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ABSTRACT
A small variation in mobile hardware and software can potentially
cause a significant heterogeneity or variation in the sensor data
each device collects. For example, the microphone and accelerom-
eter sensors on different devices can respond very differently to
the same audio or motion phenomena. Other factors, like the in-
stantaneous computational load on a smartphone, can cause key
behavior like sensor sampling rates to fluctuate, further polluting
the data. When sensing devices are deployed in unconstrained and
real-world conditions, examples of sharply lower classification ac-
curacy are observed due to what is collectively known as the sensing
system heterogeneity. In this work, we take an unconventional ap-
proach and argue against solving individual forms of heterogeneity,
e.g., improving OS behavior, or the quality/uniformity of compo-
nents. Instead, we propose and build classifiers that themselves are
more tolerant of these variations by leveraging deep learning and a
data-augmented training process. Neither augmentation nor deep
learning has previously been attempted to cope with sensor het-
erogeneity. We systematically investigate how these two machine
learning methodologies can be adapted to solve such problems, and
identify when and where they are able to be successful. We find
that our proposed approach is able to reduce classifier errors on
an average by 9% and 17% for a range of inertial- and audio-based
mobile classification tasks.

1 INTRODUCTION
Mobile sensing systems are entering an important new phase;
they are beginning to scale to hundreds of thousands, and
even millions of active users. However, such success high-
lights an important new problem for the accuracy of classi-
fiers that process sensor data and detect context and activities
such as sleep [30], exercise [37] and transportationmode [16].
Variations in the software and hardware of end-devices are
being found to cause significant unexpected variations in
the sensor data they collect [14, 17, 25]. Variations include
sampling rates (differing from the request) and even the sensi-
tivity and response differences of the sensor itself; such differ-
ences are observed to even alter the coefficients of features ex-
tracted from the sensor data by appreciable amounts [14, 25].
As a result, mobile sensing classifiers, which are unprepared
to deal with such noise and heterogeneity1 are suffering from
significant drops in accuracy and reliability in-the-wild.

1 Throughout this paper, we use the term “heterogeneity” to refer to the
various hardware and software issues that cause API returned sensor
data to vary from device-to-device.

Conventional solutions to heterogeneity require address-
ing individual sources; for example, providing the OS with
more real-time system behavior, manufacturing devices in a
more precise and uniform manner, or switching to reliable
(but expensive) sensors. Although possible, this direction is
not always appropriate. Consumer wearables and phones
need to be multi-purpose and low-cost, which is at odds with
solutions that require them to be high-precision instruments.
In this paper, we investigate how deep learning algo-

rithms [15] can be used to build models of context and ac-
tivity that are significantly more robust to forms of sen-
sor heterogeneity than existing models. To the best of our
knowledge, our work is the first where two key elements
of deep learning – specifically representation learning and
data augmentation have been studied in terms of how they
can address such heterogeneity challenges present in mobile
sensing systems. Data augmentation is the process of system-
atically enriching data during the training process to enable
a classifier to become more robust to expected noise. For
example, deep audio models use data augmentation to com-
bine background noise to allow speech recognition models
to operate in the wild. We examine if these same principles
will extend to the types of noise caused by heterogeneity.
Representation learning is a characteristic of deep neural
networks that allow them to work hand-in-hand with data
augmentation. It is the process by which multiple layers of
the neural network can learn custom features (intermediate
representations) that are both discriminative and robust to
the noisy examples observed at training time. By studying
how these two approaches can be used in relation to the
brand new problem domain of sensor heterogeneity, we ex-
plore if this would lead to the development of more robust
mobile sensing classifiers.
The result of our study is a deep neural network frame-

work that integrates new training phases designed to dimin-
ish the challenges of heterogeneity through learned feature
representation layers. Because deep learning can introduce
additional amounts of computational complexity [36], we
also evaluate the system overhead of our models; these re-
sults indicate that by keeping model architectures within
reasonable limits, deep models can remain within acceptable
levels of resource consumption for even wearables, while
still maintaining appreciable tolerance to heterogeneity.



The contributions of this work include:
• The proposal to frame the challenge of software and hard-
ware heterogeneity in devices as a form of representational
learning combined with data augmentation at training;
along with the execution of a systematic study of how
these two approaches can be adapted for use in this new
problem domain.
• The development of a framework for deep classifiers de-

signed to address heterogeneity concerns. This framework
includes the novel phases of a heterogeneity generator and
heterogeneity pipeline that enable conventional labeled
data, along with actual examples of heterogeneous behavior,
to act as training inputs.
• A comprehensive evaluation of our framework to combat

forms of software and hardware heterogeneity in two clas-
sification scenarios: audio-sensing and inertial-sensing.
• A hardware analysis of the resulting deep models which
shows that their energy, memory, and runtime require-
ments do not overwhelm wearable/mobile devices.

2 CHALLENGES OF HETEROGENEITY
Despite the extensive work on building sensor inference
models for a variety of activity and content recognition tasks,
researchers have found that model accuracy significantly
worsens when deployed ‘in the wild’ [6, 16]. This has largely
been attributed to the variations in usage behavior and device
heterogeneities. While variations in usage behavior have
been studied and approaches to mitigate them have been
proposed [19], there has been considerably less focus on
addressing software and device heterogeneities.
Both software and hardware components of a mobile de-

vice contribute to the heterogeneities in its sensing behavior.
Mobile devices run on different software platforms which dif-
fer in terms of sensor availability, APIs, sampling frequency
and resolution. For example, [16] discussed how variations
in GPS duty cycling in Android and iOS APIs adversely affect
the data quality and the performance of inference models.
Similarly, [25] found that even run-time factors within the
same device, such as instantaneous I/O load or delays in OS-
level timestamp attachment to sensor measurements, can
lead to an unstable sampling rates.

Looking at hardware-specific heterogeneities, it has been
found that imperfections during the manufacturing process
can cause subtle differences in the output of each sensor
chip. On these lines, [14, 17] presented techniques to ex-
ploit the imperfections in mobile device microphones and
accelerometers as means to fingerprint and identify users.

Empiricial Examples.We now provide two empirical ex-
amples that concretely demonstrate heterogeneity in sensor
measurements. First, we compare the frequency responses

Figure 1: Mel-scale Audio Spectrograms from 3 devices that all cap-
ture the same speech audio. Subtle variations across the devices can
be clearly seen in the highlighted boxes.

of microphones from different devices when they are pro-
vided the same audio input under same the environmental
conditions. Figure 1 shows the audio spectrograms for a 3-
second audio clip recorded by multiple smartphones and
smartwatches. As observed, the mel-scale [18] spectrograms
show subtle variations across devices for the same audio
input. Consequently, we found that these variations in the
frequency spectrum are also propagated to state-of-the-art
audio features, such as filter banks and MFCCs [18], which
in turn reduces the accuracy of audio classifiers built on top
of these features.

Next, we show how varying CPU loads can cause sampling
rate instability with on-device accelerometers using the data
provided by authors of [25]. Sampling rate stability is defined
as the regularity of the timespan between two successive
sensor measurements. We use two metrics to evaluate the
sampling rate stability: (a) creation time: the timestamp at-
tached by the OS or device driver to the sensor reading, and
(b) arrival time: the time when the reading is received by the
application code. Ideally, a device should have a constant dif-
ference in creation and arrival times between two successive
sensor readings. However, due to support for multitasking
on modern smartphones, the OS often prioritizes among var-
ious running applications based on their CPU load, which in
turn may affect their sampling rate stability.
We tested a benchmarking application on four phones

(two LG Nexus 4, two Samsung Galaxy S Plus) under two
different conditions: (a) under normal CPU load, and (b) un-
der experimentally induced high loads. Both the conditions
were tested for 4 minutes, and the benchmarking application
was configured to sample the accelerometer at the device’s
maximum rate. Figure 2 shows box plots of the creation and
arrival time under both experimental conditions. We observe
that for LG Nexus 4, the median creation and arrival time

2



Figure 2: Sensor ampling rates change dramatically when the device
is exposed to an average (left) and a high CPU load (right). This is
due to the OS becoming too busy servicing other requests that it
does not keep up with its responsibilities to service the sensor API.

differences increase by nearly 1.75x in the high CPU load
condition. For Samsung Galaxy S+, not only do we observe
an increase in creation time difference, we also see a sig-
nificantly (16x) higher standard deviation in arrival time
differences as compared to the normal CPU load condition.
This experiment highlights that variations in CPU load can
impact the sampling rate significantly, and moreover the
extent of sampling rate instability varies across devices.
Both these types of heterogeneities have significant ad-

verse impacts on the accuracy of sensor classifiers trained
on this data. In §5.2, we empirically quantify this classifier
accuracy loss for a variety of models.

3 A DEEP LEARNING APPROACH
In this section, we present conventional methods used to
mitigate the challenges of device heterogeneity and contrast
these to our deep learning based solution.

Conventional Solutions. In the context of activity recog-
nition, [25] have proposed an approach of clustering devices
based on their respective heterogeneities and training a tar-
geted classifier for each identified cluster. We argue that
a clustering solution is not scalable because it needs to be
repeated for each new device, thus creating an excessive de-
ployment overhead and a cloud dependency for updates. Sen-
sor calibration is a commonly used approach to counter the
variations across diverse sensors – e.g., user-driven and au-
tomatic methods are described in [37] to calibrate accelerom-
eter responses from various target devices. However, as we
showed in the previous section, heterogeneities in sensor
data can even arise due to variation in the CPU loads on
the same device, and these types of heterogeneities are not
addressed by calibration. Similarly, for audio sensing, the
frequency spectrum of a microphone’s response varies non-
linearly with the source audio – as such, perfectly calibrating
the microphone responses against a reference device may not

be feasible. To quantify this aspect, we present an experiment
in §5.3 which demonstrates the limitations of microphone
calibration techniques for heterogeneity use-cases. Real-time
operating systems (RTOS) popular in embedded devices [2]
provide another alternative to process data as it comes in,
without buffering delays. Ideally, they could be leveraged
for providing sensor measurements with very high sampling
rate stability. However, RTOS have poor support for mul-
titasking and doing background processing, which makes
them unsuitable for phones and wearables.
From a hardware viewpoint, it is possible to design high

precision medical-grade devices, which provide accurate and
consistent multi-modal sensor measurements over a period
of time. However, such devices are typically more expensive
than modern smartphones or wearables. There are other
affordable sensing devices available in the market (e.g. Acti-
graph sleep and activity monitors [1]) – however these de-
vices focus on basic inference tasks and require less multi-
tasking. As such, they do not face the challenges of varying
CPU load or platform heterogeneity of consumer wearables.

A Deep Data Augmentation Alternative. Readily used
methods for modeling activities and context on mobile de-
vices are shallow (e.g., SVMs, CRFs, GMMs, single-layer
NNs). This term contrasts them with deep learning algo-
rithms [7, 15]; as we will describe, the ability of deep meth-
ods to learn – purely from data – multiple layers of feature
representation, that when combined with data augmentation,
helps them meet the challenges that heterogeneity presents.
Deep learning models have been shown to outperform

alternative shallow models in the recent literature [8, 32, 33].
More importantly, deep learningmodels have been successful
in combating noise in the underlying data – especially when
data augmentation methods are employed. In the context of
audio sensing, [22] showed that DNN models achieve higher
accuracies in noisy environments over conventionalmethods.
Strategies for data augmentation for audios typically include
mixing labeled training audio with examples of background
noise or perturbations of spoken word that correspond to
natural variations in how people speak. Similarly, in visual
recognition, deep models have proven to be robust against
visual variations. Examples include facial alignment [44],
scene rotation, and image backgrounds [31] – introducing
such diversity at training time through image manipulations,
ranging from simple rotations to those based on complex 3D
scene and facial modeling.

In this paper, we aim to use this characteristic of deep mod-
els to work robustly with noisy data, in particular through
data augmentation, to tackle sensor data heterogeneities.
That is, devise a deep learning model that can learn repre-
sentations of the sensor measurements which are robust to
the systematic noise introduced by software and hardware,
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Figure 3: Deep Learning Model Architecture

and hence it can outperform shallow models which are not
known to adapt to such heterogeneities.

Bridging Deep Learning and Heterogeneity. As shown
in Figure 3, the architecture of a deep model is comprised of
a series of layers, each layer, in turn, contains a number of
nodes that assume a state based on the state of all nodes in
the prior layer. The first layer (the input layer) are set by raw,
or lightly processed, data; for example, a window of audio
or accelerometer data to be classified may be represented
by the coefficients of a generic FFT bank. The last layer (the
output layer) contains nodes that correspond to inference
classes (for example, a category of activity or context). The
layers in between these two are hidden layers; these play
the critical role of collectively transforming the state of the
input layer (raw data) into an inference by activating a node
in the output layer.
In this work, our aim is to embed the awareness of key

types of heterogeneities into the deep learning model during
the training phase. Once the model learns the representation
of different types of sensor heterogeneities, it can poten-
tially outperform state-of-the-art inference models which do
not take such device variations into account. Moreover, we
argue that typical device heterogeneities such as sampling
rate variations, or sensor amplitude differences are much
simpler, lower-dimensional perturbation of the signal, than
for instance, variations in acoustic environments or face
alignments. If deep learning models have been successfully
trained to adapt to the latter variations, they hold promise
in the device heterogeneity space as well.

4 HETERO-TOLERANT DEEP MODELS
Building upon the approach outlined the prior section, we
now detail our deep learning grounded framework for per-
forming activity and context sensing.

4.1 Overview
The central idea of our framework calls for a significant
change in how context and activity models are trained for
wearables and mobile devices. Specifically, as illustrated in
Figure 4 we introduce heterogeneity generator and heterogene-
ity pipeline into the training process that provides various
examples of realistic forms of software and hardware caused
sensor noise into the learning architecture of a deep model.

Figure 4: Framework for training deep models that are more resis-
tant to software and hardware heterogeneity. A key innovation is
the embedding of conventional training data with a learning al-
gorithm that regulates the amount heterogeneity examples that
are introduced. This allows the multi-layer feature representation
learned to act not only as discriminative features but also be robust
to forms of heterogeneity.

The training algorithm of the deep model is then able to
exploit this additional information that supplements conven-
tional training data to produce a model that is still accurately
able to recognize the desired classes of context and activity;
but critically, it is able to do so in the presence of additional
system-generated heterogeneity within the sampled data.
The outcome of the training process (i.e., the workflow

depicted in Figure 4) is a deep learning model able to be
inserted into any sensing application or wearable system
just like a conventional sensor classifier. It operates like
these conventional designs and takes as input the sensor data
(that is still subject to heterogeneity issues); and classifies
these data frames into target classes, before passing them
to the host application or system. The key difference is that
this model is transparently more tolerant to situations of
heterogeneity.

Below we discuss the core architectural components and
training workflow depicted in Figure 4. The individual com-
ponents are described in more detail in §4.3 and §4.4

Training and Heterogeneity Datasets. In addition to the
typical training data that is required to construct an activity
or context model (training data), our framework requires
what is termed heterogeneity data. These are examples of
different types of software and hardware variations that
impact classification of the sensor data, as detailed in §2. For
example, it could include a dataset of ‘spectral differences’
(i.e., differences in audio frequency response) in microphones
from various devices when capturing the same audio input
(an example of which is shown in Figure 1). Other examples
can also be included, such as variations due to the precision
of the sensor ADC, that changes how many bits are used
to capture the analog signal captured by the microphone.
Similar to the current practice of sharing image or audio
datasets [3], such heterogeneity datasets can be built up by
developers and shared within the community. In §4.2, we
present more details on the heterogeneity datasets used in
this paper for evaluating our proposed framework.
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HeterogeneityGenerator and Pipeline. In prior research,
deep models have been shown to learn robust feature rep-
resentations even from noisy data [22, 44]. However, it is
unlikely that the labeled ‘training datasets’ will have many
examples of heterogeneity contained in them that a deep
model can learn. For example, in a speaker ID dataset, it is
expected that the data collectors would be more interested
in getting large amounts of speech data from multiple users,
rather than capturing a range of microphone heterogeneities.
As such, a deep model may not cope with unknown micro-
phone heterogeneities that are expected in-the-wild.
To solve this issue, our framework consists of a hetero-

geneity generator, which learns a generative model from
examples of different types of heterogeneity available in the
heterogeneity dataset. Once trained, this generative model
can be used to augment the training data with various het-
erogeneities, effectively transferring the properties of the
heterogeneities onto the training data. For a deep model to
become heterogeneity-tolerant, it is important that while
training, the model is exposed to a wide range of hetero-
geneities, as well as a rich range of combinations (e.g., two
or more heterogeneity effects co-occurring), and at variable
levels. Our proposed generative approach provides a scal-
able way to combine different forms of heterogeneity with
the training data, and to build an augmented training set
in a principled way. Finally, the heterogeneity pipeline is re-
sponsible for merging and manipulating the aforementioned
heterogeneities together with the training data.

DeepLearningArchitecture andTraining.The final com-
ponents of the framework are: (a) the deep model itself –
which starts as an uninitialized learning architecture; and,
(b) the training algorithms used to perform feature repre-
sentation learning. The training algorithms have two joint
objectives: (1) to learn discriminative representations based
on the classification task at hand (e.g., recognizing whether
a user is stressed or not from their speech) and (2) to learn
representations that are either tolerant to, or which mini-
mize the effect of, software and hardware heterogeneity. The
learning process and model architecture are conventional
within the area of deep learning. Our key innovation is com-
bining these with the heterogeneity generator and pipeline
that – as the iterative process progresses – can achieve the
joint objectives just described. Importantly, the end output
of this process is a heterogeneity-tolerant deep model that
can be used at runtime by any application or system.

4.2 Heterogeneity Datasets
For our evaluation, we have developed two heterogeneity
datasets representing real-world hardware and software het-
erogeneities in mobile devices. First, the Audio Spectral Dif-
ference dataset captures the difference in frequency response

of various microphones when they are provided the same
audio input under the same environmental conditions. To
build this dataset, we played 2 hours of speech audios which
were simultaneously recorded by microphones of 20 differ-
ent mobile and wearable devices (shown in Table 1) kept
equi-distant from the audio source. Prior research [12] has
shown that a microphone transfer function has a convolu-
tional effect on the speech signals in the time domain and a
multiplicative effect in the frequency domain as shown in
the following equation:

Yi (e
jw ) = X (e jw )Hi (e

jw ) (1)

where X is the original speech signal, Hi is the distortion
caused bymicrophone of the ith device, andYi is the distorted
signal output by the microphone of the ith device. Therefore,
we compute FFT (bins = 512) on the recorded audio (using a
sliding window of 25 ms) and then as shown in Equation 2,
we use the ratio of magnitude of FFT frames (Y ) as a measure
of microphone heterogeneity (Φi,j ) between devices i and j.
In this way, microphone variations can be computed across
individual devices or across device manufacturers.

Φi,j = Hi/Hj = Yi/Yj (2)

Our second dataset called Sensor Sampling Jitter captures
the variations in sensor sampling timestamps (as discussed
in §2), which are likely due to system-related factors such as
high CPU loads. For this, we used the dataset provided by
authors of [25] to measure the differences in OS-timestamps
attached to consecutive sensor samples – in the absence of
any system-induced noise, we expect a constant time dif-
ference (1/f seconds) between consecutive sensor samples,
where f is the sampling frequency. However, due to various
system-related factors such as high CPU loads, the time differ-
ence between consecutive samples varies significantly, and
these variations are captured in our heterogeneity dataset.

4.3 Heterogeneity Generator
Heterogeneity generator is a generativemodel, which upon ob-
serving samples of discrepancies (Φi ) from the heterogeneity
datasets, produces noise values corresponding to the patterns
in the observed values. In our current implementation, we
use Kernel Density Estimation to estimate the probability dis-
tribution of the spectral and timestamp heterogeneities. As
shown in (3), Kernel Density Estimation is a non-parametric
method to estimate the probability density function (f̂) of a
random variable – here we use a Gaussian kernel (K) and
smoothing parameter (h) is chosen using a grid search.

f̂h (Φ) =
1
n

n∑
i=1

Kh (Φ − Φi ) (3)
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As an example in the Sensor Sampling Jitter dataset, the
generator estimates the probability distribution of the times-
tamp jitter observed in the data. Thereafter during the train-
ing of a deep classifier, the generator can sample hetero-
geneity values from this estimated probability distribution
and add them to the training data to generated corrupted
datasets. Future implementations of the generator can also
use state-of-the-art generative models such as Generative
Adversarial Networks (GANs) [27].

4.4 Heterogeneity Pipeline
The heterogeneity pipeline performs the task of embedding
a variety of heterogeneities in the ‘training data’ in order to
produce an augmented dataset on which the deep learning
model is subsequently trained. This is done using two hyper-
parameters which are tuned during the deep model training
described in §4.5. Parameter α controls the ratio of corrupted
and clean samples to be added in the augmented dataset (e.g.,
70% clean, 30% corrupted). Similarly, the hyper-parameter β
controls the distribution of noise intensity in the corrupted
samples – for example, it can add many examples of low
heterogeneities, and a few examples of high heterogeneities
in the corrupted data. We use an exponential decay func-
tion to control the noise intensity, and its exponential decay
constant λ is controlled by the hyper-parameter β .
For our experiments with microphone data, the pipeline

samples ‘audio spectral difference’ noise (Φ) from the gen-
erative model, and multiplies it with the FFT frames from
the original training data to obtain corrupted FFT frames
(as discussed earlier, microphone noise is multiplicative in
the frequency domain). For the ‘sampling jitter’ noise, the
pipeline samples examples of timestamp jitter from the gen-
erator, and uses these to corrupt the sensor timestamps in
the original clean dataset, i.e., make them non-uniform, as
would be expected under realistic CPU loads. The corrupted
datasets are then concatenated with the clean training dataset
to obtain an augmented set for the deep model to train on.
The objective here is to expose the model to measurements of
the same event which could have feasibly been recorded by
devices/sensors completely unrepresented within the training
set, thereby aiding its generalization properties.

4.5 Deep Architecture and Training
Our framework integrates a deep model comprised solely
of fully connected feed-forward layers, however the frame-
work is capable of incorporating newer deep learning ar-
chitectures (e.g., CNN, RNN). The precise architecture (i.e.,
number of layers and units per layer) is customized for each
classification task (we discuss the use of our method with
state-of-the-art task-specific architectures in §5).
The overall aim of this architecture, when performing

classification, is to learn a mapping from the (potentially

multimodal) sensory inputs to a probability distribution across
classes, e.g,. P(Ck |Θ, Iaccel . , Iдyro . ).Features extracted from
the raw sensor readings are used to initialize the input layer
units, whereas, units in the output layer correspond to the
target inference classes. The network is trained in a typical
supervised learning fashion, iteratively updating the weights
and biases within it in order to minimize a loss function
on the training data using the Adam [35] optimizer. The
particular loss function used for the tasks considered within
our evaluation is the categorical cross-entropy loss, in line
with standard practices for probabilistic classification tasks.
It is defined as follows, for an output probability distribution
y⃗, and its respective ground-truth probability distribution ⃗̂y:

L
(
y⃗, ⃗̂y
)
= −

k∑
i=1

ŷi lnyi (4)

where k is the number of classes considered in the task.
Finally, the training process also aims to tune the hyper-
parameters (α and β ) which control the amount and intensity
of noise added to the training data by the heterogeneity
pipeline. In §5, we provide more details on the input features
and training parameters for different classification scenarios.

5 EVALUATION
We now present a series of experiments to compare our
framework’s accuracy to conventional methods, as well as
testing its feasibility on wearable hardware. Our experiments
are guided by the following research questions:
• Data augmentation has been used previously to train deep
neural networks robust to acoustic environment noise
or lighting conditions. Does this approach also help in
training models that are robust to sensing heterogeneities?
• Does merely increasing the amount of training data solve
the underlying problem of sensor heterogeneity?
• What is the runtime and energy overhead of using a deep
model on modern smartphones and wearables?

The key highlights from our experimental results include:
• Our framework is able to better cope with hardware and

software heterogeneities than state-of-the-art shallow and
deep baseline classifiers for two example sensing scenarios
– inertial sensing (9% gain) and audio sensing (up to 17%
gain).
• Merely increasing the amount of training data, or using
conventional device calibration techniques do not match
the performance of our hetero-tolerant deep model.
• Even in extreme cases where models trained on one class
of devices (e.g., smartphones) are to be deployed on an-
other type of devices (e.g., smartwatches), our framework
is able to recover more than 50% of the accuracy lost due
to heterogeneities.
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• The runtime and energy overhead of using the deep model
is within acceptable limits for modern smartphones and
wearables.

5.1 Methodology
We compare our framework against three baseline classifiers
– Random Forests (RF), Support Vector Machines (SVM), and
a Deep Neural Network (DNN). This is done for two scenar-
ios of common sensing tasks, namely speaker identification
(audio sensing) and activity recognition (inertial sensing).
Below we discuss the datasets and the experimental setup
used in our evaluation.

Classification Scenarios. We focus on two classification
tasks here, namely speaker identification and activity recog-
nition. Note that as our training framework is not task-
specific, it can be applied to any other sensing task. (e.g.,
recognizing speech keywords) in the future.

Speaker Identification. The goal here is to perform text-
independent speaker classification from speech audios. To
train and test the classifiers, we use speech recordings of
30 speakers (15 males, 15 females) from a publicly available
dataset [46]. To evaluate the effect of device heterogeneity,
we played all speech recordings on a laptop, and recorded
them with 20 different devices (shown in Table 1) under the
same environmental conditions.

Device Type Count OS Version
iPhone 6 Smartphone 2 iOS 10

Motorola Moto G Smartphone 4 Android 6.0.1
Motorola Nexus 6 Smartphone 2 Android 7.0.1

OnePlus 3 Smartphone 2 Android 7.0.1
LG Urbane 2 Smartwatch 10 Android 7.0.1

Table 1: Smartphone and smartwatches used for the speaker identi-
fication experiment.

Activity Recognition. We use the dataset detailed in [25] to
perform classification of 6 activities: biking, sitting, standing,
walking, stairs-up and stairs-down. The input data comes
from gyroscope and accelerometer at a requested rate of
100Hz, and is captured from 10 different smartphones and
smartwatches as shown in Table 2 when the users were
performing the same scripted activities. More importantly,
this dataset was captured with realistic and varying CPU
loads as expected in-the-wild, and hence it contains examples
of sampling rate heterogeneities observed in the real world.

Data Augmentation Schemes.We use two different gen-
erative models (as discussed in §4.2) for augmenting hetero-
geneity data to the clean training data. We use variations
in ‘audio spectral differences’ as the heterogeneity model

Device
Release
Year Count

Maximum
sampling rate

Nexus 4 2012 2 200 hz
Samsung S3 2012 2 150 hz

Samsung S3-mini 2012 2 100 hz
LG G Smartwatch 2014 2 200 hz
Samsung Galaxy
Gear Smartwatch 2013 2 100 hz

Table 2: Devices used in the activity recognition dataset. The re-
quested sampling rate to the OS is 100 Hz only.

for the speaker identification task, and ‘sampling rates jit-
ter’ (caused by effects such as the current CPU load of the
sensing system) as the heterogeneity model for the activity
recognition task. In both cases, the heterogeneity pipeline
generates samples of expected heterogeneities from the gen-
erator and augments them with the training data to obtain a
corrupted dataset.

Deep Model Architecture.We use a fully-connected DNN
architecture to implement the deep learning models in this
paper. DNNs have recently been used for both activity recog-
nition [20] and speaker verifications tasks [9, 11, 45], and
are particularly apt for our target platforms – wearable and
embedded devices – because of their low computational and
energy overhead. That said, our proposed framework is not
limited to using DNNs and is expected to generalize to other
deep network architectures.
Our speaker identification model is a six-layer DNN ini-

tialized by audio filter bank [18] features extracted using a
sliding window of 25 milliseconds. The numbers of neurons
within the hidden layers are, in order, [1024,512, 512, 512,
256]. Our activity recognition model is a four-layer DNN ini-
tialized using state-of-the-art time and frequency domain
features extracted from accelerometer and gyroscope data,
and consists of three hidden layers with 256 neurons each.
We initialize all network weights using Xavier uniform ini-
tialization [26] . For regularization, we use L2-regularisation
with λ = 0.01, dropout [43], and batch normalization [34].
Both models were implemented in Keras with Tensorflow
backend.

Classifier Baselines. To train the shallow baseline classi-
fiers, we used domain-specific features for each task that are
described in each task experiment. These features are com-
bined with two popular shallow classifiers—namely, SVMs
and Random Forests—to act as task-specific classifier base-
lines. In addition to these shallow baseline models, we em-
ploy a deep model as a further baseline. The baseline deep
model is also a multilayer perceptron (baseline-DNN ) with
the same configuration as the deep models in our framework
described above, but is trained only on training data with no
heterogeneity augmentation.
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5.2 Hetero-Tolerant Deep Model Gains
Here we compare the performance of our hetero-tolerant
deep model (Hetero-DNN) against the baseline classifiers.

Experiment Setup. For training Activity classifiers, we ex-
tract state-of-the-art time-domain and frequency-domain
features [25] from inertial data. As shown in Table 2, the
dataset has 10 devices capturing the same physical activity –
however, due to the software and hardware heterogeneities,
the data collected by each device is likely to be different.

Next, for the speaker ID experiment, we played the train-
ing audios on a laptop, and recorded them with 20 devices
(Table 1) placed equidistant from the audio source. We eval-
uate how the inherent microphone variations in each device
impact different audio classifiers. For building the speaker
models, we use audio filter bank [18] features extracted from
the speech data.

Evaluation Conditions.We perform three types of evalu-
ation, motivated by practical scenarios in which inference
models are expected to encounter data heterogeneities:

Leave-one-device-out: A common yet challenging scenario
for model builders is when they have access to data from
only a certain number of devices while training, and yet
the models are expected to run on any unseen device in
real-world. To evaluate our framework in this scenario, we
perform a leave-one-device-out experiment, wherein infer-
ence models are trained using training data from a subset
of devices, and tested on an unseen group of devices. We
assume that the heterogeneity dataset is available from the
entire set of devices beforehand.

K-fold Cross Validation: Our second experimental setting
evaluates a scenario where model builders have training data
from the entire class of target devices, however the data does
not capture all forms of heterogeneities that are expected
in-the-wild (e.g., due to variations in CPU loads). To evaluate
this scenario, we do a k-fold cross validation where we train
the models on a subset of data from all target devices, and
test their performance on an unseen held-out test set.

Inter-class Validation: Our final evaluation caters to a sce-
nario where already-developed sensing models need to be
redeployed on new classes of devices, for e.g., a software com-
pany tries to deploy a smartphone-developed audio model
in which they invested considerable time and money, on a
wearable pendant with a microphone. For this, we present
two experiments (for the audio sensing task) where we train
the classifiers on data from smartphones and test their per-
formance on smartwatches and vice-versa.

Speaker Identification Results.We first present findings
of the k-fold cross-validation test (k = 10) on smartwatches,
where the classifiers are trained on a subset of data coming

from all 10 smartwatches used in the experiment, and tested
on a held-out test set from the same smartwatches. Because
the classifiers are exposed to all the test devices, we expect
that they would learn the device-specific microphone vari-
ations – as such, the result here would serve as an upper
bound on classifier performance. Our results in figure 5 show
that both the baseline DNN and hetero-DNN significantly
outperform the shallow classifiers ( 45% accuracy gain), im-
plying that the deep models captured the speaker variations
much better than the shallow models. However, as expected,
we observe that the baseline DNN performs as well as the
hetero-DNN – this is because the baseline-DNNwas exposed
to data from all 10 devices in each experiment, and was able
to learn the microphone variations from each device without
the need for any data augmentation.

Next, we turn to the more interesting scenario: leave-one-
device-out (LODO): the test data in this scenario comes by
a specific device, and none of the models have an opportu-
nity to train on the data recorded by the device held out
for testing. The differences in audio recorded by this device
are not explicitly captured, and therefore, the models will
have to attempt to overcome this challenging problem using
the training data from other devices alone. In figure 6, we
observe that all the classifiers suffer a loss in accuracy in the
LODO setting, suggesting that hardware and software het-
erogeneities across devices have a significant adverse impact
on these classifiers. The presence of these heterogeneities is
particularly surprising because all the smartwatches used in
the experiment had the same model (LG Urbane) and were
running the same OS (Android Wear 2.0). Regardless, the
hetero-DNN was able to cope with these heterogeneities
much better than the baseline DNN which showed an accu-
racy drop of 15%, and the hetero-DNN was able to recover
33% of this accuracy loss.
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Figure 5: Average accuracies of various classifiers in k-fold cross-
validation for the microphone sensing task on smartwatches. In
this benchmark experiment, baseline-DNN performs as well as the
hetero-DNN when both classifiers are exposed to all the devices in
the test set. However in subsequent experiments when unseen de-
vices appear in the test set, the baseline-DNN is not able tomaintain
high accuracy.

Finally, we present a scenario where sensing models are
tested on a class of devices different from the class of de-
vices in the training set. For this, we train models using data
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Figure 6: Average accuracies of various classifiers in the LODO set-
ting for the microphone sensing task. Numbers on the bars show
the accuracy drop from the k-fold validation scenario. Hetero-DNN
model is better able to cope with the heterogeneities across the
smartwatches as compared to all other models.

recorded only on smartphones, and test them on speech data
from smartwatches. The same experiment is repeated in the
opposite condition - i.e., we train on the smartwatch audios
and test on the smartphone audios. From Figure 7(left), we
observe a drastic reduction in accuracies when the models
trained only on smartwatches are evaluated on smartphones
– the baseline DNN shows a drop of 22% in classification
accuracy. While hetero-DNN also shows an accuracy loss,
it is less than half (10%) of what is shown by the baseline
DNN. In other words, our approach of training a model with
augmented data is able to recover more than 50% of the ac-
curacy lost due to device heterogeneities. Note that these
results are averaged across all test smartphones – we also
observed that for specific smartphone models (e.g., Moto G),
the accuracy loss due to heterogeneities was much higher
(34%), and hetero-DNN was able to recover 60% of this loss.
Finally, in Figure 7(right)) we observe similar trends when
the model is trained on smartphones and tested on smart-
watches – here the baseline DNN suffers a 30% accuracy loss
as compared to 13% loss by the hetero-DNN.
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Figure 7: (Left) Test accuracies when the speaker IDmodel is trained
on smartwatches and tested on smartphones. (Right) Test accuracies
when the speaker IDmodel is trained on smartphones and tested on
smartwatches. In both scenarios, the baseline DNN suffers a dras-
tic loss in accuracy (22% and 30%) whereas the accuracy loss for the
hetero-DNN is much smaller.

Activity Recognition Results. In Figure 8, we present the
findings for the inertial sensing task in leave-one-device-out

(LODO) and 10-fold cross-validation experiments across mul-
tiple smartphones. We observe that in both settings, hetero-
DNN has the highest classification accuracy (87% and 88%
respectively) relative to the alternative modeling approaches
– representing a gain of 9% over the baseline-DNNs. This
suggests that hetero-DNN is able to better cope with the
runtime variations (e.g., due to CPU loads) within the same
device (in the case of 10-fold cross-validation), as well as the
inter-device variations in accelerometer samples (in the case
of LODO setting).
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Figure 8: Accuracies of various classifiers in k-fold (left) and LODO
(right) setting on the activity recognition dataset. The hetero-DNN
model outperforms other classifiers by more than 9%.

5.3 Comparison with Device Calibration
In this section, we compare our proposed framework against
approaches to solve sensor heterogeneities through device
calibration.

Experimental Setup.We take an example scenario of mi-
crophone calibration, wherein the frequency response of mi-
crophones from the test devices (smartphones) are calibrated
against the microphones of training devices (smartwatches).
For calibration, we played a 5-minute speech audio which
was recorded simultaneously by the training and test devices.
Next, we computed FFT of the speech signals using a sliding
window of 25ms, and measured the ratio 2 of FFTs in each
window between the training and test devices. Finally, for
each test device, we computed an average of the observed
FFT ratios across all windows and used it as the ‘frequency
calibration’ measure for the specific device.

To evaluate the performance of this calibration approach,
we repeated the experiment from Figure 7(left) wherein we
had trained a speaker identification classifier on data from
smartwatches and tested it on smartphones. Here we evalu-
ate whether calibrating the microphones of the test devices
(smartphones) against the training devices (smartwatches)
can improve the accuracy of the baseline classifiers.

Results. Our results show that with microphone calibration,
the accuracy of the baseline-DNN on smartphones drops
drastically to just 29%, much worse than the uncalibrated
baseline-DNN (67%) and hetero-DNN (77%). This is because
the frequency response of microphones vary non-linearly

2 As noted earlier, the impact of microphone variations on speech is
multiplicative in the frequency domain.
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Figure 9: (Left) Effect of increasing the amount of training data.
Even with 2x training data, the baseline classifier does not match
the accuracy of the augmented classifier hetero-DNN. (Right) De-
velopment board for the Snapdragon 400 processor. This board al-
lows ease of evaluation while still providing equivalent processing
and energymeasurements as the Snapdragon processor installed on
smartwatches like Motorola Moto 360.

with the recorded speech – as such, calibrating the micro-
phones using a sample 5-minute audio does not help in gener-
alizing its performance to newer audios. On the other hand,
hetero-DNN incorporates microphone variations directly
into the training process and is able to learn robust feature
representations through non-linear transformations of the
input data, which results in higher classification accuracies.

5.4 Can larger training data alone solve
the problem of heterogeneity?

We now seek to answer a fundamental question around het-
erogenous mobile sensing: does increasing the amount of
training data eventually solve the problem of sensor hetero-
geneities. We conduct a smartwatch-based experiment for
speaker identification – in addition to the 10 smartwatches
used in our previous experiments, we record speech data
from 10 more smartwatches under the same experimental
conditions. Thereafter, we gradually increase the amount
of training data fed to the baseline DNN, and evaluate its
impact on classifier accuracy when this model is tested on
smartphones. More specifically, we are interested to learn
if the increase in training data helps in recovering the accu-
racy lost due to heterogeneity, and whether it can match the
accuracy of our augmented classifier.

Results. Figure 9(left) shows that as we increase the amount
of training data by 1.5 times and 2 times, the accuracy of the
baseline-DNN (which is trained on smartwatches) does in-
crease when it is tested on smartphones. However, even with
2x more training data, the baseline DNN is not able to reach
the accuracy of the hetero-DNN ( 79%) which was trained
on the original dataset augmented with microphone spectral
heterogeneities. The key takeaway here is that our proposed
approach of incorporating devices heterogeneities directly
into the training process can compensate for the need to col-
lect very large training datasets. While it can be argued that
with very large scale training datasets, the baseline DNN
models may eventually achieve similar accuracies as the
hetero-DNN – however collecting such large-scale datasets

for everyday sensing tasks in challenging and beyond the
capabilities of most system or app developers.

5.5 Hardware Feasibility
The introduction of deep learning algorithms into the mod-
eling of context and activity will cause increased model com-
plexity relative to the conventional shallow methods found
in today’s mobiles and wearables. As such, we now turn our
attention to evaluating the performance of our approach on
wearable hardware.

Metric Activity Recognition Speaker Identification
Estimation Time (ms) 6.1 89

Memory 600 KB 16.8 MB
Energy (mJ) 1.1 19
Table 3: Model Resources Usage on Snapdragon SoC

Experiment Setup. We conducted our experiment on the
Qualcomm Snapdragon 400 (shown in Figure 9). A Monsoon
power monitor [4] was used to measure the energy perfor-
mance of our model on the Snapdragon. We test on the same
model size/designs that were described in §5.1.

Representative Hardware. Deep learning often brings
additional levels of model complexity. We ensure that this
overhead is still acceptable by profiling our deep models on
a Qualcomm Snapdragon 400 processor, commonly found in
many popular smartwatches such as Moto 360 (rev. 2) [5].
The Snapdragon includes a quad-core 1.4 GHz CPU and 1
GB of RAM, although in versions that ship on watches RAM
is limited to 512MBs. While GPU and DSP are also available
on the SoC, due to a lack of driver support we are forced to
use the CPU only in experiments.

Results Table 3 shows the resource usage of our deep in-
ference models (hetero-DNNs) in both scenarios. The deep
model takes about 6ms for an activity inference, and 89ms
for speaker identification – both of which are reasonable for
a real-world sensing application. Further, we observe that
the energy overheads of the deep models are also within rea-
sonable limits – each activity inference takes 1.1mJ energy;
assuming a standard 300mAh wearable battery, it amounts
to 0.005% battery usage for one hour of continuous activity
inference. Similarly, for one hour of continuous speaker in-
ferences, the deep model will consume only 0.6% of battery.
We note recent techniques (e.g., [11, 28, 29, 39]) for optimiz-
ing deep models, if applied the hetero-DNNs would likely
improve performance significantly.

6 DISCUSSION AND LIMITATIONS
In this section, we discuss the limitations of our work, and
outline the avenues for future work on this topic.

Incorporating other types of sensing heterogeneities.
This work focused on two sources of heterogeneities in sen-
sor data: microphone variations and sampling-jitters. We
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nowprovide directions on how other kinds of heterogeneities
can be captured and incorporated into our proposed frame-
work. Prior research [17] has demonstrated that there are
variations in responses of different smartphone accelerome-
ters under the same stimulus – these variations are signifi-
cant enough that just by analyzing 30 seconds of accelerome-
ter traces from each smartphone, it is possible to fingerprint
and identify individual devices with nearly 99% accuracy.
These variations also carry over to the features extracted
from the raw data, and therefore can potentially impact the
accuracy of inertial sensing classifiers. To counter this, a
heterogeneity dataset containing the fingerprints (e.g., time-
domain and frequency-domain features described in [17])
of different accelerometers could be created, and used for
introducing awareness of accelerometer variations in the
deep models. Another potential source of sensor noise is the
variation in precisions of the sensor ADC, which changes the
effective-number-of-bits (ENOB) used to capture analog sig-
nals. These variations in ENOB for different devices could be
quantified using known techniques (e.g., [42]) and then used
to develop a heterogeneity dataset. Finally, there are also
usage-induced heterogeneities that occur due to variations
in how people use their smart devices, and due to diver-
sity in user demographics [19]. Such user-specific variations
could be understood and quantified through user studies,
and incorporated in our proposed training framework.

HeterogeneityDatasetOverhead.Our framework requires
the creation of heterogeneity datasets which contain data
on real-life heterogeneities observed in sensor data. While
this step adds an overhead for developing sensing classifiers,
we argue that it is a one-time effort that can be reused by
any number of task-specific classifiers. For example, the au-
dio spectral difference dataset can be used to increase the
robustness of various task-specific audio classifiers, beyond
the speaker identification experiment shown in the paper.
Moreover, we argue that the alternative (and existing) ap-
proach where diverse and heterogeneous training data needs
to be collected for each task-specific classifier involves more
overhead, and that decoupling the training of task-specific
classifiers and adding heterogeneities to them is a promising
scalable-approach.

State-of-the-art Generative Models. Generative Adver-
sarial Networks (GANs) have been a prominent topic of
research in the deep learning community, showing state-of-
the-art results in the vision domain by learning to generate
crisp, clear images in a number of scenarios [27, 38, 40, 41].
An extension of our work could be to train GANs as het-
erogeneity generators, wherein GANs can observe a small
amount of noisy data from a range of sensor devices, and
generate the same real-world noise for the purposes of data
augmentation while training deep learning classifiers.

Deep Learning Transition Overhead. There has been ex-
tensive research on building (shallow) inference models for
activity and context sensing onmobile devices. Our proposed
framework, based on deep learning methods, will however
require developers to switch to a new way of building infer-
ence models, which creates a one-time transition overhead
for them. They may need to investigate the right type of deep
learner, size and shape of the deep learning architecture that
best suits the classification problem at hand. While we ac-
knowledge that this might be an adoption barrier for some,
we strongly argue that the benefits of this switch outweigh
the costs.

Exploring Other Sensors and Classifiers. This paper
was limited to only three kinds of sensor data and two clas-
sification tasks (activity recognition and speaker identifica-
tion). Future works should focus on evaluating our proposed
framework on other types of sensors and classification tasks.
Moreover, while our choice of fully-connected DNN as our
deep learning architecture was apt for the classification tasks
and our target embedded platform, future research should
evaluate the efficacy of our framework on other deep learn-
ing architecture such as CNNs or RNNs. That said, we note
that our framework is independent of the learning architec-
ture, and as such is expected to generalize to emerging types
of deep learning architectures.

7 RELATEDWORK
We overview other work related to our proposed methodol-
ogy for tackling device heterogeneities.

Deep Learning and Sensing Systems. Only recently has
the exploration into deep learning for mobile sensing scenar-
ios begun (e.g., [10, 20, 31]). Deep learning models have been
trained for a range of inference tasks on mobile devices, such
as speaker identification [22], ambient scene analysis [22],
and activity recognition [48]. The work presented here is
the first to explore how deep learning can mitigate hetero-
geneities in sensor data introduced by hardware and software
variations across devices.

Data Augmentation. A major challenge of any machine
learning methods is instructing the learning algorithm to
remain invariant under input distortions, bound to appear in
any real world system, and even more so in mobile device
sensor data. Within the deep learning community this ap-
proach has seenmost use on image recognition tasks. Therein,
images modified online during training by applying random
shifts, scales, flips and rotations [31, 44], and instructing the
model to cope better under such distortions outside of the
training set. Our approach is the first where ideas are ap-
plied to sensor-based data—our method aims to guide the
model towards performing well with various types of sensor
heterogeneities.
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Noise Robustness in Classifiers. Past work has proposed
techniques to account for noise and variations in sensor mea-
surements. To account for population diversity, [21] looked
at incorporating inter-person similarity measurements from
crowd-sourced sensor-data into training process. [23] de-
veloped a framework to combine collaborative sensing and
classification to account for environment and population
variations, and [37] presented continuous sensing robust to
variations in phone hardware and orientations. Researchers
have also shown that combining user input (e.g, through
crowdsourcing) with sensing data makes the classifiers ro-
bust against individual user variations [13, 24, 47].

8 CONCLUSION
This work has examined a growing technical barrier as mo-
bile sensing systems mature and scale. Increasingly, evi-
dence [14, 17, 25] indicates that a variety of software and
hardware factors introduce alarming amounts of heterogene-
ity in the data collected. Our key contribution is the discovery
that better classifiers, more robust to the problem of device
heterogeneity, can be developed with a deep learning learn-
ing framework. We developed a method that embeds various
forms of noise that results from heterogeneity into the fea-
ture representation learning stage of a deep learning model.
Our results show that this approach is effective to mitigate
different types of heterogeneity in two example classifica-
tion scenarios of audio and inertial sensing, with average
accuracy gains of 17% and 9% respectively. In addition to the
average accuracy improvements, we also observed specific
cases where the effect of heterogeneity was particularly se-
vere (as much as 34% accuracy loss), and we were able to
recover 60% of this loss by using the augmented training
approach. Finally, our proposed approach of incorporating
noise in the deep model training process is generalizable and
can be applied to other tasks such as hot keyword detection
and transport mode inference in future work.
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