
ePerceptive—Energy Reactive Embedded Intelligence for
Batteryless Sensors

Alessandro Montanari
Nokia Bell Labs, UK

alessandro.montanari@nokia-bell-
labs.com

Manuja Sharma∗
University of Washington, USA

manuja21@uw.edu

Dainius Jenkus∗
Newcastle University, UK
d.jenkus1@newcastle.ac.uk

Mohammed Alloulah∗
Nokia Bell Labs, UK

mohammed.alloulah@nokia-bell-
labs.com

Lorena Qendro
University of Cambridge, UK
lorena.qendro@cl.cam.ac.uk

Fahim Kawsar
Nokia Bell Labs, UK and TU Delft, NL
fahim.kawsar@nokia-bell-labs.com

ABSTRACT
For long, we have studied tiny energy harvesters to liberate sensors
from batteries. With remarkable progress in embedded deep learn-
ing, we are now re-imagining these sensors as intelligent compute
nodes. Naturally, we are approaching a crossroad where sensor
intelligence is meeting energy autonomy enabling maintenance-
free swarm intelligence and unleashing a plethora of applications
ranging from precision agriculture to ubiquitous asset tracking to
infrastructure monitoring. One of the critical challenges, however,
is to adapt intelligence fidelity in response to available energy to
maximise the overall system availability. To this end, we present
the design and implementation of ePerceptive: a novel framework
for best-effort embedded intelligence, i.e., inference fidelity varies
in proportion to the instantaneous energy supplied. ePerceptive op-
erates on two core principles. First, it enables training a single deep
neural network (DNN) to operate on multiple input resolutions
without compromising accuracy or incurring memory overhead.
Second, it modifies a DNN architecture by injecting multiple exits
to guarantee valid, albeit lower-fidelity inferences in the event of
energy interruption. The combination of these techniques offers
a smooth adaptation between inference latency and recognition
accuracy while matching the computational load to the available
power budget. We report the manifestation of ePerceptive in de-
signing batteryless cameras and microphones built with TI MSP430
MCU and off-the-shelf RF and solar energy harvesters. Our evalua-
tion of these batteryless sensors with multiple vision and acoustic
workloads suggest that the dynamic adaptation of ePerceptive can
increase the inference throughput by up to 80% compared to a static
baseline while ensuring a maximum accuracy drop of less than 6%.

∗This work was done when these authors were affiliated with the Pervasive Systems
Department at Nokia Bell Labs Cambridge.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3430782

CCS CONCEPTS
• Software and its engineering→Embedded software; •Com-
puting methodologies → Neural networks; • Hardware →
Analysis and design of emerging devices and systems.

KEYWORDS
Energy autonomous, embedded intelligence, batteryless devices.

ACM Reference Format:
Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Al-
loulah, Lorena Qendro, and Fahim Kawsar. 2020. ePerceptive—Energy Re-
active Embedded Intelligence for Batteryless Sensors. In The 18th ACM
Conference on Embedded Networked Sensor Systems (SenSys ’20), Novem-
ber 16–19, 2020, Virtual Event, Japan. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3384419.3430782

1 INTRODUCTION
The long-sought vision of swarm intelligence is in our periph-
ery. Resilient efforts in energy engineering and harvesting circuits
have brought us closer to a graspable future in which, billions and
trillions of tiny batteryless sensors will collect, process and com-
municate data about people, places and things [39]. In parallel, we
are observing a steady transition of machine intelligence from on-
cloud solutions to on-device (e.g., smartphones, smartwatches, etc.)
solutions [1, 35]. With remarkable advancement in embedded deep
learning and SoC accelerators, we are now pushing computation
further down the system stack - bringing intelligence at the sensor
level [18, 38]. The convergence of these two threads means, for
the first time, we will be able to realise the “Deploy and Forget”
vision whereby trillions of sensors will perceive and act in the
environment around us and will uncover myriad of applications
across verticals. For instance, in agriculture, every plant could be
monitored for precision irrigation, ensuring high yield at minimum
cost. In fleet and asset management, disposable tags could enable
fine-grained tracking to minimise financial losses caused bymissing
inventories or to increase RoI achieved through superior customer
satisfaction. The applications are endless including wild-life con-
servation [16], healthcare [10], energy-efficient buildings [2] and
many more.

Batteryless sensors first harvest energy (e.g. from solar or RF)
and buffer it in the storage and then, when sufficient energy is
available, they activate to perform their task (i.e. sensing, compute
and communication). Naturally, such a sensor is characterised by

https://doi.org/10.1145/3384419.3430782
https://doi.org/10.1145/3384419.3430782

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

Fig. 1: ePerceptive enables batteryless sensors to dynamically adapt
the inference quality in response to available energy by utilising
DNNs that operate on multi-resolution inputs and provide infer-
ences of varying fidelity with multiple exit branches.

high uncertainty, as the time at which it is awake and can sense the
environment or process incoming data is highly unpredictable [33].
Given the challenging operating conditions, batteryless sensors are
often confined to low-fidelity and low data-rate sensors, such as
inertial measurement units or environmental sensors. Their data
processing pipelines are also limited to simple operations like av-
eraging or peak detection. Recent works on embedded machine
learning have shown how accurate, on-device Deep Neural Net-
works (DNNs) could significantly improve the perception ability
of ultra low-power devices and thereby reduce data transmission
overhead enabling applications that can run for longer [18, 29, 38].

However, one of the critical challenges to bring embedded deep
learning into batteryless sensors is to make the model’s operational
behaviour reactive to the uncertain energy supply of the sensors,
to maximise the overall system availability. DNN models, typically
monolithic, require invasive retraining, and in some instances ar-
chitectural restructuring when their resource footprints need to be
adjusted. Although there are several techniques for such model re-
engineering [6, 25, 28, 32], the process is static and unable to flexibly
adapt to fluctuating energy availability. Moreover, current DNN
models, once retrained or restructured, can output an inference
if and only if resource availability is above a requisite threshold.
Such rigidity is, again, problematic for batteryless sensors as when
available energy falls below this threshold, sensor nodes are unable
to convert data into inferences.

Building on these observations, in this paper, we investigate a
specific challenge, namely: “Given that energy availability of a bat-
teryless sensor varies over time, can we design an energy reactive data
processing and inference pipeline that can offer smooth adaptation
between compute latency and recognition accuracy while matching
the computational load to the available energy budget?”

To this end, we present the design and implementation of ePer-
ceptive: a novel framework for best-effort inference—i.e. inference
whose quality varies in proportion to the instantaneous energy
supplied as illustrated in Figure 1. This is in contrast to traditional
application-driven approaches, where the focus is on minimising
the overall power consumption disregarding the instantaneous en-
ergy envelope. ePerceptive operates on two core mechanisms and
is implemented on an extended version of the SONIC intermittent
computing framework [18]:

• The first technique exploits the fact that the computational com-
plexity and thereby the energy footprints of DNNs is directly
proportional to their input size, typically with increased accuracy
when the input fidelity is higher. ePerceptive takes advantage of
this principle and enables the training of a single model which op-
erates accurately at different input resolutions without the over-
head of storing multiple models in memory. This multi-resolution
inference technique enables the selection of the input dimension,
which ensures the required level of accuracy while keeping the
energy necessary for the inference within the available limit, a
key requirement for batteryless sensors (see § 4).

• The second technique borrows principles from anytime algo-
rithms and early-exit DNNs [7, 41] and contextualise them in
a batteryless setting. This technique enhances a DNN architec-
ture through careful injection of multiple exits to enable valid
inferences even in the event of energy interruption. This multi-
exit inference mechanism enables a batteryless sensor to output
lower-fidelity inferences at intermediate layers in addition to the
final deepest output. The technique is introduced in § 5.

• ePerceptive leverages SONIC framework [18] to manifest these
two adaptive techniques, however with sophisticated extensions
for flexible and controlled grading of performance for batteryless
sensors. We introduce a new model interpreter, purpose-built
buffermanagement and a light-weight scheduler to enable SONIC
to support multi-resolution and multi-exit inferences on battery-
less sensors. Details of ePerceptive implementation are in § 6.

We have designed a batteryless camera and a batteryless micro-
phone with ePerceptive, and evaluated them using two popular
vision datasets, Visual Wake Words [12] (people detection) and
Caltech Camera Traps [4, 5] (animal detection) and one acoustic
dataset, Speech Commands v0.02 [43]. We implement ePerceptive
with two embedded models, variations of MobileNetV1 [23, 48].
These workloads represent realistic but challenging learning tasks
for ultra-low-power sensors in the wild. Our evaluation results
suggest that the dynamic adaptation of ePerceptive can increase
the inference throughput of these sensors by up to 80% compared
to a static baseline while ensuring a maximum accuracy drop of less
than 6%. Taken together these and the rest of our findings demon-
strate that ePerceptive can adapt with grace to widely fluctuating
and unknown energy operational conditions.

In what follows, we first reflect on the challenges of designing
batteryless sensors with embedded intelligence. Then we present
the architecture of ePerceptive followed by the detail description of
its two fundamental principles. We then move to the implementa-
tion of ePerceptive and describe its hardware and software. Then we
present the evaluation of ePerceptive with two batteryless sensors
and multiple perception workloads. We then position our research
concerning related work and conclude the paper.

2 BACKGROUND AND CHALLENGES
Energy harvesting systems, or batteryless sensors, have the poten-
tial to enable endless applications at scale with very low cost of
deployment and maintenance [2, 10, 16]. However, they present
significant challenges as they rely on harvesting unpredictable

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

20 40 60
FLOPs (millions)

70

75

80

85

Ac
cu

ra
cy

 (%
)

Resolution 64x64
Resolution 128x128
Resolution 256x256

(a)

5 10 15
FLOPs (millions)

70

75

80

Ac
cu

ra
cy

 (%
)

Removed 9 blocks
Removed 4 blocks
Full model

(b)
Fig. 2: Relationship between floating point operations (FLOPs) and
accuracy when changing (a) input resolution and (b) number of lay-
ers. MobileNetv1 mdoels trained on the VWW dataset [12].

energy from the environment and demand radical changes in hard-
ware [13, 14, 21] and software [22, 34, 47] design to ensure robust-
ness to sudden power failures. Thanks to the maturity of recent
hardware and software platforms, we are increasingly observing
complex applications on these systems primarily aiming at detect-
ing interesting events with high accuracy, and minimising com-
munication cost. Indeed, recent works highlight how accurately
detecting interesting events with Deep Neural Networks (DNN)
plays a significant role in reducing communication overhead and
increasing the utility of these systems [18, 38].

DNN models are resource hungry and, more importantly, not
easily scalable at runtime. In fact, once trained, they produce infer-
ences only when there are enough resources (i.e., energy) to execute
the entire network. While intermittent-safe implementations can
guarantee that an inference could span several power failures [18],
they do not automatically enable existing models to produce a valid
output that meets the instantaneous energy envelope. This implies
that, when energy is scarce, a fixed-latency big model will waste
energy completing an inference that could take significant time.
On the other hand, if only a faster but less accurate model is used,
the system cannot take advantage of excess available energy, and
will always produce sub-optimal inferences.

When building a new DNN, there are three control parameters
to scale its computational complexity: (1) the input resolution, (2)
the number of layers and (3) the number of filters per layer [40].
Other techniques involve re-engineering an existing model after
the initial training [6, 25, 28, 32]. However, without specialised
treatment, these techniques do not solve the problem of adapting
the models’ complexity to the variable energy availability.

Figure 2 shows this point. When we train models at higher reso-
lutions (Figure 2a), we obtain progressively more accurate models
at the expense of significant computational complexity. Similarly,
when we remove layers from the model, we observe drops in accu-
racy (Figure 2b). These, however, are individual models that need to
be trained separately and, once trained, have a fixed computational
requirement which cannot be changed at runtime to match a fluc-
tuating energy envelope. A simple way to achieve such dynamism
would be to store all models in memory and select the appropriate
one at runtime based on the energy conditions. However, this is pro-
hibitive for energy harvesting devices which have small memories,
in the order of KBs (e.g. 256KB or 512KB). Techniques like weights
quantisation [25], pruning [32] or layer decomposition [28] could
alleviate this issue. Nevertheless, they suffer accuracy drops when
heavy compression is applied and, moreover, add the overhead of
having to train multiple models.

Pre-Processing Operation
Time
(ms)

Energy @ 2.2v
(mJ)

QQVGA image acquisition 200 1.10
Microphone sampling (8kHz) 1000 3.96
Image resize 50 0.27
MFCC (𝑙 = 30ms, 𝑠 = 10ms) 1280 5.13
MFCC (𝑙 = 30ms, 𝑠 = 20ms) 640 2.56
MFCC (𝑙 = 30ms, 𝑠 = 30ms) 430 1.72

Table 1: Time and energy consumed by pre-processing operations
on the TI MSP430FR5994 platform. 𝑙 and 𝑠 are the frame length and
stride respectively, used for the MFCC computation.

Besides, different input resolutions and feature engineering with
varying fidelity have a significant impact on the computation cost
both concerning latency and energy for batteryless sensors. For
instance, in table 1, we show the latency and energy footprints of
two typical operations present in inference pipelines of camera and
microphone based data. These operational stages, i.e., data acquisi-
tion (e.g., sampling rate) and data pre-processing (e.g., reshaping,
selecting different feature resolutions) offer unique optimisation
opportunities if applied carefully.

Based on these observations, in the next section, we present
ePerceptive, a framework for batteryless sensors offering energy
reactive computation with a single DNN model.

3 ePerceptive PIPELINE OVERVIEW
The objective of ePerceptive is to adapt the computational complex-
ity of DNN models to fluctuating energy conditions. ePerceptive
focuses on vision and audio recognition workloads as we envisage
batteryless sensors that can complete such workloads accurately
and efficiently have the potential to produce high-value insights
about the environment they are deployed in, at very low cost of
deployment and maintenance. At the core of the framework we
place an adaptive pipeline described in Figure 3. Since the overhead
of a DNN inference is typically higher than the other stages, the ob-
jective is to adapt the pre-processing stages to reduce the execution
overhead of the DNN with marginal loss in accuracy. The pipeline
is designed to allow for adaptations at three different stages: data
acquisition, featurisation and best-effort inference.

3.1 Data Acquisition Stage
During data acquisition the pipeline can choose to sample the sen-
sors at different resolutions. In practice, this translates to capturing
an image at higher or lower resolution for camera sensors (e.g.,
QQVGA or VGA) or changing the sampling rate of microphones
(from 16kHz to 8kHz, for example). Higher sampling resolutions
result in higher energy consumption for both cameras and micro-
phones, hence ePerceptive can use this as the first control knob to
adapt the computational overhead of the pipeline.

3.2 Featurisation Stage
At the second stage, adaptation is applied when raw data is trans-
formed into features which are then used as input for the DNN
model. For vision recognition DNN models work directly on the
image pixels. However, since cameras often capture images only at

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

Fig. 3: ePerceptive high-level processing pipeline overview.

Featurisation Best-effort InferenceAcquisition

Energy-Aware Adaptation

Output

Variable Energy Source

Distortion-tolerant 
Deep Neural Network

Degradable Source

Coding Degradable InferenceData Acquisition

Energy-Aware Adaptation

Input Output

Variable Energy Source

PHASE 1 PHASE 2 PHASE 3Sparsification (Image) 
Coarsification (Audio)

Raw Image 
Raw AudioData ResolutionSTAGE 1 Data ReshapingSTAGE 2 Adaptive Neural

Network
STAGE 3

Input Output

Conv Net Flatten

Dense

Image

64

64
Conv Net FlattenImage

128

128

Dense

Input Output

Input

Fig. 4: Simplified architecture of a generic CNN built for a single
resolution (e.g., 64 × 64). When presented with a larger input image,
the Conv Net produces larger features which do not match with the
input dimension of the dense layer. This model cannot compute.

a fixed resolution, in this stage ePerceptive resizes the image to a
lower resolution in order to speed up the DNN execution. For audio
recognition, this step typically involves the computation of Mel
Frequency Cepstral Coefficients (MFCCs). To obtain these features,
the input audio signal of length 𝐿 is divided into overlapping frames
of length 𝑙 , and frequency features are extracted for each frame.
By adopting a stride parameter 𝑠 , which determines the level of
overlap, we can obtain “coarser” (if we increase it) or a “finer” (if we
decease it) MFCCs. Intuitively, when the stride is small (i.e., bigger
overlap between frames) many more frames will be considered and
more features computed compared to when a larger stride is used.
ePerceptive exploits this to adapt the MFCCs computation to vari-
able energy availability. These dynamic resizing and variable MFCC
computations represent the second control knob of the pipeline.

3.3 Best-Effort Inference Stage
All these adaptations produce input data at different quality levels
(i.e., images at different resolutions or MFCCs computed from finer
or coarser spectrograms). ePerceptive is capable of handling the
various conditions with a single model and produces best-effort
inferences reacting to the instantaneous available energy and to the
degradation introduced by the previous stages.In the next sections,
firstly, we introduce our multi-resolution inference approach to
enable a single DNN model to produce accurate inferences even
when the input data has a different resolution (§ 4). We then present
a complementary multi-exit inference technique, that dynamically
executes only a subset of the model layers albeit producing valid
result (§ 5) to trade-off inference accuracy for latency. This repre-
sents the third and last control knob available to ePerceptive users
to adapt inference computation to energy availability.

4 MULTI-RESOLUTION INFERENCE
In § 2, we have shown how energy/complexity adaptation of CNN
models could be easily achieved by changing the input resolution.
However, this becomes challenging on energy harvesting sensors

due to the limited amount of memory available. Starting from these
observations, the question we aim to answer in this section is: can
we design and train a model that can operate at multiple resolutions
while maintaining a satisfying accuracy at each of them?

4.1 Primer on DNN Input Pipelines
We first briefly review the characteristics of the input pipelines used
to classify images and audio events. Vision models typically process
one image at the time without any prior feature extraction stage.
RGB images, characterised by three dimensions, height (𝐻), width
(𝑊) and number of channels (𝐶) are directly fed to the model’s input
stage, featurized using convolutional filters, and finally classified
with one or more fully connected layers.

For audio models, commonly Mel Frequency Cepstral Coeffi-
cients (MFCCs) are extracted over a window of audio signal and
fed to the DNN. When processing an audio signal of length 𝐿, the
feature extraction consists in dividing the signal into overlapping
frames of length 𝑙 using a stride 𝑠 to compute the spectrogram of
the input. The number of frames considered is given by𝑇 = 𝐿−𝑙

𝑠 +1,
and 𝐹 features are computed for each frame, giving a total of 𝑇 × 𝐹
features. Hence, the audio input is still an image with 𝐻 ,𝑊 and
𝐶 (𝐶 = 1) but the image represents frequency features over time.
In this case, we can increase or reduce the input resolution by
changing the stride used to compute the features.

4.2 The Problem with Multi-resolution
We analyse CNNs to understand why they cannot operate on dif-
ferent input resolutions. The main components of a CNN are 2D
convolutional layers and dense (or fully connected) layers. When
the network is created, the input dimension is assumed to be fixed
and the weight matrices of all layers are initialised according to
that input dimension and the other hyper-parameters of the model.
This means that, to normally execute the network, the 3D features
generated by the convolutional layers will be flattened to a vector
whose length matches the input dimension of the following dense
layer. If we feed the model a larger input (i.e., higher resolution
image), the convolutional layers will easily produce larger features
(with higher resolution). However, when these 3D features are flat-
tened, just before the first dense layer, they will generate a longer
vector which will not fit in the input of the dense layer, hence the
network will not complete its computation. This is represented in
Figure 4 where a model built for a smaller resolution is fed with
a larger input resolution. The weight matrix of a dense layer is
defined asW ∈ R𝐿×𝑀 where 𝐿 and𝑀 are the lengths of the input
and output vector, respectively. This implies that the only way for
a dense layer to accommodate a larger (or smaller) input would be
changing its weight matrix by re-training the model.

Contrary to dense layers, convolutional layers can produce fea-
tures with different dimensions according to their input resolution,
we show now how that is possible. The 2D convolutional layers
of a DNN accept as input a 3D tensor (I ∈ R𝐻×𝑊 ×𝐶 with height
𝐻 , width𝑊 and 𝐶 channels) and produce a 3D tensor in output
(O ∈ R𝐻 ′×𝑊 ′×𝐶′

). The output is the result of convolving each ker-
nel over the input tensor. The kernel tensor of a convolutional layer
is defined by W ∈ R𝑆1×𝑆2×𝐶×𝐶′

while the bias vector by b ∈ R𝐶′
,

where 𝑆1 and 𝑆2 are the spatial dimensions of the filters, selected

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

W

H

C

1
1

C
GAP

Fig. 5: Global Average Pooling (GAP) layer operation.

when the model is created. Similarly, 𝐶 ′ (number of filters) is a
parameter of the layer itself and remains constant once the model
has been built. The only dimension of W which depends on the
layer’s input is 𝐶 , the number of input channels. Hence, as long
as the input channels remain the same, the kernel tensor does not
change, regardless of the input resolution. This allows convolutions
to natively work on inputs at different resolutions without the need
to modify the number of parameters. This is the property we exploit
to adapt the model’s computational complexity to instantaneous
energy envelope.

4.3 Model Architecture
We have seen in the previous section that the convolutional layers
support variable-sized inputs and generate variable-sized outputs.
The objective, therefore, is to reshape the output of the last convo-
lutional layer into a vector with fixed dimension, regardless of the
input resolution, while maintaining enough information to classify
the input accurately.

To achieve this goal, we borrow the concept of Global Average
Pooling (GAP) [31] from establishedmachine learning literature and
apply it in our purpose-built model architecture designed to execute
on batteryless sensors. GAP was introduced by Lin et al. [31] with
the objective of replacing the last dense layer of a CNN model,
removing many trainable parameters concentrated in the dense
layers, with benefits in terms of reduced tendency to over-fitting,
smaller models and speed of training. Given the advantages, the
layer has been employed in several recent architectures, not as
dense layer replacement but as dimensions reduction before the
last dense layer(s) to limit over-fitting [23, 40]. In this work, we
exploit the ability of a GAP layer in reducing the spatial dimensions
of three-dimensional tensors: the average is computed across the
entire spatial extent of the feature maps, producing a value for each
channel. Therefore, a GAP layer reduces a tensor with dimensions
𝐻 ×𝑊 ×𝐶 to a tensor with size 1 × 1 ×𝐶 as depicted in Figure 5.

By introducing a GAP layer after the last convolution we are able
to shrink the spatial dimensions of the feature maps to a vector with
a fixed size (e.g. 1 × 1 ×𝐶), regardless of the input resolution. After
the GAP layer one or more dense layers can be stacked because
it is now guaranteed that their input dimension will not change.
This simple but crucial modification enables a CNN to operate
on inputs at different resolutions, benefiting also from the GAP’s
advantages mentioned earlier. In the specific context of embedded
machine learning, where onboard memory is limited, introducing
a GAP layer brings also important savings in terms of memory
consumption as dense layers typically hold the largest number of
parameters. However, we will demonstrate in § 7.2 that adding a
GAP layer is not sufficient to ensure good accuracy at different
resolutions, hence the introduction of our multi-resolution training
strategy.

64 128 256
Testing Resolution (pixels)

60

70

80

90

Ac
cu

ra
cy

 (%
)

Train res. 64
Train res. 128
Train res. 256

Fig. 6:MobileNetV1models trained on a single resolution and tested
on different resolutions. The dataset used for this experiment is Vi-
sual Wake Words [12].

Augmentation ResizeDataset 64 128 256

Mini-batches

Multi-resolution pipeline

64 128 256

Fig. 7: Multi-resolution pipeline configured to train at 3 resolutions,
64, 128 and 256. For the audio pipeline, the resize component will
change the stride used for the MFCCs computation producing fea-
tures at different resolutions.

4.4 Model Training
The GAP layer ensures that the feature maps having different di-
mensions generated by the convolutional layers reduce to a vector
with a fixed dimension. However, when the model is trained with
a single input resolution, the kernels learn to extract meaningful
features only at that resolution and the learned parameters do not
translate well to other resolutions. To demonstrate this behaviour
we trained three MobileNetV1 [23] models at resolutions 64 × 64,
128× 128 and 256× 256 on the Visual Wake Words dataset [12]. We
then tested each model at the three resolutions. Figure 6 reports
the accuracy of the models. We observe that, as expected, each
model achieves the highest accuracy at the resolution they have
been trained on. However, when the testing resolution is changed
the accuracy drops significantly. We see a similar behaviour in the
other datasets we consider in this work, including audio (see § 7.2).

To overcome this issue we devise a training strategy that takes
inspiration from data augmentation techniques. When data aug-
mentation is added to the training process, dataset samples are
randomly transformed during training. When dealing with images
for examples, typical augmentations include horizontal flip, rotation
or colour alteration. This essentially expands the available dataset
and helps the model generalise better. Following the same principle
we propose to vary the input resolution during the training process
and force the model to learn features that are resolution invari-
ant. Since the model is presented with input where the features of
the target object change in scale continuously, the kernels, instead
of specialising on a single resolution are forced to adapt to the
different scales and spatial relationships between the features.

To implement this strategy, we design a multi-resolution input
pipeline which, during training, resizes the input for each mini-
batch. Individual mini-batches cannot contain input with different
resolutions but it is possible to re-scale between each mini-batch.
Before input resizingwe apply classic data augmentation techniques
(e.g., horizontal flip and rotation for images and noise addition for
audio) to expand the dataset. Figure 7 shows the pipeline operation.
At training time, our pipeline starts from the first resolution, loads
the first mini-batch, applies classic data augmentation, resizes all

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

the samples to the selected resolution and passes it through the
model. Then the pipeline selects the next resolution and creates
the next mini-batch. Once all the resolutions have been used the
process starts over from the first one. At the end of each epoch
we shuffle the entire dataset to ensure that the same resolutions
are not used on the same images. This pipeline guarantees that all
resolutions are used during training. The audio pipeline is the same
with the only difference that the resize operation is performed by
changing the stride used for MFCCs computation.

5 MULTI-EXIT INFERENCE
The multi-resolution architecture and training strategy enables
a single model to exploit different input resolutions to trade-off
accuracy for latency. Another approach would be to use models
that have a different number of layers. In energy harvesting devices,
only fewmodels can be stored, therefore, it is difficult to achieve the
needed adaptation to match a fluctuating energy envelope. Hence,
the driving question of this section is: can we design and train a
model that can adapt its depth dynamically at inference time?

5.1 Model Architecture
To achieve the needed flexibility, we take inspiration from a class of
algorithms called anytime [7, 41]. The central premise behind them
is the ability to be interrupted before workload completion—say as
a result of energy depletion—while retaining the ability to output
a valid, albeit degraded, result. Further, a wider energy envelope
would allow to progressively refine the earlier approximate result.
Anytime algorithms have been originally used for time-dependent
planning and decision-making [15]. Such paradigm aligns well
with the unpredictable nature of energy harvesting systems as
anytime algorithms can approximate results to available power
budget, thereby guaranteeing a timely response. That is, an anytime
algorithm is able to trade off confidence in results for energy and
compute efficiency.

Grounded on these observations, we borrow this anytime para-
digm into ePerceptive contextualising it in batteryless sensor set-
tings. Accordingly, we enhance the model architecture by introduc-
ing exit points at intermediate positions throughout the network.
A classifier, typically implemented with one or more dense layers,
is placed at the end of each exit point to produce auxiliary outputs
in addition to the classic output of the network at the last layer.
This approach effectively reduces the number of layers that the
input needs to traverse, hence achieving reduction in latency at
the expense of lower accuracy. The principle behind this method
is that DNNs extract better features as the model gets deeper. To
best of our knowledge, this is the first work that brings the anytime
paradigm in a battery-less context.

The proposed architecture brings several advantages for battery-
less sensors as it allows at runtime to select the appropriate exit
based on the instantaneous energy budget. Additionally, this deci-
sion can be updated in case the amount of energy being harvested
changes. For example, considering a model with three exits, at some
point in time the exit #2 could be selected. If, during execution, the
harvested energy is reduced (e.g., passing cloud) the system can
select the exit #1 (assuming it did not pass that exit point already)

Modelling and Training Sensor Platform

Model Optimiser

Multi-resolution Model Multi-exit Model

Camera

Inference Runtime
Model Interpreter

Deployment Utilities EH

SolarRadio

Best-Effort SONIC SchedulerTraining Strategies

Buffer Manager

MCU Platform
Power MonitorSensor DriversFRAM

Mic

Fig. 8: Architecture of ePerceptive. Left are the components used of-
fline for model training and deployment, right are the components
running on the MCU platform.

Fig. 9: Hardware setup.

and produce a degraded inference accuracy-wise with shorter la-
tency. Similarly, if the harvested energy increases, a later exit point
could be selected to increase the inference confidence.

5.2 Model Training
In order to have valid outputs in all exit points, the loss function
needs to have a component for each exit and the training objective
is to optimise this loss for all exits. This way each output can
propagate its prediction error in relation to the ground truth and
train the layers that precede the exit point. We denote the cross-
entropy loss function for each exit with 𝐿𝑛 (ŷn, y;𝜃), where ŷn is
the prediction produced by exit 𝑛, y is the ground truth and 𝜃 are
the weights of the layers between the model’s input and the exit
𝑛. To train the entire network at once we optimise the following
weighted loss function:

𝐿𝑚𝑜𝑑𝑒𝑙 (ŷ, y;𝜃) =
𝑁∑
𝑛=1

𝑤𝑛𝐿𝑛 (ŷk, y;𝜃). (1)

𝑁 is the number of exits and𝑤𝑛 ∈ [0, 1] are the weights applied to
the loss function of each exit point. The weights allow to balance
the importance of each exit during gradient descent and can be
used to control the accuracy on each of them. Increasing the weight
at a specific exit point forces the network to learn better features
at the preceding layers, hence, potentially producing better results.

During training, the predictions of all exit points are computed,
compared with the ground truth via the loss function and then
the weights are updated. At inference time instead, we modify the
model to select the exit point for each input sample. In § 7, we show
how this enables to scale the inference complexity based on the
available energy by selecting the appropriate exit at runtime.

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Anytime Mode Classic Mode Dynamic exit selection

Planned
Actual

Buffer A

Buffer B

Buffer A

Buffer C

Buffer A

Buffer CBuffer B

Buffer A

Buffer B

Buffer A Buffer A

Buffer BBuffer B

Fig. 10: Interpreter buffer management and dynamic exit selection.

Voltage

TimeCharge time
e.g. 3 sec

More energy Less energy

Charge time
e.g. 60 sec

Vmin

Fig. 11: Simplified supercapacitor voltage fluctuations when there
are different levels of energy available. Blue periods represents in-
tervals when the device is running. Red arrows represent when the
device enters LPM3 and green arrows when the device wakes up.

6 ePerceptive IMPLEMENTATION
6.1 Hardware
ePerceptive implementation consisted of three main hardware units:
MCU, sensors, and harvester. We used TI’s MSP430FR5994 MCU
which has 256KB of embedded FRAM, 8KB of SRAM and 16 MHz
CPU speed. For vision application, we interfaced the MCU with the
Himax HM01B0 ultra low power CMOS Image Sensor, consuming
<2mW at QVGA, 30FPS. The Analog Devices’s ADMP401, a low
power omnidirectional MEMS microphone was used as the sensor
for the audio application. We used two kinds of harvesters; an RF
Harvester (Powercast TX91501B, 915 MHz, 3W transmitter) was
combined with the Powercast P2110B controller and a solar panel
(IXYS SLMD600H10L) was controlled with the TI’s BQ25570 power
management chip.

6.2 Software
The software implementation of ePerceptive consists of two distinct
components, an offline framework for training, optimising and
provisioning the model to batteryless sensors, and an on-device
framework for runtime inference guided by a lightweight scheduler.
These components are depicted in Figure 8.

6.2.1 Offline Framework: This component consists of a package of
valuable tools to seamlessly guide the definition of Tensorflow adap-
tive models, training strategies described above for multi-resolution
and multi-exit and optimisations for execution on constrained de-
vices. We provide a range of optimisation techniques like singular
value decomposition (SVD), Tucker tensor decomposition, pruning
and batch normalisation (BN) folding. The optimiser automatically
computes the runtime memory requirements and applies the var-
ious optimisations to different parts of the model in an iterative
manner until it fits on the device while making sure there is little
to no drop in accuracy. Additionally, this layer supplies the tools to
export and flash the models into the sensor platform.

6.2.2 On-Device Framework: In the original SONIC implementa-
tion, since the model is pre-determined at compile time and does

not change at runtime, its structure and the management of the
intermediate buffers are hard-coded in the firmware. This is not
suitable for ePerceptive, because at runtime the sequence of layers
executed might change from inference to inference when different
exits are selected and the intermediate buffers that hold the layers’
activations need to be expanded or shrunk based on the input reso-
lution. Besides, we also need a mechanism to dynamically select
the best execution path in response to available energy. To this end,
we extended the SONIC framework with three distinct modules.

Model Interpreter: We designed and implemented a model in-
terpreter that reads the definition of the model from FRAM and
executes it in an intermittent-safe way. The definition of the model
is a table that contains the type of each layer (e.g., convolution or
dense layer), their configuration including bias, padding and stride
and a pointer to the memory location where the weights are stored.
Crucially, it also stores the possible resolutions supported by each
layer and the locations within the model where early-exits can be
taken. This definition is automatically generated by the offline tools
at the the end of the model training. At runtime, the interpreter
reads the definition of each layer and executes it using the SONIC
primitives.

Buffer Manager: The buffer manager (BM) manages and re-uses
the input/output buffers stored in FRAM for each layer as depicted
in Figure 10. The BM is used by the interpreter during the execution
of the model. Two modalities are supported. In the Anytime Mode
the buffer manager enables the anytime paradigm which allows an
input sample to be processed by further layers after an initial result
has been produced in an earlier exit. In this case, the BM allocates
an additional buffer C which is used to complete the execution
of the early exit while B remains untouched and can be used to
continue to a deeper exit later. The Classic Mode instead requires
only two buffers but does not allow to continue the execution after
an early-exit has been taken.

In addition, this component keeps track of the execution of the
model using the FRAM to ensure that the data structures are con-
sistent even in case of power failures. Additionally, as shown in
Figure 10, the buffer manager allows to dynamically change the
exit to take based on the available energy even if this differs from
the one originally planned by the scheduler.

Scheduler: ePerceptive processes input samples every time there
is sufficient energy to provide inference outputs as promptly as
possible. This light-weight scheduler decides which input resolu-
tion and early exit to take for the next inference by estimating
the current energy available in the environment. The scheduler
achieves this by exploiting a key principle - the charging rate of
the supercapacitor is proportional to the available environmental
energy. This implies, when the environmental energy is high (e.g.,
during a sunny day), the downtime of a batteryless sensor will be
shorter as the capacitor will charge faster and vice versa when
the energy is scarce. Figure 11 exemplifies this. We estimate the
available energy by measuring the time taken by the capacitor to
charge up to a sufficient voltage. As shown in Figure 11, we monitor
the voltage across the supercapacitor with the internal comparator
and enter in Low Power Mode 3 (LPM3) when the voltage drops
below 𝑉𝑚𝑖𝑛 . While in LPM3 we use the RTC (Real Time Clock) to

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

measure the time taken by the capacitor to charge until the device
wakes up.

We use solar and RF traces to determine the distribution of
charge times. Based on this distribution, we build a lookup table that
associates a configuration (represented as a tuple <resolution, exit>)
to a range of charge times. The table is built to balance latency and
accuracy by selecting configurations with lower latency (i.e., lower
accuracy) when energy is scarce and configurations with higher
latency (i.e., higher accuracy) when more energy is available. At
runtime, when the device wakes up (represented by green arrows in
Figure 11), after reading the charge time from the RTC, we select the
configuration that corresponds to the current charge time. The table
lookup has a negligible cost given that the table has as many entries
as the number of configurations (i.e., at most 7 in our experiments).
In case the device loses power completely, for example during the
night for a solar-powered system, at the next wake up, since the
system cannot estimate the amount of energy because the RTC was
off, it selects the configuration with the lowest latency to provide a
prompt inference.

Our practical approach gives an indication of the current amount
of energy available and it is used by the system to take a short term
decision on the next configuration to run. Please note that one
can consider a sophisticated scheduler with long term energy fore-
casting building on the rich literature on real-time task scheduling
and energy prediction. However, we consider such a mechanism is
a future avenue of our work. In the current context, however, we
want to highlight that ePerceptive allows and support the imple-
mentation of different policies.

7 EVALUATION
7.1 Methodology

Datasets: To evaluate the generalisation capability of our frame-
work, we chose three datasets that reflect tasks that could poten-
tially be achieved by low-power devices in the wild, where energy
is scarce.

VisualWakeWords [12] is a benchmark dataset for tiny vision
models purposefully built to execute onmicrocontrollers. It contains
images belonging to two classes, whether a person is present in the
image or not. This dataset offers high-resolution images and the
training and validation sets include 115k samples while the test set
comprises a total of 8k images.

Camera CATalogue [44] dataset consists of animal images
captured from 750 cameras in South Africa. These snapshots contain
55 animal species for a total of 520K images. In this specific work,
we focus on classifying the presence or not of an animal in an image
discarding the info about the species.

Speech Commands v0.02 [43] dataset is a collection of 105k
1-second long utterances of 35 words meant for keyword detection.
In our setting, we use ten keyword classes yes, no, up, down, left,
right, on, off, stop, go and the rest falls in the “Unknown” class. The
input to the model is a two-dimensional tensor extracted from the
one-second-long audio recording, consisting of time frames on one
axis and 12 MFCC features on the other axis.

Models: ePerceptive adapts the computational complexity of two
realistic off-the-shelf neural networks, enabling them to react to

DSC
x2

C

DSC
x3

DSC
x8

GAP

FC

GAP

DSC GAP FC

FC

DSC

C

DSC
x3

DSC
x9

GAP

FC

GAP

GAP FC

FC

DSC

C

DSC
x3

GAP

FC

GAP FC

Visual Wake Words Camera CATalogue Speech Commands

Fig. 12: Early-exit architectures.

fluctuating energy conditions typical of battery-less sensors. This
adaptation happens at both data processing and inference stages.

For our vision tasks, we use MobileNetV1 [23] - a state-of-the-art
CNN architecture particularly suitable for low-power settings. It
consists of 14 blocks, each composed of 2D depthwise convolution
layers and 1x1 (point-wise) convolutions.

For our audio task, we utilise a depthwise separable CNN ar-
chitecture, proposed in [48]. This architecture is implemented on
a smaller version of MobileNetV1 and is composed of 1 regular
convolution layer, four DSCs and a fully connected layer.

As mentioned before, the original models are enhanced to sup-
port multi-resolution input and multi-exit branches. To achieve this,
we perform a thorough hyperparameter search and find the best-
performing ones for the vision and audio tasks. The final model
architectures are depicted in Figure 12. Global Average Pooling
layers are inserted before the fully connected layer of each exit
point to support multi-resolution inputs at all exits.

Performance metrics: We consider different metrics for the eval-
uation: accuracy, latency, energy, and number of samples processed
in a fraction of time.

7.2 Constant Power Microbenchmarks
In this section we evaluate ePerceptive when running with con-
stant power. These benchmarks are meant to assess how well the
two techniques enable a graceful trade-off between inference accu-
racy and energy. In the following experiments we profile only the
inference stage of the pipeline.

Multi-resolution models. Figure 13 shows the accuracy of our
multi-resolution models when tested at different resolutions (x-axis)
compared to the accuracy of models trained at a single resolution.
The multi-resolution models achieve high accuracy at the three
resolutions while the other models show high performance only
at the single resolution they have been trained on, with significant
drop for the others. This result is consistent for the three datasets.
Notice that for Speech Commands the accuracy decreases as the
stride increases because larger strides produces smaller and coarser
MFCC features making the classification task more difficult.

Interestingly, in some cases, the accuracy of the multi-resolution
model is slightly higher than the other models at the same resolu-
tions. For the Visual Wake Words dataset this is quite marginal for
resolutions 48 and 96 for which the multi-scale model is 0.3% and
0.2% more accurate, respectively. However it is more significant for
resolution 66 for which the accuracy gain of the multi-scale model
is 1.2% compared to model only trained at that resolution.

For the othermodels, the drop in accuracywith respect to the best
model at a particular resolution is within 4%. The only exception
is the Camera CATalogue model which experiences an 8% drop

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

48 66 96
Testing Resolution (px)

50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

Multi res.
Train res. 48
Train res. 66
Train res. 96

(a) Visual Wake Words.

32 56 80
Testing Resolution (px)

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

Multi res.
Train res. 32
Train res. 56
Train res. 80

(b) Camera CATalogue.

10 20 30
Testing Stride (ms)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Multi res.
Train str. 10ms
Train str. 20ms
Train str. 30ms

(c) Speech Commands.
Fig. 13: Accuracy of multi-resolution models compared to models
trained on individual resolutions.

50 100 150
Inference time (s)

74

76

78

Ac
cu

ra
cy

 (%
)

Resolution 48
Resolution 66
Resolution 96

(a) Visual Wake Words.

50 100
Inference time (s)

80

85

90

Ac
cu

ra
cy

 (%
)

Resolution 32
Resolution 56
Resolution 80

(b) Camera CATalogue.

20 40 60
Inference time (s)

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Stride 10ms
Stride 20ms
Stride 30ms

(c) Speech Commands.
Fig. 14: Accuracy and latency of multi-resolution models when run-
ning with constant power.

at resolution 32. We hypothesise this is because 32 × 32 is a small
resolution for image classification and the higher accuracy drop
might be an indication that this is the limit at which the model
is capable of producing reasonable inferences (i.e., with accuracy
above 70%).

Figure 14 shows how the change in input resolution translates
directly in latency gains. The latency is reduced significantly for
all models while the accuracy difference between higher and lower
resolution is around 11% for the Camera CATalogue model, or
lower. For the audio model the benefit of operating at multiple input
resolutions is also capitalised at the feature extraction stage. In fact,
computing MFCCs with a larger stride reduces the complexity of
the features extractor reducing its latency. Table 1 shows that for
the frame length an stride parameters we have chosen there is a 3x
latency and energy reduction.

These results shows that our multi-resolution model and training
strategy enable a single model to operate accurately at different res-
olutions without the overhead of storing the parameters of different
models in memory.

Multi-exit models.We now move to the evaluation of the second
technique that is part of ePerceptive: multi-exit DNNs. The latency
results are reported in Figure 15. They show how this is another
effective knob to control the complexity of DNNs inferenceswithout
heavy overhead in terms of memory consumption. In fact these
models are only slightly larger that the non-multi-exit counterpart
because they have a limited amount of layers in the exit branches.
Contrary to the multi-resolution approach described earlier we see
a more significant accuracy variation over the various exits. This is
due to the fact that in this case the model is severely reduced when
an early exit is taken. For example the first exits skips the majority
of the network.

Combination of multi-resolution and multi-exit models. An
interesting advantage of the techniques we just described is that
they can be combined in a single model. Figure 16 shows the results
for the three datasets when models have been trained combining

50 100 150
Inference time (s)

65

70

75

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit
3rd Exit

(a) Visual Wake Words.

0 50 100
Inference time (s)

75

80

85

90

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit
3rd Exit

(b) Camera CATalogue.

25 50 75
Inference time (s)

88

90

92

94

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit

(c) Speech Commands.
Fig. 15: Accuracy and latency of multi-exit models when running
on constant power.

0 100
Inference time (s)

70

75

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit
3rd Exit
Res. 48
Res. 66
Res. 96

(a) Visual Wake Words.

0 50 100
Inference time (s)

70

80

90

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit
3rd Exit
Res. 32
Res. 56
Res. 80

(b) Camera CATalogue.

25 50
Inference time (s)

75

80

85

90

Ac
cu

ra
cy

 (%
)

1st Exit
2nd Exit
Stride 10
Stride 20
Stride 30

(c) Speech Commands.

Fig. 16: Accuracy and latency ofmodels combiningmulti-resolution
and multi-exit techniques when running with constant power.

multi-exits and multi-resolutions. We observe how the combination
of exits and resolutions create a smooth trade-off between accu-
racy and compute. At any given point, at runtime, the system can
alter the model complexity by picking one of the <resolution, exit>
combinations. Combinations with higher latency typically result
in higher accuracy and vice-versa. However, not all configurations
are useful because in some cases there could be overlap between
them. An example of this is resolution 96 on the first exit for Visual
Wake Words. That configuration is not particularly useful because
there is an additional one (resolution 48, exit 2) that achieves higher
accuracy with slightly lower latency (other cases are present in the
other datasets too). This is the result of the interaction between the
two techniques. Even if a higher resolution typically corresponds
to higher accuracy, the introduction of an exit point with higher
computational capacity could in a way revert that by achieving
higher accuracy at a lower resolution.

The smooth latency transition translates directly into energy
consumption adaptation. Figure 17 shows how each configuration
has a specific energy profile. These results demonstrate how ePer-
ceptive enables the adaptation of DNNs’ complexity to achieve
gains in terms of latency and energy consumption.

Memory Usage. Table 2 reports the amount of memory required
to store the weights of different MobileNetV1 versions. The first
two rows represent models that are equivalent to our multi-exit
model but have only one, or two exits. The third row instead is
the memory required by the classic MobileNetV1 model at a single
resolution. We observe that our multi-exit, multi-resolution model
requires slightly more memory than the classic model since it needs
to store the weights of the layers in the additional exits. When
using individual models, in order to have different latency-accuracy
operating points at runtime, the system should store weights for
each of them. For example, with our Visual Wake Words model we
can have 9 different operating points (3 resolutions and 3 early exits)
using 171KB for the weights. The same 9 operating points using

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

Model Weights Memory (KB)
MobileNetV1 First Exit Only 2.2
MobileNetV1 Second Exit Only 12.6
MobileNetV1 Full Model 169.6
ePerceptive MobileNetV1 171.0

Table 2: Memory required for storing weights of different models.

Exit 1 Exit 2 Exit 30

200

400

600

En
er

gy
 (m

J)

33 71

244

59
121

368

127

258

701Res. 48
Res. 66
Res. 96

(a) Visual Wake Words.

Exit 1 Exit 2 Exit 30
100
200
300
400
500

En
er

gy
 (m

J)

7 25

164

19
68

271

39

135

516Res. 32
Res. 56
Res. 80

(b) Camera CATalogue.

Exit 1 Exit 20

100

200

300

En
er

gy
 (m

J)

77

313

43

202

24

101

Stride 10ms
Stride 20ms
Stride 30ms

(c) Speech Commands.
Fig. 17: Average energy per inference of models combining multi-
resolution and multi-exit techniques with constant power.

E1 E2
50mf

E3 E1 E2
100mf

E30

50

100

150

200

Ti
m

e
pe

r i
nf

er
en

ce
 (s

) Res. 48
Res. 66
Res. 96

(a) Visual Wake Words.

E1 E2
50mf

E3 E1 E2
100mf

E30

50

100

150

Ti
m

e
pe

r i
nf

er
en

ce
 (s

) Res. 32
Res. 56
Res. 80

(b) Camera CATalogue.

E1
 50mf

E2 E1
 100mf

E20

20

40

60

80

Ti
m

e
pe

r i
nf

er
en

ce
 (s

) Str. 10ms
Str. 20ms
Str. 30ms

(c) Speech Commands.
Fig. 18: Average time per inference of models combining multi-
resolution and multi-exit techniques when running with RF inter-
mittent power. Two supercapacitors are used, 50mF and 100mF.

individual models will require 2.2×3+12.6×3+169.6×3 = 553.2𝐾𝐵.
This is more than three times more memory than when using a
single model that can support multi-resolution inputs and early-
exits. Although, techniques exist to reduce the memory footprint of
DNNs, they are applicable also to our single model and the overhead
of having to store multiple models rather the only one remains.

7.3 Intermittent Power Microbenchmarks
In this section we demonstrate that ePerceptive operates robustly
when power is intermittent and computation cannot be sustained.
This is crucial for the applications we are considering in this work
where inexpensive sensors can be deployed at scale with limited
need for maintenance to recharge or replace batteries.

ePerceptive builds on SONIC [18], therefore an intermittent-safe
implementation of DNNs primitives was already available. However,
with our extension of SONIC to support multi-resolution and multi-
exit models, it is imperative to maintain and update intermediate
decisions (e.g., early exit taken or shape of intermediate feature
maps) across power failures. To asses the correct operation of such
elements, we position the RF Powercast transmitter 1.5 meters
away from the receiver and use the receiver to power the MSP430
running the combined multi-resolution, multi-exit models. We use a
100mF and 50mF supercapacitor for the experiments. From Figure 18
we observe that the overall latency of the various configurations
increases, due to the periods when the supercapacitor recharges.
Despite that, the trends we observe are the same we saw when the
device was continuously powered.

7.4 End-to-end System
In this section we evaluate the end-to-end performance of ePercep-
tive using solar and radio energy harvesting.

Big ePerceptive Small0.0

0.2

0.5

0.8

1.0

Nu
m

be
r o

f i
nf

er
en

ce
s

(a) Visual Wake Words

Big ePerceptive Small0.0

0.2

0.5

0.8

1.0

Nu
m

be
r o

f i
nf

er
en

ce
s

(b) Camera CATalogue.

Big ePerceptive Small0.0

0.2

0.5

0.8

1.0

Nu
m

be
r o

f i
nf

er
en

ce
s

(c) Speech Commands.
Fig. 19: Number of normalised inferences performed by the three
models when running from RF and solar harvesting traces.

Big ePerceptive Small0

25

50

75

100

Es
tim

at
ed

 a
cc

ur
ac

y

78.0 72.6 67.4

(a) Visual Wake Words.

Big ePerceptive Small0

25

50

75

100

Es
tim

at
ed

 a
cc

ur
ac

y 84.5 80.1
67.2

(b) Camera CATalogue.

Big ePerceptive Small0

25

50

75

100

Es
tim

at
ed

 a
cc

ur
ac

y 92.1 86.9
75.3

(c) Speech Commands.
Fig. 20: Estimated accuracy of the three models when running from
RF and solar harvesting traces.

Energy traces: In order to obtain more reproducible results, we
recorded harvesting traces using the Ekho tool [20] and then run
the system on emulated traces. For RF harvesting, we simulated an
indoor deployment and placed the RF receiver and transmitter in
front of each other at a minimum distance of 70cm. The receiver was
moved every few minutes to various distances (up to 3.5 meters),
and its antenna orientation was changed to simulate harvesting
attenuation caused by people moving in the environment and ob-
structing the path between transmitter and receiver. We recorded
a 30-minute long trace. For solar harvesting, we simulated an out-
door environment by building a controllable light intensity setup
using dimmable light bulbs. Similar to the RF trace, we varied the
light intensity every few minutes. Since our system would run
without interruption with 5klux or more, we kept the intensity
below this threshold to ensure the system would run intermittently.
Also, in this case, we collected a 30-minute long trance. For all the
evaluations, the system was equipped with a 50mF supercapacitor.

Configurations: We apply the Visual Wake Words and Speech
Commands workloads on the RF trace since they represent typical
indoor use cases of low power sensors (i.e., people and sound de-
tection). We apply the Camera CATalogue workload on the solar
harvesting trace, which is more representative of outdoor sensing
applications. We use the ePerceptive models presented in the pre-
vious sections that support three input resolutions and three exits
for the vision models and two exits for the audio model.

Baselines and metrics: As baselines, we use two static models
that cannot adapt their computation to instant energy availability.
We selected these models to have particular characteristics. The
first model is efficient, fast but does not provide the best accuracy
(we call this model small). This model is representative of an ap-
plication that prioritises low latency over accuracy. The second
model (big) is at the other end of the spectrum. This model is more
accurate but slow at executing; hence the priority is on accuracy.
Ideally, these two models form a lower and upper bound on the
performance of ePerceptive which instead tries to obtain a more
balanced performance.

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

For the evaluation metrics, we use the total number of inferences
computed by the models and the estimated accuracy obtained by
the models. We normalise the total inferences by the number of
inferences of the small model to have a more precise comparison.
This is because the small model is the fastest one, and it will always
produce a higher number of inferences.

Given the difficulty of acquiring reliable ground truth while
running the system intermittently or for specific tasks (i.e., animal
spotting), we estimate the accuracy that the models would achieve
by using their performance on the test set. For the two static models,
this corresponds directly to the test set accuracy. For the ePerceptive
models, we compute a weighted accuracy based on the number of
inferences performed for each resolution/exit combination and their
accuracy on the test set.

Results: Figures 19 and 20 report the results of these experiments.
We observe how ePerceptive is capable of obtaining a balanced per-
formance by completing more inferences than the big static model,
however without compromising significantly the overall accuracy.
The Visual Wake Words and Camera CATalogue models have simi-
lar inference times (recall Figure 16), so the number of inferences
they can complete is similar. The Speech commands model is the
one with shorter inferences overall; hence it manages to complete
more. From Figure 20 we notice how the adaptation performed by
ePerceptive ensures accuracy improvements compared to the small
model up to 13% for the Camera CATalogue dataset and around
5% and 11% for the Visual Wake Words and Speech Commands
datasets, respectively. Compared to the big model instead, ePercep-
tive shows a modest drop in accuracy around 5% across the three
datasets. Collectively, these results show how ePerceptive offers a
more balanced performance across the two important metrics of
inference throughput and accuracy.

8 DISCUSSION

The Dynamics of Flexibility and Overhead: ePerceptive aims
at improving inference throughput on batteryless sensors by dy-
namically scaling the model’s complexity in response to fluctuating
energy availability. For this reason we adopted an energy-oriented
approach to decide which resolution and exit to use for the model
computation as opposed to an approach based on the expected
accuracy. In our current implementation, such decision is taken
on a short term basis by estimating the current energy level. This
benefits from a negligible scheduling overhead, since the selec-
tion mechanism involves only a table lookup guided by the RTC,
that measures the capacitor charge time running in LPM3 drawing
around 700nA. By contrast, previous work, especially in the con-
text of early-exit networks, use additional resources to classify the
input multiple times and stop when a certain accuracy is reached.
However, this is counterproductive for energy harvesting sensors
since it will incur additional power failures reducing throughput.

TheDynamics ofAccuracy and Latency:We envision the utility
of ePerceptive -powered sensors will be maximised in non-mission
critical applications where large scale and temporal coverage at
minimummaintenance cost is paramount. For example, in an audio-
visual monitoring system for outdoor industrial settings or wildlife
conservation applications. The benefit of batteryless systems is to
enable large deployments of hundreds of devices in such settings

without the need to recharge or replace batteries. Accordingly, we
argue it is imperative to balance latency and accuracy to ensure a
more efficient usage of the limited energy and obtain an increased
number of predictions. By adapting the model’s latency, while ac-
cepting a slightly degraded accuracy performance, we make a bet-
ter usage of energy and can achieve an increased throughput with
ePerceptive. Regardless, the two techniques we have presented are
amenable to be used in conjunction with different latency-accuracy
trade off policies. Applications that require an higher level of ac-
curacy for each inference could select larger input resolutions and
deeper exits to ensure a superior recognition performance. An ex-
ample of such applications is visual intrusion detection where the
cost of wrong classifications is higher than in monitoring applica-
tions, such as in wildlife conservation. Nevertheless, we consider
our techniques are useful to adapt model complexity at runtime
and are independent from the specific policy.

The Dynamics of Sampling Rate and Throughput: With ePer-
ceptive, every time there is energy to sustain computation the
device processes an input. This design ensures capturing as many
interesting events as possible. Adopting a different strategy where
the sampling rate of the system is reduced would mean that the
device would not sample its sensors and run inferences on them
even if there is sufficient energy. This would result in saving energy
for a later time but completing fewer inferences overall. Waiting
to sample at predefined intervals might lead to missing interesting
events that could instead be detected. However, we also acknowl-
edge that, in the presence of external triggers, for instance with
motion, preemptive sampling with a lower rate would benefit from
ePerceptive and would definitely improve overall utility. We plan
to add such functionalities to ePerceptive in our future work.

The Dynamics of Resolutions and Exits: Through our exper-
iments and evaluation, we have identified several guidelines for
designing ePerceptive models that ensure a good balance between
latency and accuracy. For multi-resolution DNNs, our empirical
observations highlight that to achieve an appreciable increase in
accuracy, a considerable gap between the resolutions/strides is
needed. This design allows for a neater separation between the
different scales and enables the convolution layers to capture a
substantial amount of extra information to incorporate into their
representational capability. Similarly, for the exit branches, suffi-
cient distance between two consecutive branches allows the layers
in between to extract meaningful features which increases the ac-
curacy at the next exit. If the exits are too close to each other, the
accuracy difference between the two would be minimal. This could
be counteracted by adding additional layers in the early exit branch,
as we did for the Visual Wake Words model. The important thing
to consider in this case is that the computational complexity of that
specific early exit should not overcome the complexity of the next
exit. These considerations are crucial for a well-balanced multi-
resolution and multi-exit ePerceptive model for batteryless sensors.

9 RELATEDWORK
9.1 Intermittent Computing
Devices running on harvested energy were initially envisioned
with energy-neutral objectives [27], however, more recently, the

SenSys ’20, November 16–19, 2020, Virtual Event, Japan Montanari et al.

design objective has shifted to intermittent computing, an execution
style that spans multiple power failures [33]. Power failures erase
volatile memory and registers needing frequent checkpoints, where
volatile state is stored in non-volatile memory. Energy fluctuates
significantly and is bursty in nature. The net effect is an uptime of
few milliseconds only and with periods of power denial that could
span hours. In such peculiar environment, ensuring the forward
progression of computational workloads despite power failures, as
tackled by several previous works [3, 22, 34, 47], is crucial.

With specific focus on DNN execution on intermittent platforms,
Gobieski et al. [18] argued that inference accuracy dominates per-
formance improvements and it is essential to reduce loss of energy
from unnecessary communication of raw signals. This has moti-
vated to improve inference on harvested energy platforms by using
DNNs and the development of SONIC [18], which implements in-
termittent DNN primitives on TI MSP430 platforms.

ePerceptive builds upon SONIC and previous work in the inter-
mittent computing community. ePerceptive uses the non-volatile
memory checkpoint systems but goes beyond them by enabling
DNN models to dynamically scale their latency and energy require-
ments at runtime. With the integration of two complementary
techniques into SONIC and the implementation of a flexible model
interpreter we show how we are able to run realistic CNN models
on extremely constrained devices powered by energy harvesting
achieving good performance on challenging datasets.

9.2 Efficient and Adaptive DNNs
Recently, traditional DNNs are modified to fit in memory, increase
execution speed, and decrease energy demand to enable efficient
inference on edge devices. Techniques like pruning redundant
weights and filters during or after training and later fine-tuning the
model helps in decreasing model size without high loss in accuracy
[9, 11, 19, 45, 46]. They can produce a family of networks with differ-
ent computational requirements however require significant offline
processing to produce and fine-tune these networks [9, 11, 45, 46].
These algorithms aim at reducing the complexity of a single model
in order to run it on constrained devices but do not consider the
problem of adapting the model execution to match fluctuating en-
ergy. In fact, to obtain dynamic resource scaling at runtime, the
networks produced by these frameworks would need to be stored
on the target device with significant memory overhead. This is
prohibitive for the platforms we target in this work. Instead, we
propose to use a single model, that can be trained in a single session
and that offers variable performance at runtime.

Tan et al. [40] implemented DNN scaling by changing the num-
ber of layers, number of filters and feature maps resolution to im-
prove accuracy. Though, they train different models with varying
complexity rather than applying all techniques to a single model
raising many questions about their memory footprint. Similarly,
in Chameleon, different knobs like frame rate, resolution, type of
inference model is tuned based on temporal and spatial informa-
tion for video processing to minimise computation [26]. In terms
of dynamic resource adaptation at runtime, Fang et al. presents a
multi-capacity model that can dynamically adapt its resource utili-
sation at the expense of accuracy degradation (NestDNN [17]). The
model is obtained by first pruning filters from an existing network
and then iteratively re-introducing them. At runtime, the filters to

use can be selected based on the available resources and desired
accuracy. In ePerceptive we propose two different techniques appli-
cable to vision and audio models. Additionally, NestDNN requires a
more expensive and more complicated training procedure since the
model has to be re-trained several times: during the initial pruning
to obtain the seed model and during the filter growing stage to
obtain the multi-capacity model. Our approach is instead simpler
since it requires only one training session but yet not less effective
given that we can obtain several accuracy-latency operating points
at runtime, similar to what NestDNN achieves.

The early-exit functionality of ePerceptive is inspired by a class
of multi-exit anytime algorithms [8, 24, 30, 36, 37, 41, 42] whose
aim is improving inference time by predicting easy inputs at early
stages. However, the proposed concepts do not consider memory-
constrained embedded devices and intermittent energy scenarios.

In ePerceptive we adopted an energy-oriented approach to de-
cide which resolution to use and what model’s exit to take. The
decisions are based on the short term estimated available energy.
Previous works adopt a different policy and decide to exit the net-
work when a target accuracy is reached [8, 24, 41]. In [24] and
[41], the decision to exit the network is taken based on the output
confidence of each branch, meaning that the branches need to be
executed until the end to determine if the input should exit or not.
For inputs that need to exit at deeper branches, this constitutes
overhead and wasted computation/energy. Similarly, in [8] the net-
work contains decision functions at the branching points to decide
if an example should go out or continue further down the network.
In practice, these functions are implemented as dense layers and
trained iteratively one after the other. Our first choice for ePercep-
tive is to avoid these approaches to make sure that the majority of
the energy we spend goes into the network execution progress and
not into decision policies. Our target devices are extremely resource
constrained and cannot reach state-of-the-art results in terms of
model accuracy. Hence, focusing excessively on model accuracy
might be counterproductive. Trying to achieve higher accuracy on
intermittent systems would result in much longer inference times
because the device would have to store and load its state several
times, limiting the model’s throughput.

10 CONCLUSION
In this paper, we present the design and implementation of ePer-
ceptive: a novel framework for best-effort embedded inference on
batteryless sensors. At the core of this framework, there are two
complementary mechanisms devised specially to allow dynamic
adaptation of existing DNN models, without incurring memory
overhead. First, ePerceptive enables training a single DNN model
which performs accurately at multiple input resolutions without the
overhead of storing several models in memory. Second, ePerceptive
modifies the DNN architecture to provide valid inferences even if in-
terrupted before completion. The combination of these techniques
offers a controlled grading of performance, and is used to match the
computational load to the available power budget. With ePercep-
tive, we have designed batteryless cameras and microphones and
evaluated them with multiple vision and acoustic workloads that
demonstrates the efficacy of our principled approach in maximising
the overall system availability.

ePerceptive—Energy Reactive Embedded Intelligence for Batteryless Sensors SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES
[1] Mattia Antonini, Tran Huy Vu, Chulhong Min, Alessandro Montanari, Akhil

Mathur, and Fahim Kawsar. 2019. Resource Characterisation of Personal-Scale
Sensing Models on Edge Accelerators. In Proceedings of the First International
Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things (AIChallengeIoT’19). 7. https://doi.org/10.1145/3363347.3363363

[2] Omid Ardakanian, Arka Bhattacharya, and David Culler. 2016. Non-intrusive
techniques for establishing occupancy related energy savings in commercial
buildings. In Proceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments. 21–30.

[3] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi,
Davide Brunelli, and Luca Benini. 2014. Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems. IEEE Embedded Systems
Letters 7, 1 (2014), 15–18.

[4] Sara Beery, Grant Van Horn, Oisin MacAodha, and Pietro Perona. 2019. The
iwildcam 2018 challenge dataset. arXiv preprint arXiv:1904.05986 (2019).

[5] Sara Beery, Grant Van Horn, and Pietro Perona. 2018. Recognition in terra
incognita. In Proceedings of the European Conference on Computer Vision (ECCV).

[6] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and separation
of deep learning layers for constrained resource inference on wearables. In
Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems.

[7] Mark Boddy and Thomas L Dean. 1989. Solving time-dependent planning problems.
Brown University, Department of Computer Science.

[8] Tolga Bolukbasi, JosephWang, Ofer Dekel, and Venkatesh Saligrama. 2017. Adap-
tive neural networks for fast test-time prediction. arXiv preprint arXiv:1702.07811
(2017).

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-
for-all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791 (2019).

[10] Gregory Chen, Hassan Ghaed, Razi-ul Haque, Michael Wieckowski, Yejoong Kim,
Gyouho Kim, David Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise, et al. 2011.
A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In
2011 IEEE International Solid-State Circuits Conference. IEEE, 310–312.

[11] Y Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2018. Understanding the lim-
itations of existing energy-efficient design approaches for deep neural networks.
Energy 2, L1 (2018), L3.

[12] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and
Rocky Rhodes. 2019. Visual Wake Words Dataset. arXiv preprint arXiv:1906.05721
(2019).

[13] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable en-
ergy storage architecture for energy-harvesting devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. 767–781.

[14] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Com-
puting. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 53–67.

[15] Thomas L Dean and Mark S Boddy. 1988. An Analysis of Time-Dependent
Planning.. In AAAI, Vol. 88. 49–54.

[16] Andy Rosales Elias, Nevena Golubovic, Chandra Krintz, and Rich Wolski. 2017.
Where’s the bear? Automating wildlife image processing using iot and edge cloud
systems. In 2017 IEEE/ACM Second International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE, 247–258.

[17] Biyi Fang, Xiao Zeng, andMi Zhang. 2018. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking. 115–127.

[18] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence be-
yond the edge: Inference on intermittent embedded systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 199–213.

[19] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[20] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and repeat-
able experimentation for tiny energy-harvesting sensors. In Proceedings of the
12th ACM Conference on Embedded Network Sensor Systems. 330–331.

[21] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid prototyping for the battery-
less internet-of-things. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. 1–13.

[22] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely execution on inter-
mittently powered batteryless sensors. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems. 1–13.

[23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[24] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and
Kilian Q Weinberger. 2017. Multi-scale dense networks for resource efficient
image classification. arXiv preprint arXiv:1703.09844 (2017).

[25] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[26] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.

[27] Aman Kansal, Jason Hsu, Sadaf Zahedi, and Mani B Srivastava. 2007. Power man-
agement in energy harvesting sensor networks. ACM Transactions on Embedded
Computing Systems (TECS) 6, 4 (2007), 32–es.

[28] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2015. Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).

[29] Seulki Lee and Shahriar Nirjon. 2019. Neuro. ZERO: a zero-energy neural network
accelerator for embedded sensing and inference systems. In Proceedings of the
17th Conference on Embedded Networked Sensor Systems. 138–152.

[30] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-
erating deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications 19, 1 (2019), 447–457.

[31] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv
preprint arXiv:1312.4400 (2013).

[32] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).

[33] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent computing: Challenges and opportunities. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017).

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: intermittent
execution without checkpoints. In SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications.

[35] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019.
A Closer Look at Quality-Aware Runtime Assessment of Sensing Models in
Multi-Device Environments. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems (SenSys ’19). https://doi.org/10.1145/3356250.3360043

[36] Alessandro Montanari, Mohammed Alloulah, and Fahim Kawsar. 2019. Degrad-
able Inference for Energy Autonomous Vision Applications. In Adjunct Proceed-
ings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp/ISWC ’19). https://doi.org/10.1145/3341162.3349337

[37] Feng Nan and Venkatesh Saligrama. 2017. Adaptive classification for prediction
under a budget. In Advances in neural information processing systems. 4727–4737.

[38] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Ca-
maroptera: a Batteryless Long-Range Remote Visual Sensing System. In Proceed-
ings of the 7th International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems. 8–14.

[39] Sivert T Sliper, Oktay Cetinkaya, Alex S Weddell, Bashir Al-Hashimi, and Geoff V
Merrett. 2020. Energy-driven computing. Philosophical Transactions of the Royal
Society A 378, 2164 (2020), 20190158.

[40] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

[41] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recognition (ICPR). IEEE, 2464–2469.

[42] Zizhao Wang, Wei Bao, Dong Yuan, Liming Ge, Nguyen H Tran, and Albert Y
Zomaya. 2019. SEE: Scheduling Early Exit for Mobile DNN Inference during
Service Outage. In Proceedings of the 22nd International ACM Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems. 279–288.

[43] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[44] Marco Willi, Ross T Pitman, Anabelle W Cardoso, Christina Locke, Alexandra
Swanson, Amy Boyer, Marten Veldthuis, and Lucy Fortson. 2019. Identifying
animal species in camera trap images using deep learning and citizen science.
Methods in Ecology and Evolution 10, 1 (2019), 80–91.

[45] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 5687–5695.

[46] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. Netadapt: Platform-aware neural network
adaptation for mobile applications. In Proceedings of the European Conference on
Computer Vision (ECCV). 285–300.

[47] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink: Reactive kernel for tiny
batteryless sensors. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM, 41–53.

[48] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
edge: Keyword spotting on microcontrollers. arXiv preprint arXiv:1711.07128
(2017).

https://doi.org/10.1145/3363347.3363363
https://doi.org/10.1145/3356250.3360043
https://doi.org/10.1145/3341162.3349337

	Abstract
	1 Introduction
	2 Background and Challenges
	3 ePerceptive Pipeline Overview
	3.1 Data Acquisition Stage
	3.2 Featurisation Stage
	3.3 Best-Effort Inference Stage

	4 Multi-resolution Inference
	4.1 Primer on DNN Input Pipelines
	4.2 The Problem with Multi-resolution
	4.3 Model Architecture
	4.4 Model Training

	5 Multi-Exit Inference
	5.1 Model Architecture
	5.2 Model Training

	6 ePerceptive Implementation
	6.1 Hardware
	6.2 Software

	7 Evaluation
	7.1 Methodology
	7.2 Constant Power Microbenchmarks
	7.3 Intermittent Power Microbenchmarks
	7.4 End-to-end System

	8 Discussion
	9 Related Work
	9.1 Intermittent Computing
	9.2 Efficient and Adaptive DNNs

	10 Conclusion
	References

