-state inter-
action profile into the mirror by selecting one of the three implementations if the user
selected AwareMirror application or adding the Proximity Profile into the mirror by se-
lecting one of the three implementations if the user selected Virtual Aquarium applica-
tion. This task also ends with running the smart object and the application again.

To complete these task end-users utilized the respective GUI interaction tool and TUI interac-
tion tool and followed the interaction mechanism as discussed in chapter 4 (section 4.4).

Finally in phase four, participant was requested to attend a questionnaire followed by a in-
depth interview session. The questionnaire contained 14 statements structured with a 5-item

* The profile hardware installation requires attaching the sensor to the mirror using double sided adhesive tape
and connecting the sensor cable to the interface board located in the backside of the mirror. For the floor sensor,
hardware installation was not needed except for placing the floor mat.

98 | Chapter 5: Evaluation

Likert scale to indicate their level of agreement or disagreement. Question 1-10 were designed
following the System Usability Scale (SUS) [Brooke, 1996] and the remaining four questions
regarding the complexities of each tasks °. Following the questionnaire, participants were
interviewed to gain further insight into their assessments. Each session was video taped for
later analysis. Figure 5.5 shows some snapshots from the experiment sessions.

FIGURE 5.5: Participants consulting manuals, deploying smart objects, installing applications,
adding profiles, etc.

5.4.3 Study Results

For the clarity of the discussion and comparison of the study results, in the following the

combined results of the study are presented.

5.4.3.1 System Performance

FedNet and the target systems provided a stable performance in all the sessions and the end-
users' activities were properly converted into system events accordingly. The flawless deploy-
ment and the successful utilization of the two smart objects systems can be considered as an
qualitative evaluation of the system aspects of the framework in context. In the following two

specific system related concerns are highlighted.

1. Plug and Play Extensible Smart Object: The smart mirror was deployed by the partici-
pants and its functionality was extended by attaching a couple of profiles (with multiple

>Likert scale was normalized to complexity levels.

Chapter 5: Evaluation | 99

sensor choices) to enhance applications features. Regardless of the sensor type, profiles
were seamlessly added into the smart object wrapper. Furthermore, the order of pro-
file addition had no effect on the deployment process. So participants picked whatever
profile they felt like adding. This highlights the capacity of the smart object wrapper for
hosting multiple profiles implementing different device interfaces. The combination of
these are important for enabling the Do-It-Yourself (DIY) support for the end-users.

2. Infrastructure Independency and Spontaneous Federation: Both the smart objects and
applications were expressed in high level descriptive documents and disseminated as
executable binaries independent of the FedNet infrastructure. This allowed the end-
users to install them easily. FedNet provided the runtime association enabling appli-
cations to use the artefacts and to switch to respective advanced modes when new
profiles were added. For the end-users, these mechanisms were completely transpar-
ent as they could only see the effect of their actions. This highlights the simplicity and
power of the proposed approach to involve end-users in the deployment process.

5.4.3.2 End-Users' Performance

For the clarity of the discussions, the variety of actions that are performed by the end-users
during the task session (phase three) as mentioned in section 5.4.2.2 are structured into 4
categories. These are:

e Smart object addition.
e Application installation.

e Profile addition, thereby extending a smart object's features and the applications run-
ning on it (when applicable).

e Smart object systems administration, i.e., associating an application with a smart object,
controlling (start/stop) an application and respective smart objects, etc.

In the following the end-user performance in study sessions are discussed.

Study Session with GUI Interaction Tool: There were 100 tasks in total, four for each partic-
ipant. Each of the participants was successful in finishing the assigned tasks. However, 11
participants needed active support in early stages and 4 of them needed support for all the
tasks. On an average 34 minutes were required for the third phase (accomplishing the four
tasks). Figure 5.6 shows the time (Figure 5.6 (a)) required for each task and the corresponding
complexity (Figure 5.6 (b)) associated with the task. Participants required least time of 2-4
minutes in finishing task type 1, where as they required fairly large time for other tasks as
shown in Figure 5.6 (a). They struggled in general in manipulating the GUI. The generic bina-
ries for the smart object, applications and profiles were provided in flash memory stick which

100 | Chapter5: Evaluation

further confused them. For example, while installing application, they thought pressing install
button will install the application without realizing the fact that they need to link the binary
stored in the supplied memory stick in the installation window. Similar mistakes were seen
by several participants in the first few tasks. However, in the later stages they were able to
perform the tasks without any mistakes. The profile addition tasks took longest time due to
the installation of the hardware. The difficulties of using the GUI interaction tool to accom-
plish the assigned tasks resulted in quite drastic user response in terms of the complexities.
As shown in Figure 5.6 (b) all the participants comprehended that the overall tasks are compli-
cated. However, later interview revealed that, their impression is basically on the interaction
tool, not on the entire end-user involvement process. This was further confirmed in their sub-
jective responses (presented later). All participants have shown progress in repeating tasks
and on an average they required 37% less time in redundant activities, e.g. when adding the
second profile plugin, attaching hardware, or restarting an application, etc.

20
. _ Smart Object Addition 23
U
s ¥ ’*f Application Installation 31
z 8 E:*
| 6. ¥ ——
o X) | B Profile Additon 39
) €
! Smart Object profile & Smart Object Systems Administration 2.9
Addition
0 1 2 3 4 5
Complexity Scale [1:Very Easy 5: Very Hard)]
(a) Required time for each task (b) Average complexity level for each task

FIGURE 5.6: Average time taken and average complexities for completing experiment tasks
by end-users using Graphical User Interface Tool

Study Session with TUI Interaction Tool: There were 100 tasks in total, four for each partic-
ipant. All participants successfully finished the assigned tasks, though 6 participants needed
active support in the early stages, primarily because of the misconception of the deployment
process (explained later). On an average 16 minutes were required for the third phase (accom-
plishing four tasks cumulatively including the intervals between the tasks). Figure 5.7 shows
the time (Figure 5.7 (a)) required for each task type and the corresponding complexity (Figure
5.7 (b)). Task type 1, 2, and 4 required fairly little time (1-4 minutes) since they consist of 2
step interaction. However, smart object addition time was slightly higher because of the task
order. Since, every participants' first task was to add a smart object, it required a slightly more
time. The end-users also found these tasks easy with an average complexity of 1.2 out of 5.0
for the task type of 1, 2 and 4. The profile addition task took maximum time (4-9 Minutes)
where a large portion was spent for the hardware installation. Moreover, 8 participants made
mistake in the association step e.g., placing the smart object card later than the profile card
onto the card reader or not placing the smart object card at all. However, the deployment
tool rejected these interactions and suggested the correct steps. This allowed the end-users
to accomplish the task without secondary assistance. These factors also impacted the profile
addition task's complexity (average: 3) as shown in Figure 5.7 (b). All participants have shown

Chapter 5: Evaluation | 101

progress in repeating tasks and on an average they required 28.3% less time in redundant ac-
tivities, e.g., when adding the second profile, attaching hardware, etc. This indicates the fast

learnability of the deployment process.

10
I Smart Object Addition 1.4

-‘- 8 74
6 Application Installtion 1.0
H
1P Profile Addition 3.0

! EJZ |:':| 11 1 . L. h

. = i Smart Object Systems Administration 1.2

Smart Object Application Profile Addition Smart Object
Addition nstallation Systems 0 1 2 3 4 5

Administration Complexity Scale [1:Very Easy 5: Very Hard]

(a) Required time for each task (b) Average complexity level for each task

FIGURE 5.7: Average time taken and average complexities for completing experiment tasks
by end-users using Tangible User Interface Tool

Combined Subjective Results of End-Users Feedback: The composite SUS score was 76.3 out
of 100 (Standard Deviation: 13.2, Max: 91.2, Min: 59.3) regarding the overall usability of
the deployment tool and the process. These values can be considered as quite promising.
Moreover, the individual frequency of the acceptance statement in SUS: "I would like to have
this system if it were available" (Strongly Agree: N=37, Somewhat Agree: N=8) suggests users

positive response regarding the acceptance of the overall approach (Figure 5.8).

10%
5% \ Strongly Agree
.________‘3 Somewhat Agree

Others

14%

FIGURE 5.8: Subjective responses of the end-users on the overall process

5.4.4 Implications of the User Study

Later interviews with the participants revealed several interesting aspects regarding their un-
derstanding and qualitative assessments of the entire process. In the following these aspects

are discussed.

102

| Chapter 5: Evaluation

1. Concept is difficult to comprehend: The notion of profile and application were difficult

for the end-users to comprehend and differentiate. For them the smart object pro-
file and the application were the same. One participant commented "/ did not get this
profile thingy, is not it an application for the artefact? It's a bit confusing, what is the dif-
ference between profile and application?." Another participant remarked "/ understand
that profiles are artefact features, but since the installation process is same, it is hard
to differentiate the role of the artefacts, profiles, and applications. May be the profile
addition button should be at the other end so that we know it has a different purpose.”
They also had difficulties in understanding what a profile is, as they associated the term
profile with someone's background or record. So, they could not correlate how a phys-
ical object could have multiple profiles, which also affected the performance of adding
profiles as shown in Figure 5.6 and in Figure 5.7. These facts imply that, the current
notions are not self explanatory to end-users and it is needed to provide a more com-
prehensive way of expressing these concepts. Also, as one of the above quotes pointed
out, the orientation and placement of the interaction button for extending smart ob-
jects feature should be different than installation buttons.

. Installation process was difficult: Although, all the participants were familiar with the

Internet, they found it difficult to use the GUI web interface tool to install the smart ob-
ject, application and profiles. Later interviews revealed that, it was primarily because of
the user interface since they need to switch their attention from physical object to com-
puter frequently to see their actions output. With the TUI interface, participants had
better experiences since their interactions were more coherent. The end-users mainly
struggled in installing profiles. The end-users suggested that the process of profile de-
ployment has to be plug and play, when attaching the profile hardware the correspond-
ing software should be installed with minimal intervention.

. Different packaging is preferred over DIY: Several participants mentioned that they can

buy a product with different functional granularity according to their preferences. one
articulated participant pointed out "Why don't you make different versions of this mirror
with installed sensors and applications, then | can just go and buy whatever | need rather
than trying to figure out where to put which sensor." She goes on saying "I would like to
have this kind of cool stuff in my home but perhaps | would ask my boyfriend to install it
for me." 12 participants had similar view points. They concurred that the smart object
should be pre packaged, for example: one mirror could be packaged with a proximity
profile and another with both profiles, etc. In this case they have the flexibility to buy
different packages. Although, they agreed that the DIY approach is fun, interesting and
inexpensive, but it limits the acceptability of the product to a mass population. One
housewife remarked "My husband would love to play with your mirror, but | don't know
how often | will do this." These views suggest that, to make smart objects available to
a larger user base, packaging with variant options are needed. The incremental DIY
approach can further extrapolate the packaging scheme.

Chapter 5: Evaluation | 103

4. Familiarity with sensors is crucial: Multiple sensor implementations for the same pro-
file were provided in the study. It was found that different participants have picked
different sensors. For proximity profile infra-red sensor was picked 32 times, the mo-
tion sensor 15 times and the floor sensor 3 times. For the bi-state interaction profile,
the touch sensor was picked 41 times, and the slider 5 times and the force sensor 4
times. The end-users pointed out that their familiarities with the infra-red, motion and
touch sensors in everyday life (e.g., in washroom faucet, magnetic door, garage, touch
screen etc.) influenced their selection, since it was easy for them to understand how the
sensors work and how to interact with them. Also domestic concerns were highlighted
by a few participants. Most of them rejected the floor sensor since they found it big,
and problematic while cleaning the floor. Similarly, they mentioned that the slider's
sharp edge might harm their kids. Moreover, since they knew what the sensor does,
they revealed that it would be very simple for them to deactivate it. The latter findings
actually confirms what Beckmann et al. concurred about domestic concern and greater
feelings of control [Beckmann et al., 2004]. These factors imply that the smart objects
and the profiles should use the sensors that are common in our everyday life to involve

end-users in the deployment process.

5. Instantaneous feedback is necessary: It is essential that when a user perform some
actions, the system provides instantaneous feedback with appropriate level of informa-
tion to confirm their actions. For example, when a profile is added to a smart object,
the new functionalities should be reflected in the smart object instantly and erroneous
installation should be reported immediately to confirm the users' actions. In the current
approach, the only way to realize a profile's functionality is by running the application.
However, the participants were curious in knowing whether their action was success-
ful instantly after the installation. This missing feature caused frustration among the
participants and was reported during the interview. This suggests that smart object
systems needs to have an instant feedback facility for confirming users' actions.

6. Tangible interface has potential: Figure 5.6 and 5.7. clearly show that the GUI inter-
action tool failed to attract users. The variation between the overall time taken by the
end-users using GUI and TUI tools also highlights this fact, as end-users required 47%
less time in completing tasks with TUI tool. End-users could not relate such GUI based
deployment process with installing other home appliances. However, most of the users
found the tangible tool familiar and user friendly. One user commented "/ like this tool
because it gives me the feeling of installing a physical thing, this touching, pressing are
something | am familiar with, for example using my TV or washing machine, its sim-
ple and more user friendly." Similar comments were received from other participants
too where they emphasized that tangible interaction for household appliances is more
familiar and suitable to them. Considering their projections, it can be envisaged that
tangible interface might be a potential candidate for deploying ubicomp technologies.

104 | Chapter5: Evaluation

7. Intuitive hardware interface is needed: Considering, the participants performances
and subjective feedback, it can be concurred that the intuitiveness of the profile hard-
wares are essential for the success of the DIY approach. For example, in the experiment,
except for the floor sensor, all the sensors had one cable that could be attached to the
mirror. However, there were two ports in the mirror for the cables and each port was
specific to a profile. 13 of the participants made mistakes in picking the right port. Al-
though it was clearly written in the manual, they did not consult it and tried to do it in-
tuitively. Of course, If the smart object is designed without further augmentation such
port or other hardware interfaces need not be intuitive, however for a DIY approach it
is necessary that the hardware installation process is self explanatory. Furthermore, it
was noticed that the participants were quite serious about the aesthetics of the mir-
ror while attaching the sensors. Later interviews revealed that it is important for them
to make sure that the overall appearance of the physical objects matched their style.
These facts suggest that the manual had a minimum role in the DIY approach and that
the instrumentation has to be intuitive to the end-users.

8. Balance with current practice is required: Participants noted that when they buy furni-
ture or home appliances, they do not need any software installation. Usually they just
plug it in and it works. However, in this approach software installation is required. Al-
though, the process is identical to regular desktop computing, it has no similarity with
home appliances. Thus the participants found it conceptually hard to think of the mir-
ror as a piece of furniture instead of a computer. This was further extrapolated by the
fact that a tablet PC was attached to the mirror which made them perceive the mirror
as a regular computer display. They suggested that the software installation process
should be absent, and that the hardware installation should be the only task since it
needs manual intervention.

5.5 Chapter Summary

In this chapter, the evaluation of the proposed framework was presented. The framework
was evaluated from three different perspectives: quantitative evaluation through the analysis
of the runtime performance of the framework, qualitative evaluation by revisiting the design
requirements and finally the evaluation of the end-user centric qualities of the framework
through two user studies. Three different smart object systems integrating a range of smart
objects were also presented in the context of these evaluation aspects. A series of user studies
were conducted to understand the effectiveness of involving end-users in the smart object
management tasks. These studies also exposed the pros and cons of the interaction tools
built atop the proposed framework. The result of these studies showed that end-users are
quite interested in deploying smart object systems just like other home appliances based on
their personal likings and choices as long as appropriate tools and supporting infrastructures
are provided.

Chapter 6

Discussion

Chapter 6

Discussion

In the last chapter, the evaluation of the framework was presented from quantitative and
gualitative aspects. After discussing the runtime performance of FedNet, the framework was
gualitatively assessed by revisiting the design requirements. Also, a couple of usability studies
were reported to highlight the effectiveness of the proposed framework in supporting user
centric qualities. This chapter discusses a few generic issues that are raised by this work.
The chapter will start off by discussing the applicability of the proposed framework in other
related domains. This will follow by the discussion on several design aspects of building system
infrastructure for ubiquitous environments. The chapter will close by shining the spotlight on
a more abstract and philosophical issue of finding appropriate balance between the proactive

and reactive approaches towards smart object systems.

6.1 Cross Domain Applications

The proposed document based approach enables applications' interactions with underlying
smart objects in an indirect fashion. Unlike typical distributed computing environment where
an application is offered unified programming interfaces to exploit distributed components,
the proposed approach requires an application to externalize its functional task lists in a struc-
tured document. This document is used by the secondary infrastructure to provide applica-
tion with an access point to interact with underlying smart objects following a unified access
mechanism. This indirection allows application developers to focus on the application logic
only, whereas the infrastructure takes care of protocol heterogeneity and distribution issues.
From a communication perspective, this approach represents every smart objects with a log-
ical HTTP extension, as application can access them using simple HTTP/XML based protocol.
This indirection and simple communication scheme enable the document based approach to
be applied in other domains. In the following, a few of these domains are discussed.

105

106 | Chapter 6: Discussion

6.1.1 Distributed Component Systems

As we have discussed earlier in this thesis, a smart object system is identical to a distributed
component system and both systems share similar philosophies regarding component encap-
sulation and reuse. Thus, the proposed document based approach can be easily applied to
distributed component systems, i.e., both applications' requirements and components' ser-
vices can be externalized through structured documents that can be used by the infrastructure

to provide runtime association between them.

6.1.2 Peer to Peer Computing

In a Peer to Peer (P2P) network, peers are the computer systems that are connected to each
other via the Internet. Files and other computational resources can be shared between sys-
tems over the network without the need of a central server. In such a computing environ-
ment, the proposed document based approach can be easily applied for different scenarios.
For example, peers may externalize meta-data of the files and resources to be shared in a doc-
ument. Similarly other peers may externalize meta-data of required files and resources to be
acquired in a document, and a secondary co-ordinator computer (another peer) can provide
the association between these peers. A slight variation of this scenario is actually realized by
the BitTorrent! file sharing protocol.

6.1.3 Service Oriented Computing

In a service oriented computing environment, systems group functionality around business
processes and package these as interoperable services. In this environment, proposed doc-
ument based approach can fit elegantly. Service specifications can be externalized in docu-
ments, similarly business applications' requirements can be exposed as function task list in a
document. Since the entire platform is network centric, a secondary infrastructure can pro-
vide the runtime association between the applications and services. This approach will sim-
plify the business application development process significantly as developers do not need to

consider service interfaces.

From an abstract perspective, the proposed document based approach can be applied to any
network systems that are structured around a group of distributed devices/components/ser-
vices. Of course, each domain will have its own specific assumptions and constrains, but hy-
pothetically this document based approach is generic enough to cover a wide range of appli-

cation domains.

 http://www.bittorrent.com/

Chapter 6: Discussion | 107

6.2 Further Look at Design Aspects

In chapter 3, we have discussed several design issues that were considered in the proposed
framework. This section further exposes these design issues and discusses some generic de-
velopment aspects.

6.2.1 High Level Abstractions

In a distributed computing environment where applications are composed of several hetero-
geneous components, abstractions play a vital role in easing the development effort. One of
the major challenges in designing middleware infrastructure for pervasive systems is to de-
cide which properties a middleware should hide from application's scope. Suitable abstrac-
tions hide the differences among implementations of heterogeneous components, provide
transparent distributed communication, and allow portability of the application. However, it
is very difficult to provide abstractions that can meet these requirements completely. Each
abstraction may have different assumptions and constrains in hiding these properties. It is
not easy to provide high level abstractions in a middleware infrastructure generically that can
be shared across a range of systems having different characteristics. Thus, we need to care-
fully consider what abstractions are suitable while designing a system infrastructure. Previous
works on middleware infrastructure for supporting synchronous collaboration in an office en-
vironment [Tandler, 2003] and middleware infrastructure for building location-aware applica-
tions [Harter et al., 1999] suggested that it is useful to design middleware infrastructure and
corresponding high level abstractions for supporting a specialised application domain. The
infrastructure and the abstractions may be generic enough to support a wide range of appli-
cations. In the context of smart object systems, it is expected to have suitable abstractions
that enable developers:

e To represent smart object services in a unified manner by hiding implementation het-
erogeneity.

e To support applications with unified access to smart objects by providing transparent
distributed communication.

e To support extensibility of a smart object system, e.g., spontaneous update of an appli-
cation or a smart object.

e To leverage new services using existing abstractions.

There are primarily two abstractions underneath the documents that have been applied in
the current framework. From smart objects' perspective it is the notion of profile that handles
the service implementation detail and protocol issues. Since profiles are independently built
following a plug-in architecture, a smart object service can be extended anytime by adding

108 | Chapter 6: Discussion

new sensors or actuators and attaching corresponding profile into the smart object's core.
Also, if a specific service needs to be updated only the corresponding profile needs to be
replaced, not the entire smart object or the applications utilizing them.

The second abstraction is from applications' perspective, i.e., tasks that simply externalize an
applications' requirements, so any application can be expressed with this abstraction. This
simple abstraction is powerful enough to hide the heterogeneity and distribution issues from
the application completely, as we have seen in the illustration of application development in
earlier chapters. This abstraction also enables an application to grow incrementally. Not nec-
essarily all tasks of an application can be supported by an existing environments, however with
the incremental addition of new smart objects in the environment or porting the application
to another environment with richer smart objects might enable the full functional features
of an application. In addition an applications functionalities can be updated independently
(application binary and the document) without concerning the impact of such update in the
middleware or smart objects. In current approach, such flexibilities are provided elegantly
by only expressing applications' task specifications in documents and ignoring smart object
management issues at the application level.

6.2.2 Separation of Concerns

One of the primary requirements for building distributed middleware is to provide sufficient
separation of concerns among the system components. This ensures loose coupling and mod-
ularity aspect of the systems. In the context of current framework this separation is achieved
by completely isolating application development from the infrastructure and underlying smart
objects. This disassociation of applications from the smart objects they reference is identical
to the Model-View-Controller (MVC) architecture from Smalltalk [Krasner and Pope, 1998]. In
the MVC architecture, data (the model) is separated from the presentation of the data (the
view) and events that manipulate the data (the controller). Similarly, documents in the current
framework act as the glue that associates smart objects services to applications that manip-
ulate the services. Such separation of concerns (i.e., both the applications and smart objects
are independent of FedNet and come as ready-to-run binaries), and data centric approach en-
able the framework to provide additional services orthogonally. For example, the end- user
interaction tools atop FedNet that enable end-users to deploy, configure and manage the ap-
plications and smart objects running in the FedNet environment.

6.2.3 Interface and Protocol

Majority of the existing middleware systems provide APIs to application developers for inter-
acting with the underlying environment. This approach is quite suitable in a limited scale but
it hinders the portability and reusability of the applications. Also, managing the configuration
and access of the distributed components at the application level makes the development

Chapter 6: Discussion | 109

process complicated and lengthy. On the other hand, building systems by adopting stan-
dard protocols makes application development faster as access mechanism is unified, and
heterogeneity of interfaces is removed. Furthermore, adopting standard protocol makes it
easy to integrate commercial products. Smart objects, devices and appliances may change
their functionalities and interfaces over time. Thus assuming a consistent interface is not ap-
propriate for application design. This work argues that it is not necessary to fix the interface
between the appliances but to determine the data format for communication. Accordingly, in
the proposed document based framework, rather than interface standardization, a common
communication protocol (HTTP/XML) is chosen along with the document based association
mechanism. Documents describing smart objects input/output specifications are delivered
to the application ahead of the actual communication by the infrastructure thus letting appli-
cation to prepare for the movable data. Furthermore, a smart object may provide services in
various granularities thus supporting multiple applications requiring services at different scale
(i.e., some applications may ignore some service features by ignoring part of the document).

6.2.4 Simplicity and Features

In the earlier prototypes of this work, several secondary features, e.g., security, personaliza-
tion, etc. were supported. However, through the development of a series of applications. it
was realized that these features add little values as most of the applications have their spe-
cific needs and defining these features generically at a global scope is very difficult. In fact,
for a smart object middleware the primary features i.e., abstracting physical objects, and pro-
viding lucid access mechanism to aggregate events in a simplest way by hiding complexities
(discovery, marshaling messages, etc.) are the keys for the developers' satisfaction. For ex-
ample, the current framework hides the discovery process completely from the developers
as it utilizes documents to create the runtime association. This transparency is found to be
more important to the developers than providing a versatile separate discovery service at an
infrastructure. These issues highlight one significant aspect that secondary features have no
value unless the primary features of a middleware are complete and adequate.

6.2.5 Some Notes on Evaluation

Ubicomp research is experimental in nature and applications are the whole point of ubiquitous
computing [Weiser, 1993]. This makes it difficult to evaluate a middleware of ubicomp sys-
tems. Primarily because the performance metrics typically used to benchmark a distributed
middleware are not compelling to measure the quality of a ubicomp middleware. For ex-
ample, efficiency of a smart object middleware is not constrained by faster throughput or
minimum latency, in stead support for proper context identification and triggering of proac-
tive service in a timely fashion are more important metrics for defining efficiency. Another
example is the system robustness; a smart object system is often physically distributed and
provides proactive services contextually. This characteristics suggests that users attentions'

110 | Chapter 6: Discussion

on smart object systems are not coherent. Thus if a particular node fails and restarts silently,
it is very likely that users will be unaware of that fact. Of course, in situations where users are
actively interacting with the system, or if the level of error is very critical, e.g. entire hard-
ware damage, etc., failures will be visible. However considering the physical nature of these
systems, most of the time robustness is hidden from end-users. Generally speaking, a smart
object middleware have very little commonalities with traditional distributed system middle-
ware from benchmarking perspectives.

6.3 Further Look at End-User Aspects

In the last chapter the quantitative and qualitative results of the user study designed to eval-
uate the end-user involvement were presented. These results have two implications. First
from a framework perspective, the successful completion of the study tasks validates the
framework's support for involving end-users in the deployment, extension and management
of smart object system. This validation in turn exposes the architectural qualities that needs to
be considered while designing user-centric smart object systems. For example, plug and play
and extensibility are the inherent requirements for end-user involvement. For supporting the
development of plug and play and extensible distributed systems (e.g., smart object systems),
it is imperative to provide loose coupling among the system components, and to provide in-
frastructure support in an indirect fashion. In the proposed framework this indirection was
achieved through the document based association between smart objects and applications.
Second implication is more from an end-user perspective. Specifically, the study shows that
it is viable to involve end-users in the administration of smart object systems as it provides
end-users with higher control, more confidence and better personalization support. The in-
teresting point to highlight here is the fact that even though the participant had no knowledge
of smart object system, they were successful in performing the requested tasks. This can be
directly compared with end-user involvement in personal computers and other information
appliances. As long as the technological requirements for bringing end-users in these activ-
ities can be satisfied in a persuasive way by exposing the benefits, it can be concurred that
end-users will accept the technology. For example, event though the overall study results are
not compelling considering the fairly high average time taken by end-users (25 minutes in an
average in both studies) to complete the tasks, the encouraging fact here is their subjective
responses that show 74% (Figure 5.8 in chapter 5) of the participants strongly agreed in in-
volving themselves in the deployment, extension and management tasks as long as suitable
interaction tools and supporting system infrastructures are provided.

This work is one of earliest efforts in the literature that looked at these aspects of smart object
systems from an end-user perspective. There are still a lot of issues to be investigated to
further mature this process. One of the immediate avenue of future work is so consider the
interaction tool. From the study we have seen that approximately 47% better response time
was achieved by replacing the graphical user interface with tangible user interface. However,

Chapter 6: Discussion | 111

this tangible tool is not completely adequate as it was found during the course of the work. For
example, it is not possible to deploy spatially distributed smart objects with this tangible tool
since it is centralized. At the same, the orientations and positions of the tool components are
not optimized as highlighted by the end-users. Thus it is imperative to state here that further
case studies are needed to fomalize a design guideline for building this kind of interaction
tools.

Another interesting aspect is the feedback provision. How to provide appropriate feedback
in response to end-users actions. There are multiple choices: i) using an embedded display
in the tool, ii) using a secondary display, iii) using multi modal feedback. e.g., speech, etc., iv)
embedding the feedback in the smart object itself. The first three options are straight forward,
since the feedback is not perceivable physically, whereas the last option is more channelling
as we need to consider how can we map such feedback features in smart objects interaction

primitives.

From the above discussions it can be concurred that there are various scopes for further in-
vestigations on end-user aspects both from system architecture and interaction perspectives.

6.4 Reactive or Proactive

One critical design decision taken in the current framework is to involve ens-users in the smart
object system. This involvement is not only for the purpose of deployment but also for man-
agement and administration. In fact, every deployed application and smart object is required
to be launched through explicit interaction in the current framework context.

Numerous ubiquitous computing architectures and meta operating systems, employ a com-
bination of sensor fusion and artificial intelligence techniques to enable an always-on smart
environment that can deduce user's need from contextual cues to provide them with just-in-
time smart services in a proactive fashion. This is indeed an arguable way of perceiving the
requirements of a ubiquitous environment. Do we really need a "smart space" to be smart
when there is no one in that space or when the user does not need to use the smart services?
This always-on approach suffers from the following problems:

e A centralized aggregator component is typically used for deducing user need from con-
textual cues applying sensor fusion and artificial intelligence techniques to create a
proactive smart spaces. This approach tries to solve very complex problem of artifi-
cial intelligence and human psychology to reason users' intention and lacks in reliabil-
ity and accuracy. Although in limited scale and scenario dependent environment, this
approach performs well, it suffers in adapting dynamic environment as the context rea-
soning logic is predefined.

e Always-on systems consume resources and introduce overhead because of being active
continuously.

112 | Chapter 6: Discussion

e This approach typically binds underlying resources with an application at instantiation
time limiting other applications to use those resources even when the first application is
notin use. In addition, this approach offers limited opportunities to dynamically replace
the underlying smart objects as they are tightly coupled with the applications.

e From human factor point of view a completely proactive system often conflicts with
humans' mental model. For example, a proactive action from the system might not be
always accepted by the users for a variety of reasons, e.g., emotion, social context, etc.

These problems require rethinking the approach of forming a pervasive environment. Relia-
bility and accuracy issues can be resolved if we construct reactive smart spaces and employ
end-users to initiate the smart services, i.e. converting a regular environment into a smart
one in an on-demand fashion as a reaction to users' actions. In the simplest case this could be
done by providing end-users with a simple user interface to indicate their intentions of using
pervasive services. An underlying infrastructure can take care of the rest from this point to
form a smart space. The argument here is that, if we involve user to initiate proactive services
in this fashion, we can achieve better performance with high reliability and precision. This
approach also leads to better data and resource management, less overhead, and less admin-
istration. Rogers [Rogers, 2006] and Bell [Bell and Dourish, 2007] concurred similar views on
human-centric computing.

In the current framework, this reactive approach is chosen and end-users are involved in ini-
tiating a smart object system. Once launched, the system can perceive the situational and
operational context to change its behaviour or to provide proactive services. From this per-
spective the current framework approach is to provide "passive smartness". This is because
the environment is capable of being smart always but it only acts smart when needed and
invoked by users. Thus applications and smart objects are not tied to each other, rather the
best composition is made when an application is initiated by a user. This approach is flexible
and allows an environment to react differently for different users sharing the space. The cur-
rent framework follows this principle and utilizes FedNet to form a spontaneous federation
among applications and smart objects.

6.5 Chapter Summary

This chapter discussed some generic issues in the light of the current framework. First the
applicability of the proposed framework in cross domain applications were discussed. Then,
the chapter looked at some design issues of building middleware systems for ubiquitous en-
vironment. After that, the discussion was switched to end-user aspects. The chapter was
concluded by looking at the design tradeoff between reactive and proactive approaches to-
wards smart object systems.

Chapter 7

Conclusions

Chapter 7

Conclusions

This thesis presents a document centric framework that supports the development of user-
centric, reusable, plug and play, and extensible smart object systems. This last chapter briefly
summarizes the work presented in this thesis, and puts forth a few research issues for future
exploration.

7.1 Research Summary

Chapter 1 introduced the research presented in this thesis and described the motivation be-
hind this work by drawing evidences from the evolution of computing. Then it put forth the
primary research question of this work by illustrating the problem space and design chal-
lenges. Chapter 2 provided a detail background of smart object systems, their classification
and characteristics by discussing a range of existing works on smart objects systems. After
carefully observing the characteristics of smart objects and contemporary notions, a defini-
tion of smart object was given with three cardinals: perceptual augmentation, device centric
situational awareness and supplementary services. Afew key properties of smart objects were
highlighted including unique ID, self-awareness, sociality, autonomy and stateful-ness. A clas-
sification of smart object systems composed of stand-alone, co-operative and infra-structured
smart objects was introduced with appropriate illustrations.

With a formidable understanding of the nature of smart object systems, the thesis moved
to chapter 3 and discussed the design aspects from three perspectives: a common theoret-
ical model for smart object, an infrastructure support for building smart object systems and
user-centric design issues. Considering the design requirements of smart object, a core-cloud
model was proposed that consist of:

e A Core that combines the functionalities that are common across a variety of smart
objects.

113

114 | Chapter 7: Conclusions

e Clouds are composed of augmented features of smart objects that can be plugged into
the core.

This model satisfies the basic design requirements, i.e., decoupling smart features, building
plug and play, reusable and incrementally extensible smart objects that can do both sensing
and actuating.

After that, the thesis put the spotlight on the framework aspects for building smart object sys-
tems and discussed five basic design concerns: handling heterogeneity, augmentation varia-
tion and management of smart objects, evolution of smart object systems and effective pro-
gramming model. A number of existing device integration systems intended for context-aware
computing, home computing, or other relevant domains were discussed to form the basis for
the necessity of a new framework. Then the proposed document based framework was in-
troduced while explaining the design decisions in respect to the design requirements. The
framework forces applications' requirements and smart objects' features to be externalized
through documents and employs a secondary infrastructure, FedNet to create a spontaneous
federation among the application and smart objects using the corresponding documents. The
later part of the chapter looked at the end-user aspects and argued that involving end-users
in the deployment and administration of smart object systems can elevate end-user experi-
ences. Accordingly, architectural qualities for a framework to support end-user involvement
were discussed.

Chapter 4 presented the implementation of the proposed framework and its constituents
along with corresponding design methodologies. The framework is composed of three com-
ponents:

e Smart Object Wrapper: The core-cloud model is realized by smart object wrapper. The
core contains communication module, notification module, static memory, client han-
dler, and profile repository. Augmented feature is developed as profile and plugged into
the core. The profiles' services along with basic smart objects properties are objectified
in external documents.

e Application Development Process: The proposed framework forces an application to
be structured based on functional tasks that require smart objects' services and ex-
ternalize these tasks in a document. Furthermore, it is required for an application to
implement a basic RESTful communication protocol (HTTP/XML) to access FedNet to
interact with the underlying smart objects.

e FedNet Runtime Infrastructure: FedNet provides the runtime association among the
applications and smart objects by utilizing the documents describing smart objects and
applications' runtime requirements. It can contact smart objects using the semantics
described in the corresponding documents for mapping application tasks, similarly ap-
plication can contact FedNet in a RESTful manner for utilizing the underlying smart ob-
jects.

Chapter 7: Conclusions | 115

Each of these component was discussed in detail with concrete illustrations. After that, two
end-user interaction tools built on top of the framework were discussed.

Chapter 5 discussed the evaluation of the proposed framework from three presepectives:
guantitative, qualitative and end-user aspects. Three smart object systems were presented
that were used in the evaluation process. After discussing the runtime performance of Fed-
Net, the chapter revisited the design requirements to assess the framework qualitatively. Fi-
nally, a couple of end-user studies were reported that highlighted the usability of the inter-
action tools and exposed a few design implications for building user-centric smart object sys-
tems. The take away message from the study is the fact that the end-users might be involved
in deploying future smart object systems if appropriate tools and supporting infrastructure
are provided.

In Chapter 6, several issues raised by this research were further discussed. The applicabil-
ity of the proposed approach in other domains was also highlighted with a few conceptual
illustrations.

The major contributions of this thesis are

1. An exploration of a range of smart object systems to formalize their design rationales
and consequently the development of a core-cloud theoretical model.

2. Identification of the design requirements of a supporting framework for smart object
systems and accordingly the development of a conceptual document centric framework
along with design processes for building reusable and extensible smart objects systems.

3. The concrete implementation of the framework with appropriate illustrations.

4. Introduction of the novel notion of end-user centric qualities for system infrastructure
to elevate user experiences and the consequent implications of these quality require-
ments in the design of the framework.

7.2 Future Research Directions

There are, however, a number of issues that are raised by this research but could not be ad-
dressed fully. This section investigates some of these issues and points to potentially fruitful
areas of future research based on this work.

7.2.1 Specification and Description of Smart Object Services

The smart object wrapper in the presented document based framework implements the core-
cloud model and hosts a collection of service profiles. Application typically utilizes the smart

116 | Chapter 7: Conclusions

objects by interacting with these profiles. In the proposed framework sensor modeling lan-
guage and actuator modeling language are used to describe the profiles' services. The profile
notion has the potentially serious implication that standard common vocabularies or ontolo-
gies will be needed to support general interoperability of profiles and applications. This is one
of the major problems that has been identified through the development of this work. How-
ever, the profile abstraction does not attempt to define and standardize the schema, instead
provides a structure that designers can use to disseminate their implemented data format
and glue it with the rest of the infrastructure. Defining the widely accepted and approved
description/specification in a standard way is the hardest part of pervasive computing not the
encoding. This work does not claim that the proposed framework is providing a solution to
that. An important future research direction is to have a common consensus across develop-
ers of smart object systems and to define common schemas for describing profiles. One of the
fastest and easiest ways is to construct a web thesaurus that can independently be updated
and shared across the developers.

7.2.2 Integration of Location Information

One aspect that is currently missing in the current framework is the utilization of explicit lo-
cation of smart objects unless one of the profiles of a smart object is responsible for provid-
ing location information. Location is considered as the primary context for proactive service
provision and is particularly important for future ubiquitous environment where various per-
vasive services will exist to support end-users. A suitable location system that is available for
the infrastructure (e.g., FedNet) and the application would enable both to support more so-
phisticates service provisions. Indoor localization is the most active research topic in the field
and till date several location systems are investigated, e.g., location systems using dedicated
infrastructures [Want et al., 1992, Priyantha et al., 2000, Beigl et al., 2002], location systems
using existing indoor infrastructures [Patel et al., 2006], location systems using smart objects
[Kawsar et al., 2007a] etc. An interesting future research direction is to combine a suitable
localization technique with the current framework.

7.2.3 Incorporating Security Aspect

One issue that has not been discussed in this work is the security aspect. This is particularly
important for smart object systems in context due to the fact that in a smart object system it is
expected that environment components will be responsible for monitoring our activities and
taking autonomous decisions. Although, this issue was not addressed in this work concretely,
the proposed framework design allows incorporating this aspect in smart object systems ef-
fectively. For example, one profile could be developed that end-users can configure to state
the suitable security and access control scheme for a smart object. In addition, FedNet is
modular and plug-gable, making it very easy to associate a global security component for the
entire environment in context that can protect smart object services from malicious attacks.

Chapter 7: Conclusions | 117

Security and privacy issues are active research topic in mobile and ubiquitous computing re-
search. One immediate avenue of future work is to adopt the outcome of their research in
smart object systems.

7.2.4 Architectural Qualities for Improving User Experience

There are a few of design issues that have been identified in the current framework that were
essential to expose the system to end-users: i) supporting plug and play smart objects and
applications, ii) supporting extensibility, iii) isolating smart objects, applications and infras-
tructure completely and letting them snap at runtime dynamically and iv) supporting the de-
velopment of a suitable tool on top of the infrastructure to enable end-users to involve in
the deployment, extension and administration processes mimicking their experiences in per-
sonal computing environment. Although these issues are well exposed through this work, it
is imperative to mention that there could be several other design issues at the architectural
layer that could be brought out to further improve end-users experiences with smart object
systems. Thus aninteresting future research direction is to explore further to identify architec-
tural qualities that can elevate user experiences. Furthermore, the outcome can be applied
to find an appropriate balance between system architectures, user interfaces, and usability
research.

7.2.5 End-User Tools

One of the unique aspects of the proposed framework is its support for end-user involvement
in the deployment, extension and administration processes of smart object systems in a Do-
It-Yourself (DIY) manner. This work is one of the earliest efforts in this direction. Currently, a
couple of interaction tools were built to support end-users in these activities. However, it is
still not clear that what sort of user interfaces and interaction techniques are most suitable
for end-users of varying skills. A very important future research direction is to conduct further
case studies in order to identify a suitable design guideline for building such end-user tools
to support their involvement in the deployment, extension, administration of smart object
systems.

7.3 Concluding Remark

The dissertation has focused on three primary issues, i.e., an exploration of smart object sys-
tems to formalize the design rationales, an appropriate framework for building smart object
systems and involving end-users in the administration process of those systems, which in turn
provides several design implications for the proposed framework. The dissertation at hand
discusses these aspects and shows that the proposed document centric framework with ap-
propriate abstractions can elegantly meet several challenges of building and extending smart

118 | Chapter 7: Conclusions

objects systems in a more humane way. The framework dramatically reduces the complex-
ity of building and extending smart object systems by isolating all access issues, eliminating
dedicated discovery process and APl dependencies, hiding heterogeneity and providing ap-
propriate balance between transparency and awareness. In addition of approaching these
fundamental system level challenges, the framework has also considered human-centric as-
pects from a system perspective and argued that by involving end-users in the system admin-
istration process it is possible to elevate their experiences with smart object systems. The
implications of this work are very useful for further research exploration in the ubiquitous

computing domain, particularly one that involves smart objects.

Appendices

Appendix A

Document Type Definition (DTD)

This appendix lists the Document Type Definitions (DTDs) for the different types of documents
that are used in the framework. Developers can use these definitions to write documents for
their respective smart object systems.

A.1 Document Type Definition for Smart Object's Documents

There are basically two types of documents that developers need to create while disseminat-
ing smart objects as generic binaries. These two documents are:

e Smart Object Description Document

e Profile Description Document

These documents are written using custom defined XML tags. In the following the Document
Type Definitions (DTDs) for these two documents are presented.

A.1.1 Document Type Definition for Smart Object Description Document

This document is the generic description of a smart object and contains references of the
profiles that run on the smart object. The Document Type Definition for this document is
shown in Figure A.1.

A.1.2 Document Type Definition for Profile Description Documents

The Profile Description Document (PDD) describes the input and output specifications of the
profile. Each PDD contains either a <detector or an <actuator> node based on the profile type.

119

120 | Appendix A: Document Type Definition (DTD)

<|DOCTYPE artefact SYSTEM "sodd.dtd">

<IELEMENT artefact (name?, vendor?, profiles?)>
<IELEMENT profiles (profile*)=
<IELEMENT profile (codebase+)=>

<IATTLIST profile
name CDATA #REQUIRED=>

<|[ELEMENT name (#PCDATA)>
<|[ELEMENT vendor (#PCDATA)>
<|[ELEMENT codebase (#PCDATA)>

FIGURE A.1: Document Type Definition for Smart Object Description Document

PDD can also contain a quality of service (QoS) block which specifies profile's quality. Since,
each profile requires a physical instrumentation of the smart object, PDD can also provide
installation instruction. These instructions are encoded under the <installation-instruction>
block. The Document Type Definition for this document is shown in Figure A.2.

<!DOCTYPE profile SYSTEM "pdd.dtd">

<IELEMENT profile (name+, purpose+, type+, detector?, actuator?, profile-QoS-attribute?, installation-instruction®)>
<|[ELEMENT detector (identification+, referenceFrame”, inputs?, outputs?)>

<IELEMENT actuator (identification+, states+)>

<|[ELEMENT states (state+)>

<|ELEMENT state (name+, inputs+, outputs®)>

<IELEMENT inputs (input+}>
<!ELEMENT input (name+, parameter®)=
<|ELEMEMNT parameter (MIMEdatatype+, value+)>

<|[ELEMENT outputs {output+)>
<!ELEMENT output (name+, datatype+, value+)>

<!|ELEMENT profile-QoS-attribute (gqos+)>
<!ELEMENT qgos (name+, datatype+, measurement-unit+, high-threshold+, low-threshold+)=

<!ELEMENT installation-instruction {instruction+)=
<!ELEMENT instruction {stmt+)=

<IELEMENT name (#PCDATA)>
<IELEMENT purpose (#PCDATA)>
<IELEMENT type (#PCDATA)>

<IELEMENT identification (#PCDATA)>
<IELEMENT referenceFrame (#PCDATA)>
<IELEMENT datatype (#PCDATA)>
<IELEMENT MIMEdatatype (#PCDATA)>
<IELEMENT value (#PCDATA)>

<!ELEMENT measurement-unit (#PCDATA)>
<!ELEMENT high-threshold (#PCDATA)=
<!ELEMENT low-threshold (#PCDATA)=
<IELEMENT stmt (#PCDATA)=

FIGURE A.2: Document Type Definition for Profile Description Document

Appendix A:: Document Type Definition (DTD) | 121

A.2 Document Type Definition for Application's Document

The framework in context forces an application to expose its functional task lists in a Task De-
scription Document. The specification of each task expresses its runtime profile requirement.
Each task can also specify the Quality of Service (QoS) requirements that should be attained
by the respective profile. This document is also written using custom defined XML tags. The
Document Type Definition for this document is shown in Figure A.3.

<IDOCTYPE application SYSTEM "tdd.dtd">
<IELEMEMT application (name? , app-purpose?, binaryPath+, accesspoint+, task-list")>

<IELEMENT accesspoint (IP+, port+)>
<|ELEMENT task-list (task+)>
<|ELEMENT task (id+, purpose?, required-profile-type+, profile-name+, communication-mode?, profile-QoS-attribute 7)>

<IELEMENT profile-QoS-attribute (qos+)>
<|[ELEMENT qos (name+. datatype+, measurement-unit+, high-threshald+, low-threshold+)>

<IELEMENT name (#PCDATA)>
<IELEMENT app-purpose {#PCDATA)>
<IELEMENT binaryPath (#PCDATA)>

<IELEMENT IP (#PCDATA)>
<IELEMENT port (#PCDATA)>

<|ELEMENT id (#PCDATA)>

<IELEMENT purpose (#PCDATA)>

<|ELEMENT required-profile-type (#PCDATA)>
<IELEMEMNT profile-name (#FPCDATA)>
<|[ELEMENT communication-mode (#PCDATA)=

<|[ELEMENT datatype (#PCDATA)=>
<|ELEMEMNT measurement-unit (#7CDATA)>
<|[ELEMENT high-threshold (#PCDATA)>
<|ELEMENT low-threshold (#PCDATA)>

FIGURE A.3: Document Type Definition of Task Description Document

Appendix B

Specification of Programming Interface

Inthe current framework all three components (smart objects, applications, FedNet) are pack-
aged as generic binaries that are dynamically snapped to each other. This dynamic association
is achieved through documents and by forcing applications and smart objects to implement
a common protocol (HTTP/XML). So, in the current framework the notion of application pro-
gramming interface is not actively utilized.

Basically, there are two points where explicit development is necessary in this framework tak-
ing the nature of generic binary component into account. The first point is the development
of profiles that are smart object independent and the second point is the application itself.
From a smart object perspective, the core is a generic binary that dynamically load different
profiles. These profiles should be developed independently. To ensure that these profiles
work with the core at runtime, a development library is offered to developers that enable
them to provide device specific implementation. From an application perspective, basically
there is no need for development library in a true sense as the external communication uses
standard HTTP/XML based protocol in a RESTful manner. However to further ease the devel-
opment effort, in the current work a simple development library is offered to the developers
that abstracts the communication protocol and enables application developers to structure
their application code around functional tasks. In the following a few important language
interfaces of these libraries are provided.

B.1 Language Interface for Smart Object Development

Each smart object comes with a generic binary core that contains a plug-in runtime to enable
different profiles to be plugged-in. These profiles are developed independently and should be
implemented in the semantics of current framework so that they can work with the underlying
core component. Each profile is structured into two layers as shown in Figure B.1.

123

124 | Appendix B: Specification of Programming Interface

~
Upper layer implements the device

(Sensor X Actuator)——’Speciﬁcprotocols.

(Profile Handlar)_ Profile Handler hgndles the.
') framework specific semantics.

FIGURE B.1: Structure of a Profile

The Profile Handler encapsulates all the functionalities to ensure that the profile works with
the smart object core in the context of current framework. These functionalities include

1. Implementing the plug-in structure.

2. Encoding a profile output following the prescribed Sensor Modeling Language of the
respective profile as defined in the Profile Description Document.

3. Decoding a profile input encoded in the prescribed Actuator Modeling Language of the
respective profile as defined in the Profile Description Document.

4. Providing the runtime communication, i.e., delegating the profile output and input to
and from smart object core.

5. Providing a template for the developers that they can use to implement their device
specific code.

So, the only development effort needed here is to implement device specific code and connect
this code to Profile Handler. To perform this operations, developers are required to manipulate
the Profile class.

Profile Class Each profile should extend the base Profile class and should implement two
abstract functions. Theses are:

public void setSML();
public String executeService(Service args);

For a sensor type profile, setSML() is need to be implemented. Inside the function developers
should use the

Profile.SML.output(String output, String value);
to provide the profile output and then invoke
Profile.notifyAccessPoint();

to instruct the profile handler to initiate external communication.

Appendix B: Specification of Programming Interface | 125

For an actuator type profile, executeService(Service args) is required to be implemented. This
function is automatically invoked by underlying Profile Handler whenever an external request
is received. The parameter of this function is an instance of Service class that represents the
decoded value of the profile input following the syntax of Actuator Modeling Language.

B.2 Language Interface for Application Development

An mentioned earlier, this library is not a mandate for application developers to use for build-
ing applications that work in the current framework environment. However, this library is
offered to further ease the development effort by providing high level abstractions. There are
three classes that need to be discussed here. In the following these classes and their impor-

tant interfaces are explained.

Task Class This class is provided to the developer to structure application code around func-
tional tasks. Once developers externalize their functional task lists in a Task Description Docu-
ment, the member functions of this class can be used to operate on the tasks. Each functional
task is represented by an instance of Task class. The important member functions of this class

useful for application development are:

public String getiD();
This function provides the task ID that can be used to refer the task for subsequent operations.

public String getTaskStatus();
This function provides the current execution status of the task.

public String getProfileStatus();
This function provides the status of the profile that the task needs.

public void subcribe(Object source, String callback);
This function enables subscribing to the profile output that the task represents.

AccessPoint Class This static class acts as the communication point for the application de-
velopers to communicate with underlying Access Point component of FedNet and thereby
interacting with smart objects. The most important functions of this class are:

public int sendTaskRequest(String message, String taskID);

Application uses this function to send task request to Access Point. The underlying implemen-
tation of the library takes care of all access issues.

126 | Appendix B: Specification of Programming Interface

XmlProcessor Class This is a meta class that application developers can use to operate on
Task Description Document. Furthermore, this class provides support to encode and decode
the profile input and output following the syntax of Profile Description Document of respective
profiles. The important member functions of this class are:

public boolean parseTDD();
This function parses the Task Description Document to set up the task list of the applications.

public String generateOutgoingMessage(String taskType, String taskID);
This function generates the outgoing XML message following the syntax of Actuator Modeling
Language of the respective profiles.

public DetectorData parselncomingMessage(String profileSML);

This function parses the incoming profile output specification encoded in the syntax of Sen-
sor Modeling Language to generate an instance of DetectorData that represents the decoded
value of the profile output.

Appendix C

User Study Material

In this appendix the questionnaires and the interview questions used in the end-user usability
studies are presented.

C.1 Post-study Questionnaire

The questionnaires presented to the participants were structured into three parts. The first
part was designed to collect the biographical and background data of the participants. These
guestions are listed below.

1. Age Range -
::15-19 1 20-24 ::25-29 ::30-34 ::35-39 ::40-44 ::45-49 50+

2. Gender -
:: Male :: Female

3. Profession (If you are a student please write your major.) -

4. Experience with computers -
:: Lessthan 1year ::1-2years : 3-4years :: 5+years

5. How would you rate your computer knowledge?
:: Novice :: Intermediate :: Expert

The second part of the questionnaires contained ten statements. These statements were de-
signed following the System Usability Scale (SUS) [Brooke, 1996] The System Usability Scale
(SUS) is a simple Likert scale giving a global view of subjective assessments of usability. Ten
carefully selected statements are offered to the participants and they can respond by indicat-
ing the degree of agreement or disagreement with the statements on a 5 point scale. In the
following these statements are listed.

127

128 | Appendix C: User Study Material

1. | think that | would like to have this system if it were available -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

2. | found the system unnecessarily complex -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

3. I thought the system was easy to use -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

4. |think that | would need the support of a technical person to use this system -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

5. I found the various functions in this system were well integrated -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

6. | thought there was too much inconsistency in this system -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

7. I would imagine that most people would learn to use this system very quickly -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

8. | found the system very cumbersome to use -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

9. | felt very confident using the system -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

10. | needed to learn a lot of things before | could get going with this system -
i) 1 [Strongly Disagree] ii)2 iii)3 iv)4 v)5 [Strongly Agree]

Finally in the third part four questions were designed to identify the complexity level of the
four tasks that were given to the participants. They were asked to rate the answers in the 5
point scale to indicate the perceived complexity level. In the following these questions are
presented.

1. How complex was the process of adding a smart object -
i) 1 [Very Hard] ii)2 iii)3 iv)4 v)5 [Very Easy]

2. How complex was the process of installing an application -
i)1[VeryHard] ii)2 iii)3 iv)4 v)5[Very Easy]

3. How complex was the process of adding a profile to a smart object -
i)1[Very Hard] ii)2 iii)3 iv)4 v)5[Very Easy]

4. How complex was the process of administrating the entire system -
i)1 [VeryHard] ii)2 iii))3 iv)4 v)5 [Very Easy]

Appendix C: User Study Material | 129

C.2 Post-study Interview Questions

After the questionnaires, each participant was invited for an interview session. On an average
each interview took 20 minutes. The interview questions were organised into two parts. In
the first part, five questions were asked related to the tasks involved in the study session.
These questions were as follows:

1. Which application (AwareMirror and Virtual Aquarium) did you pick first and why?

2. Which profile hardware did you pick for proximity profile and why?

3. Which profile hardware did you pick for Bi-state interaction profile and why?

4. Where did you attach the profile hardware in the mirror and why?

5. Which task was the most complicated one and can you suggest what would make it easy

for you?

The second part of the interview was loosely structured, a few questions were put forth for
understanding participants' views on the entire end-user involvement process and for identi-
fying potential improvement areas. In the following these questions are listed.

1. Do you find any similarities between todays study tasks and your activities at home for

installing devices, appliances, if yes how?

2. Do you think such approach is useful for making a smart home by yourself, if yes why

do you think so?

3. Is there any specific things that you noticed or experienced in this test that would dis-
courage you to adopt these kinds of systems in your home?

4. How often do you think you will interact with such systems to upgrade system functions?

5. What other applications you can think of with these kinds of hardware/software avail-

able at your home?

Bibliography

[Addlesee et al., 2001] Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggels, A. W. P,,
and Hooper., A. (2001). Implementing a sentient computing system. Cover Feature in IEEE
Computer, 34(8):50--56.

[Aitenbichler et al., 2007] Aitenbichler, E., Lyardet, F., Austaller, G., Kangasharju, J., and
Miuhlhauser, M. (2007). Engineering intuitive and self-explanatory smart products. In 22nd
Annual ACM Symposium on Applied Computing (SAC 2007), pages 1632--1637.

[Andreoli et al., 2003] Andreoli, J.-M., Castellani, S., Grasso, A., Meunier, J.-L., Muehlenbrock,
M., O'Neill, J., Ragnet, F., Roulland, F., and Snowdon, D. (2003). Augmenting offices with
ubiquitous sensing. In Smart Objects Conference (SOC 2003).

[Antifakos et al., 2002] Antifakos, S., Michahelles, F., and Schiele, B. (2002). Proactive instruc-
tions for furniture assembly. In 4th International Conferenc on Ubiquitous Computing (Ubi-
Comp 2002), pages 351--360.

[Ballagas et al., 2004] Ballagas, R., Szybalski, A., and Fox, A. (2004). Patch panel: Enabling
control-flow interoperability in ubicomp environments. In 2nd IEEE Annual Conference on
Pervasive Computing and Communications (PerCom 2004), pages 241-- 252.

[Banks et al., 2007] Banks, R., Regan, T., Harper, R., and Sellen, A. (2007). Bubbleboard: A
visual answering machine. In 10th European Conference on Computer-Supported Cooper-
ative Work (ECSCW 2007).

[Bardram, 2005] Bardram, J. E. (2005). The java context awareness framework - a service
infrastructure and programming framework for context-aware applications. In The 3rd In-
ternational Conference on Pervasive Computing (Pervasive 2005), pages 98--115.

[Baurley et al., 2007] Baurley, S., Brock, P., Geelhoed, E., and Moore, A. (2007).
Communication-wear. In Workshop on Transitive Materials at 9th international con-
ference on Ubiquitous computing (UbiComp 2007).

[Beckmann et al., 2004] Beckmann, C., Consolvo, S., and LaMarca, A. (2004). Some assem-
bly required: Supporting end-user sensor installation in domestic ubiquitous computing
environments. In 6th international conference on Ubiquitous computing (UbiComp 2004),
pages 107--124.

131

132 | Bibliography

[Beigl et al., 2001] Beigl, M., Gellersen, H. W., and Schmidt, A. (2001). Media cups: Experi-
ence with design and use of computer augmented everyday objects. Computer Networks,
special Issue on Pervasive Computing, 35-4:401--409.

[Beigl et al., 2004] Beigl, M., Krohn, A., Zimmer, T., and Decker, C. (2004). Typical sensors
needed in ubiquitous and pervasive computing. In the First International Workshop on
Networked Sensing Systems (INSS 2004), pages 153--158.

[Beigl et al., 2002] Beigl, M., Zimmer, T., and Decker, C. (2002). A location model for commu-
nicating and processing of context. Personal and Ubiquitous Computing, 6(5-6):341--357.

[Bell and Dourish, 2007] Bell, G. and Dourish, P. (2007). Yesterday's tomorrows: Notes on
ubiquitous computing's dominant vision. In Personal and Ubiquitous Computing, volume
11(2), pages 133--143.

[Brooke, 1996] Brooke, J. (1996). SUS: A quick and dirty usability scale, pages 189--194. Us-
ability Evaluation in Industry. Taylor and Francis, London.

[Brown, 1996] Brown, J. P. (1996). The stick-e document: A framework for creating context
aware applications. Electronic Publishing, 8(2):259--272.

[Brumittet et al., 2000] Brumittet, B. L., Meyers, B., Krumm, J., Kern, A., and Shafer, S. (2000).
Easyliving: Technologies for intelligent environments. In 2nd International Symposium on
Handheld and Ubiquitous Computing (HUC 2000), pages 12--29.

[Deborah and Debaty, 2000] Deborah, C. and Debaty, P. (2000). Creating web representations
for places. In 2nd International Symposium on Handheld and Ubiquitous Computing (HUC
2000), pages 114 -- 126.

[Dey, 2000] Dey, A. K. (2000). Providing Architectural Support for Building Context-Aware
Applications. PhD thesis, College of Computing, Georgia Institute of Technology.

[Dey, 2001] Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous
Computing Journal, 5(1):4--7.

[Dey et al., 2001] Dey, A. K., Abowd, G., and Salber, D. (2001). A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction, 16(2-4):97--166.

[Dey et al., 2004] Dey, A. K., Hamid, R., Beckmann, C., Li, |., and Hsu, D. (2004). a cappella:
Programming by demonstration of context-aware applications. In ACM Conference on Hu-
man Factors in Computing Systems (CHI 2004), pages 33 -- 40.

[Dey et al., 2006] Dey, A. K., Shon, T., Streng, S., and Kodama, J. (2006). icap: Interactive
prototyping of context-aware applications. In 4th International Conference on Pervasive
Computing (Pervasive 2006), pages 254--271.

Bibliography | 133

[Edwards et al., 2003] Edwards, W. K., Bellotti, V., Dey, A. K., and Newman, M. W. (2003).
Stuck in the middle: The challenges of user-centered design and evaluation of infrastruc-
ture. In ACM Conference on Human Factors in Computing Systems (CHI 2003), pages 297--
304.

[Edwards and Grinter, 2001] Edwards, W. K. and Grinter, R. (2001). At home with ubiquitous
computing: Seven challenges. In Ubicomp 2001.

[Edwards et al., 2002] Edwards, W. K., Newman, M., Sedivy, J., Smith, T., and Izadi, S. (2002).
Challenge: Recombinant computing and the speakeasy approach. In 8th Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom 2002), pages 279--286.

[Englander, 1997] Englander, R. (1997). Developing Java Beans. O'Reilly and Associates.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine.

[Fox et al., 2000] Fox, A., Johanson, B., Hanrahan, P., and Winograd, T. (2000). Integrating
information appliances into an interactive workspace. In I[EEE Computer Graphics and Ap-
plications, pages 54--65.

[Fujinami et al., 2005] Fujinami, K., Kawsar, F., and Nakajima, T. (2005). Awaremirror: A per-
sonalized display using a mirror. In 3rd Third International Conference on Pervasive Com-
puting (Pervasive 2005), pages 315--332.

[Fujinami and Nakajima, 2005] Fujinami, K. and Nakajima, T. (2005). Sentient artefacts: Ac-
quiring user's context through daily object. In The 2nd International Workshop on Ubiqui-
tous Intelligence and Smart Worlds (UISW2005), pages 335--344.

[Gajos et al., 2002] Gajos, K., Fox, H., and Shrobe, H. (2002). End user empowerment in hu-
man centered pervasive computing. In International Conference on Pervasive Computing
(Pervasive 2002), pages 1--7.

[Gelernter, 1985] Gelernter, D. (1985). Generative communication in linda. ACM Transactions
on Programming Languages and Systems, 7(1):80--112.

[Gellersen et al., 2004] Gellersen, H., Kortuem, G., Schmidt, A., and Beigl, M. (2004). Physical
prototyping with smart-its. IEEE Pervasive Computing, 03(3):74--82.

[Gellersen et al., 2000] Gellersen, H. W., Schmidt, A., and Beigl, M. (2000). Adding some
smartness to devices and everyday things. In Third IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2000), pages 3--10.

[Greenberg and Fitchett, 2001] Greenberg, S. and Fitchett, C. (2001). Phidgets: Easy devel-
opment of physical interfaces through physical widgets. 14th Annual ACM Symposium on
User Interface Software and Technology (UIST 2001), pages 209 -- 218.

134 | Bibliography

[Hanaoka et al., 2006] Hanaoka, K., Takagi, A., and Nakajima, T. (2006). A software infrastruc-
ture for wearable sensor networks. In The 12th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA 2006), pages 27--35.

[Harter et al., 1999] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P. (1999). The
anatomy of a context-aware application. In 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pages 59--68.

[Helal et al., 2005] Helal, A., Mann, W., Elzabadani, H., King, J., Kaddourah, Y., and Jansen,
E. (2005). Gator tech smart house: A programmable pervasive space. IEEE Computer,
38(3):50-- 60.

[Hinckley et al., 2000] Hinckley, K., Pierce, J., Sinclair, M., and Horvitz., E. (2000). Sensing
techniques for mobile interaction. In 13th ACM Symposium on User Interface Software and
Technology (UIST 2000), pages 91 -- 100.

[Hitachi, 2008] Hitachi(2008). Miragraphy http://hhil.hitachi.co.jp/products/miragraphy.html
(in japanese).

[Hong and Landay, 2001] Hong, J. I. and Landay, J. A. (2001). An infrastructure approach to
context aware computing. Human-Computer Interaction, 16:287--303.

[Hong and Landay, 2004] Hong, J. |. and Landay, J. A. (2004). An architecture for privacy-
sensitive ubiquitous computing. In The Second International Conference on Mobile Systems,
Applications, and Services (Mobisys 2004), pages 177--189.

[Humble et al., 2003] Humble, J., Crabtree, A., Hemmings, T., Karl-Petter i\kesson, B. K., Rod-
den, T.,, and Hansson, P. (2003). Playing with your bits: User composition of ubiquitous
domestic environments. In 5th International Conference on Ubiquitous Computing (Ubi-
comp 2003), pages 256--263.

[Iseminger, 2000] Iseminger, D. (2000). Com+ Developer's Reference. Microsoft Press.

[Ishii., 2004] Ishii., H. (2004). Bottles: A transparent interface as a tribute to mark weiser.
IEICE Transactions on Information and Systems, E87-D(6):1299--1311.

[lwabuchi and Siio, 2008] Iwabuchi, E. and Siio, I. (2008). Smart makeup mirror: Computer
augmented mirror to aid makeup application. In Adj. Proceedings of 10 International Con-
ference on Ubiquitous Computing (Ubicomp 2008).

[Johanson et al., 2002] Johanson, B., Fox, A., and Winograd, T. (2002). The interactive
workspaces project: experiences with ubiquitous computing rooms. |EEE Pervasive Com-
puting, 1(2):67 -- 74.

[Kameas et al., 2004] Kameas, A., Mavrommati, |., and Markopoulos, P. (2004). Computing in

tangible: using artifacts as components of ambient intelligence environments. 10S Press.

Bibliography | 135

[Kawsar et al., 2005] Kawsar, F., Fujinami, K., and Nakajima, T. (2005). Augmenting everyday
life with sentient artefacts. In 2005 joint conference on Smart objects and ambient in-
telligence: innovative context-aware services: usages and technologies (sOc-EUSAI 2005),
pages 141--146.

[Kawsar et al., 2007a] Kawsar, F., Fujinami, K., and Nakajima, T. (2007a). A lightweight indoor
location model for sentient artefacts using sentient artefacts. In The 2007 ACM Symposium
on Applied Computing (SAC 2007), pages 1624--1631.

[Kawsar et al., 2007b] Kawsar, F., Fujinami, K., Pirttikangas, S., Hayashi, K., and Nakajima, T.
(2007b). Roonroon: A wearable teddy as social interface for contextual notification. In The
International Conference and Exhibition on Next Generation Mobile Applications, Services
and Technolgies, pages 76--84.

[Kohtake et al., 2005] Kohtake, N., Ohsawa, R., Iwai, M., Takashio, K., and Tokuda, H. (2005).
u-texture: Self-organizable universal panels for creating smart surroundings. In 7th Inter-
national Conference on Ubiquitous Computing (Ubicomp 2005), pages 19--36.

[Konomi and Roussos, 2006] Konomi, S. and Roussos, G. (2006). Ubiquitous computing in
the real world: Lessons learnt from large scale rfid deployments. Personal and Ubiquitous
Computing, 11(7):507--521.

[Kortuem et al., 2007] Kortuem, G., Davies, N., Efstratiou, C., Kinder, K., White, M. I., Hooper,
R., Finney, J., Ball, L., Busby, J., and Alford, D. (2007). Sensor networks or smart artifacts? an
exploration of organizational issues of an industrial health and safety monitoring system. In
9th International Conference on Ubiquitous Computing (UbiComp 2007), pages 465--482.

[Krasner and Pope, 1998] Krasner, G. and Pope, S. T. (1998). A cookbook for using the model
view controller user interface paradigm in smalltalk-80. Journal of Object-Oriented Pro-
gramming, 1(3):26 -- 49.

[Krieger and Adler, 1998] Krieger, D. and Adler, R. (March, 1998). The emergence of dis-
tributed component platforms. IEEE Computer Magazine, pages 43--53.

[Lampe and Strassner, 2003] Lampe, M. and Strassner, M. (2003). The potential of rfid for
movable asset management. In Workshop on Ubiquitous Commerce at 5th International
Conference on Ubiquitous Computing (Ubicomp 2003).

[Lashina, 2004] Lashina, T. I. (2004). Intelligent bathroom. In Ambient Intelligence Technolo-
gies for Wellbeing at Home, Workshop on European Symposium on Ambient Intelligence
(EUSAI 2004).

[Leffler et al., 1989] Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. (1989).
The Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley,
Reading, MA.

136 | Bibliography

[Ljungstrand et al., 2000] Ljungstrand, P., Redstrom, J., and Holmquist, L. E. (2000). Web-
stickers: using physical tokens to access, manage and share bookmarks to the web. In
DARE 2000 (Designing augmented reality environments), pages 23 -- 31.

[Mattern, 2003] Mattern, F. (2003). From smart devices to smart everyday objects. In Smart
Object Conference 2003.

[Messer et al., 2006] Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P,
Nguyen, P., and Yi, K. H. (2006). Interplay: A middleware for seamless device integration
and task orchestration in a networked home. In 4th Annual IEEE International Conference
on Pervasive Computing and Communications (PerCom 2006), pages 307--316.

[Molyneaux et al., 2007] Molyneaux, D., Gellersen, H., Kortuem, G., and Schiele, B. (2007).
Cooperative augmentation of smart objects with projector-camera systems. In 9th Inter-
national Conference on Ubiquitous Computing (UbiComp 2007), pages 501--518.

[Monson-Haefel, 2001] Monson-Haefel, R. (2001). Enterprise Java Beans. O'Reilly.

[Moore, 1965] Moore, G. (1965). Cramming more components onto integrated circuits. Elec-
tronics, 38(8).

[Mowbray and Zahavi, 1995] Mowbray, T. J. and Zahavi, R. (1995). The Essential Corba: Sys-
tem Integration Using Distributed Objects. John Wiley and Sons.

[Nakajima et al., 2008] Nakajima, T., Lehdonvirta, V., Tokunaga, E., and Kimura, H. (2008).
Reflecting human behavior to motivate desirable lifestyle. In The Conference on Designing
Interactive Systems (DIS 2008), pages 405--414.

[Norman, 1990] Norman, D. (1990). The Design of Everyday Things. Broadway Books.
[Norman, 1998] Norman, D. (1998). The Invisible Computer. MIT Press.

[O'Brien et al., 1999] O'Brien, J., Rodden, T., and Hughes, M. R. J. (1999). At home with the
technology: an ethnographic study of a set-top-box trial. ACM Transactions on Computer-
Human Interaction, 6(3):282 -- 308.

[Olsen et al., 2001] Olsen, D., Nielsen, T., and Parslow, D. (2001). Join and capture: a model
for nomadic interaction. In 4th annual ACM symposium on User interface software and
technology (UIST 2001), pages 131--140.

[Orr and Abowd, 2000] Orr, R. J. and Abowd, G. (2000). The smart floor: A mechanism for
natural user identification and tracking. In Conference on Human Factors in Computing
Systems (CHI 2000), Extended Abstracts, pages 275 -- 276.

[Paradiso et al., 2000] Paradiso, J., Hsiao, K., and Benbasat, A. (2000). Interfacing to the foot:
Apparatus and applications,. In ACM Conference on Human Factors in Computing Systems
(CHI 2000) Extended Abstracts.

Bibliography | 137

[Pascoe, 1997] Pascoe, J. (1997). The stick-e note architecture: Extending the interface be-
yond the user. In 2nd international conference on Intelligent user interfaces (Ul 1997),
pages 261 -- 264.

[Pascoe, 2001] Pascoe, J. (2001). Context-Aware Software. PhD thesis, Computing Laboratory,
University of Kent at Canterbury.

[Patel et al., 2006] Patel, S. N., Truong, K. N., and Abowd, G. (2006). Powerline positioning:
A practical sub-room-level indoor location system for domestic use. In 8th International
Conference on Ubiquitous Computing (Ubicomp 2006), pages 441--458.

[Priyantha et al., 2000] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. (2000). The
cricket location-support system. In The Sixth Annual ACM International Conference on Mo-
bile Computing and Networking (MOBICOM 2000), pages 32--43.

[Rekimoto, 1996] Rekimoto, J. (1996). Tilting operations for small screen interfaces. In 9th
ACM Symposium on User Interface Software and Technology (UIST 1996), pages 167 -- 168.

[Rekimoto and Ayatsuka, 2000] Rekimoto, J. and Ayatsuka, Y. (2000). Cybercode: Designing
augmented reality environment with visual tags. In Designing Augmented Reality Environ-
ment (DARE 2000), pages 1--10.

[Rodden and Benford, 2003] Rodden, T. and Benford, S. (2003). The evolution of buildings
and implications for the design of ubiquitous domestic environments. In ACM CHI 2003.

[Rogers, 2006] Rogers, Y.(2006). Moving on from weiser's vision of calm computing: Engaging
ubicomp experiences. In The Eighth International Conference on Ubiquitous Computing
(Ubicomp 2006), pages 404--421.

[Roman et al., 2002] Roman, M., Hess, C. K., Cerqueira, R., Ranganathan, A., Campbell, R. H.,
and Nahrstedt, K. (2002). A middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74--83.

[Schilit, 1995] Schilit, B. N. (1995). A Context-Aware System Architecture for Mobile Dis-
tributed Computing. PhD thesis, Columbia University.

[Schmidt, 2002] Schmidt, A. (2002). Ubiquitous Computing-Computing in Context. PhD thesis,
Lancaster University.

[Schmidt et al., 1999a] Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V.,
and de Velde, W. V. (1999a). Advanced interaction in context. In 1st International Sympo-
sium on Handheld and Ubiquitous Computing (HUC '99), pages 89--101.

[Schmidt et al., 1999b] Schmidt, A., Beigl, M., and Gellersen., H. W. (1999b). There is more
to context than location. Computers and Graphics, 23(6):893--902.

[Schneider, 2007] Schneider, M. (2007). Towards a general object memory. In 1st Interna-
tional Workshop on Design and Integration Principles for Smart Objects (DIPSO 2007) at 9th
International Conference on Ubiquitous Computing (UbiComp 2007).

138 | Bibliography

[Siegemund, 2004] Siegemund, F. (2004). A context-aware communication platform for
smart objects. In Second International Conference on Pervasive Computing (Pervasive
2004), pages 69--86.

[Siio et al., 2003] Siio, I., Rowan, J., Mima, N., and Mynatt, E. D. (2003). Digital decor: Aug-
mented everyday thing. In Graphics Interface 2003,, pages 159--166.

[Sousa and Garlan, 2002] Sousa, J. P. and Garlan, D. (2002). Aura: an architectural frame-
work for user mobility in ubiquitous computing environments. In 3rd Working IEEE/IFIP
Conference on Software Architecture, pages 29--43.

[Streitz et al., 1998] Streitz, N., Geifller, J., and Holmer, T. (1998). Roomware for cooperative
buildings: Integrated design of architectural spaces and information spaces. In 1st Interna-
tional Work- shop on Cooperative Buildings (CoBuild'98), pages 4--21.

[Streitz et al., 2005] Streitz, N. A., Rocker, C., Prante, T., van Alphen, D., Stenzel, R., and
Magerkurth, C. (2005). Designing smart artifacts for smart environments. IEEE Computer,
38(3):41--49s.

[Strohbach et al., 2004] Strohbach, M., Gellersen, H. W., Kortuem, G., and Kray, C. (2004).
Cooperative artefacts: Assessing real world situations with embedded technology. In 6th
International Conference on Ubiquitous Computing (Ubicomp 2004), pages 250--267.

[Suutala et al., 2004] Suutala, E., Pirttikangas, S., Riekki, J., and Ronin, J. (2004). Reject-
optional lvg-based two-level classifier to improve reliability in footstep identification. In
Second International Conference on Pervasive Computing (Pervasive 2004), pages 182--187.

[Tandler, 2003] Tandler, P. (2003). The beach application model and software framework for
synchronous collaboration in ubiquitous computing environments. Journal of Systems and
Software, 69(3):267 -- 296.

[Terrenghi et al., 2008] Terrenghi, L., Sellen, A., Patel, D., Marquardt, N., Harper, R., and Mol-
loy, M. (2008). The Time-Mill: An Interactive Mirror for Evoking Reflective Experiences in
the Home.

[Tokuda et al., 2004] Tokuda, H., Takashio, K., Nakazawa, J., Matsumiya, K., Ito, M., and Saito,
M. (2004). Sf2: Smart furniture for creating ubiquitous applications. In International Work-
shop on Cyberspace Technologies and Societies at 2004 International Symposium on Appli-
cations and the Internet (SAINT 2004), pages 423-- 429.

[Velde, 1997] Velde, W. V. D. (1997). Co-habited mixed reality. In Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97).

[Waldo, 1999] Waldo, J. (July, 1999). The jini architecture for network-centric computing.
Communication of the ACM, 42(7):76--82.

Bibliography | 139

[Want et al., 1999] Want, R., Fishkin, K. 0., Gujar, A., and Harrison, B. (1999). Bridging physical
and virtual worlds with electronic tags. In ACM Conference on Human Factors in Computing
Systems (CHI 99), pages 370 -- 377.

[Want et al., 1992] Want, R., Hopper, A., Falcao, V., and Gibbons, J. (1992). The active badge
location system. ACM Transactions on Information Systems, 10:91--102.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific American,
pages 66--75.

[Weiser, 1993] Weiser, M. (1993). Some computer science issues in ubiquitous computing.
Communications of the ACM, 36(7):75 -- 84.

[Weiser and Brown, 1997] Weiser, M. and Brown, J. S. (1997). The coming age of calm tech-
nology. Beyond Calculation: The Next Fifty Years of Computing, pages 75--85.

[Winograd, 2001] Winograd, T. (2001). Architecture for context. Human-Computer Interac-
tion, 16:401--419.

[Yamabe et al., 2005] Yamabe, T., Takagi, A., and Nakajima, T. (2005). Citron: A context infor-
mation acquisition framework for personal devices. In 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA 2005), pages
489--495.

Copy Right © 2009 by Fahim Kawsar

February 2009
Tokyo, Japan

	1 Introduction
	1.1 Research Motivation
	1.2 Research Focus
	1.3 Projected Contributions
	1.4 Dissertation Roadmap

	2 Background: Smart Object Systems
	2.1 The Vision: Ubiquitous Computing
	2.1.1 Context and Context-Awareness

	2.2 Smart Objects
	2.2.1 Definition
	2.2.2 Properties of Smart Objects

	2.3 Exploration of Research Projects on Smart Objects
	2.3.1 Digital Everyday Smart Objects
	2.3.2 Non-Digital Everyday Smart Objects
	2.3.2.1 Augmented Household Objects
	2.3.2.2 Augmented Room and Building Structure
	2.3.2.3 Augmented Objects in the Workplace
	2.3.2.4 Electronic Tag Augmented Objects
	2.3.2.5 Augmented Wearable Objects

	2.3.3 Summary of the Existing Research

	2.4 Classification of Smart Object Systems
	2.5 Sensor Network and Smart Objects
	2.6 Chapter Summary

	3 A Framework for Smart Object Systems
	3.1 Design Issues for Smart Objects
	3.1.1 Design Requirements for a Smart Object Model
	3.1.2 Related Work on Smart Object Model
	3.1.3 A Core-Cloud Theoretical Model for Smart Objects

	3.2 Design Issues for a Smart Object System Infrastructure
	3.2.1 Design Requirement for a Smart Object System Infrastructure
	3.2.2 Existing Support for a Smart Object System Infrastructure
	3.2.2.1 Three Models of Architecture
	3.2.2.2 Distributed Component and Device Integration Infrastructures
	DCOM and CORBA
	UPnP and Jini
	SpeakEasy
	XWeb
	PatchPanel
	InterPlay

	3.2.2.3 Pervasive Computing Middlewares
	Schilit's System Architecture
	Context Toolkit
	Technology for Enabling Awareness
	Gaia
	Aura
	iROS
	Java Context Aware Framework
	Sentient Computing
	HP CoolTown
	Easy Living
	Stick-e Note
	Context Fabric

	3.2.3 Drawbacks of Current Approaches
	3.2.4 A Document Based Solution Framework

	3.3 Framework Support for End-Users
	3.3.1 Related Work on Supporting Tools for End-Users

	3.4 Chapter Summary

	4 Implementation of the Framework
	4.1 Smart Object Wrapper
	4.1.1 3-Step Design Methodology for Smart Object Augmentation
	4.1.1.1 Illustration: Design of A Smart Mirror

	4.1.2 Augmentation Presentation: Implementation of Core-Cloud Model
	4.1.2.1 Core Component
	4.1.2.2 Profile

	4.1.3 Programming Model
	4.1.4 Representative Documents
	4.1.5 Location Modalities of Smart Object Wrapper
	4.1.6 Smart Object Life Cycle

	4.2 Application Development Process
	4.2.1 3-Step Application Development Process
	4.2.2 Programming Model

	4.3 FedNet Infrastructure
	4.3.1 Logical Architecture of FedNet
	4.3.1.1 Smart Object Repository
	4.3.1.2 Application Repository
	4.3.1.3 FedNet Core
	4.3.1.4 Access Point

	4.3.2 Physical Architecture of FedNet: Distributed Management
	4.3.3 Specific Features of FedNet

	4.4 Framework Support for End-Users
	4.4.1 End-User Interaction Tools
	4.4.1.1 Graphical User Interface Interaction Tool
	4.4.1.2 Tangible User Interface Interaction Tool
	Hardware
	Interaction Mechanism

	4.5 Chapter Summary

	5 Evaluation
	5.1 Evaluation of the Framework
	5.2 Quantitative Evaluation of the Framework
	5.2.1 A Prototype Home Entertainment Smart Object System
	5.2.1.1 A Scenario
	5.2.1.2 Description of the Smart Object System
	5.2.1.3 Quantitative Measurements
	5.2.1.4 Summary of the Quantitative Evaluation

	5.3 Qualitative Evaluation of the Framework
	5.3.1 Revisiting the Smart Object Design Factors
	5.3.2 Revisiting the Infrastructure Design Factors

	5.4 Evaluation of End-User Aspects through User Study
	5.4.1 Two Sample Smart Object Systems
	5.4.1.1 A Scenario
	5.4.1.2 Descriptions of the Smart Object Systems

	5.4.2 Study Methodology
	5.4.2.1 Participants
	5.4.2.2 Study Sessions

	5.4.3 Study Results
	5.4.3.1 System Performance
	5.4.3.2 End-Users' Performance

	5.4.4 Implications of the User Study

	5.5 Chapter Summary

	6 Discussion
	6.1 Cross Domain Applications
	6.1.1 Distributed Component Systems
	6.1.2 Peer to Peer Computing
	6.1.3 Service Oriented Computing

	6.2 Further Look at Design Aspects
	6.2.1 High Level Abstractions
	6.2.2 Separation of Concerns
	6.2.3 Interface and Protocol
	6.2.4 Simplicity and Features
	6.2.5 Some Notes on Evaluation

	6.3 Further Look at End-User Aspects
	6.4 Reactive or Proactive
	6.5 Chapter Summary

	7 Conclusions
	7.1 Research Summary
	7.2 Future Research Directions
	7.2.1 Specification and Description of Smart Object Services
	7.2.2 Integration of Location Information
	7.2.3 Incorporating Security Aspect
	7.2.4 Architectural Qualities for Improving User Experience
	7.2.5 End-User Tools

	7.3 Concluding Remark

	A Document Type Definition (DTD)
	A.1 Document Type Definition for Smart Object's Documents
	A.1.1 Document Type Definition for Smart Object Description Document
	A.1.2 Document Type Definition for Profile Description Documents

	A.2 Document Type Definition for Application's Document

	B Specification of Programming Interface
	B.1 Language Interface for Smart Object Development
	Profile Class

	B.2 Language Interface for Application Development
	Task Class
	AccessPoint Class
	XmlProcessor Class

	C User Study Material
	C.1 Post-study Questionnaire
	C.2 Post-study Interview Questions

	Bibliography

