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Abstract
The robustness and consistency of sensory inference
models under changing environmental conditions and
hardware is a crucial requirement for the generalizability
of recent innovative work, particularly in the field of deep
learning, from the lab to the real world. We measure the
extent to which current speech recognition cloud models
are robust to background noise, and show that hardware
variability is still a problem for real-world applicability of
state-of-the-art speech recognition models.
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Introduction
Recent advances in machine learning algorithms have ac-
celerated the development of consumer devices and sens-
ing applications which aim to infer user context, activities
and behavior from a variety of sensor data collected from a
user. Particularly, audio sensing has emerged as a promis-
ing driver for inferring user context and behavior such as
subjective states (e.g., emotion [22]), eating episodes (e.g.,
chewing [9]), and speech characteristics (e.g., speaker ver-
ification [25], keyword spotting [14]). Fortuitously, as audio-
based inference models become more accurate, it is also
becoming easier to deploy them in different real-world situ-
ations owing to the availability of low-cost embedded micro-
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phones and processors. For instance, it is straightforward
to create a custom audio sensing device similar to Amazon
Echo using an off-the-shelf low-cost microphone, an embed-
ded platform such as Raspberry Pi, and cloud-based audio
sensing models [4].

As sensory inference systems move out of the laboratory set-
ting into the wild, questions remain about their robustness in
unconstrained real-world scenarios [8, 12]. Particularly for
audio inference models, it is critical to be robust to the fol-
lowing two types of variabilities:

Acoustic Environment Noise: Ideally, a user would expect
an audio-sensing application to make accurate inferences ir-
respective of where and when it is used. However, the en-
vironment (e.g., cafe, gym, train station) and environmental
conditions (e.g., raining, ambient music) in which an audio
signal is captured add background noises to the signal that
may confuse the underlying inference models and impact
their accuracy. As such, one of the key desired properties
for audio-based inference systems is their robustness in di-
verse acoustic environments.

Microphone Heterogeneity: Audio inference models, once
developed, are expected to work on a diverse set of mo-
bile and wearable devices, often from different manufactur-
ers. This is challenging, because different manufacturers
may use different hardware components (i.e., microphones)
and may also have variations in the software that process the
raw audio signal before exposing them to user applications.
Therefore, inference models need to be robust against these
forms of microphone heterogeneity.

In this paper, we investigate the robustness of state-of-the-
art automatic speech recognition (ASR) models against these
two forms of real-world noise. Our result show that ASR
models can counter moderate amount of background noise,

but show higher errors as the noise power increases. Un-
expectedly, we also find significant variance in model per-
formance when they are exposed to different microphones.
Both these preliminary findings suggest the need for further
research on improving the robustness of machine learning
models in real-world scenarios.

Related Work
A number of works have shown how sensor data variability
can impact the accuracy of mobile sensing models. Stisen
et al. [23] studied sampling rate heterogeneity in inertial sen-
sors of smart devices and how it impacts the accuracy of
shallow HAR classifiers. Chon et al. [15] found that sound
classification models show poor accuracies when deployed
in unconstrained environments. Similar findings were shown
by Lee et al. [17] about the adverse impact of acoustic en-
vironments on speaker turn-taking detection. Vision mod-
els are also impacted by environmental variabilities such as
lighting conditions [27], various forms of object occlusion [13],
and operation variabilities such as blurry, out-of-focus im-
ages due to unstable cameras.

Experiments
We now discuss our methodology for evaluating the robust-
ness of audio models in real-world scenarios.

Audio Task and Dataset: We focus on Automatic Speech
Recognition (ASR) as a representative audio processing task.
ASR is a fundamental component of audio- or speech-processing
systems and recent advances in the field of deep learning
have significantly improved the performance of ASR mod-
els [16]. Our experiments are conducted on the Librispeech-
clean [20] dataset, which is a widely-used ASR benchmark
dataset for comparing the accuracy of different ASR mod-
els. We use 1000 randomly selected test audios from the
Librispeech-clean dataset, with an average duration of 7.95



seconds and sampling rate of 16,000 Hz. In the rest of the
paper, we refer to this dataset as Librispeech-clean-1000.

Experiment Conditions: As discussed earlier, our investi-
gation of audio model robustness focuses on two key sources
of noise observed in audio signals in real-world scenarios:

Figure 1: Impact of microphone
variability on Google ASR model.
Values on the bars illustrate the
increase in WER over the Original
audio WER (black bar).

Figure 2: Impact of microphone
variability on Bing ASR model.
Values on the bars illustrate the
increase in WER over the Original
audio WER (black bar).

Microphone Heterogeneity: To evaluate how audio models
cope against microphone variability, we needed to record
a large-scale test dataset from different microphones under
the same environment conditions. For this, we replayed the
Librispeech-clean-1000 dataset on a JBL LSR 305 monitor
speaker 1 and recorded the entire dataset simultaneously
on three different microphones namely Matrix Voice [5], Re-
Speaker [7] and PlugUSB in a quiet environment. While
the first two microphones are multi-channel microphone ar-
rays commonly used in consumer devices such as Amazon
Echo, the last microphone is a low-cost USB microphone
compatible with embedded platforms such as Raspberry Pi.
The microphones were kept at a distance of 10cm from the
speaker in order to minimize the effect of room acoustics
on the recorded audio. In effect, we created four variants
of the Librispeech-clean-1000 dataset, including the origi-
nal dataset and the three recordings that we did with off-the-
shelf embedded microphones.

Acoustic Environment noise: To simulate the effect of differ-
ent acoustic environments, we mix the speech audios from
Librispeech dataset with examples of real-world background
noise taken from the ESC-50 dataset [21]. To this end, we
randomly sampled 200 audios from the Librispeech-1000 dataset
and augmented them with background audios of Rain and
Wind from the ESC-50 dataset.

1We chose this speaker due to its flat frequency response in the human
speech frequency range.

ASR Models: We conducted our experiments on ASR mod-
els from Google (using the Google Cloud Speech API [2])
and Microsoft (using the Bing Speech API [1]). The models
use a CNN-bidirectional LSTM model structure [26] and have
shown near-human accuracy on ASR tasks [6, 3]. Audios
from the Librispeech-clean-1000 dataset under both experi-
ment conditions were passed to the models through REST
APIs, and Word Error Rate (WER) was computed on the
ASR transcripts.

Results
Figures 1 and 2 show the effect of microphone variability on
the accuracy of the ASR models. Firstly, we observe that for
all three microphones, the word error rate (WER) increases
over the baseline (i.e., the original Librispeech audios) by
as high as 1.41 times. More importantly, the model perfor-
mance varies across different microphones (e.g., from 1.24x
to 1.41x WER increase in the case of Bing ASR model),
which suggests that the ASR models are not completely ro-
bust to microphone variability.

Further, in Figure 3, we plot the spectrograms of an audio
segment from the Librispeech-1000 dataset in its original
form (3a) as well as when it is captured by different micro-
phones (3b-d). Subtle variabilities in how different micro-
phones capture the same audio signal can be observed from
the figures, and we hypothesize that the ASR models are not
trained to account for these variabilities, which in turn leads
to varying levels of increase in the WER. In future work, we
plan to deeply investigate the causes of these subtle varia-
tions in microphone response and explore how to make in-
ference models robust to these variations.

Next, Figures 4 and 5 illustrate the findings on acoustic
environment robustness. We varied the power of the back-
ground noise that is added to the speech signal (effectively



Figure 3: Mel-Scale Spectrograms of an audio segment under different experiment conditions.

the signal-to-noise ratio) and measured the WER in each
configuration. For example, background noise of 0.0 corre-
sponds to the clean signal and background noise volume of
1.0 means that the signal and noise have the same power in
the audio.

Figure 4: Effect of two types of
background noise on Google ASR
model.

Figure 5: Effect of two types of
background noise on Bing ASR
model.

We observe that the ASR models can cope up with mod-
erate amount of background noise – e.g., when the speech
signal is mixed with ’Wind’ and ’Rain’ audios at 0.4 relative
noise power, the increase in WER is less than 1.25x for both
Google and Bing ASR models. However, when the relative
noise power is increased to 0.8, the WER increases by more
than 2x above the baseline for both the models.

Finally, we make the following observation on the compara-
tive robustness of the ASR models to microphone variability
and environment noise. In Figure 3, although the Rain-0.6
spectrogram (3e) looks visibly more noisy than the spectro-
grams collected from different microphones (3b-d), the per-
formance of ASR models on Rain-0.6 dataset is similar to
that on various microphones. This indicates that the ASR
models are able to cope with background noise in the speech
much better than the subtle variabilities caused by different

microphones. Further research is needed to uncover the un-
derlying causes behind this behavior.

Discussion and Conclusion
Our experiments show that deep ASR models are not robust
to real-world noise caused by microphone variability and dif-
ferent acoustic environments. In this section, we broadly dis-
cuss the research directions that could be explored to solve
this problem.

In the context of machine learning, the problems of micro-
phone heterogeneity and environmental noise can be inter-
preted as instances of dataset shift [24] – in both cases, the
training data does not accurately reflect the test data, vio-
lating a basic assumption made for machine learning mod-
els. Two broad solution approaches are used to address this
problem, namely domain adaptation [11] and domain gener-
alisation [10]. Domain adaptation attempts to address the
problem by adapting an existing model by making use of
either unlabeled data, or alternatively, small amounts of la-
beled data from the test domain. The latter scenario can
be seen as an example of transfer learning. Methods that at-
tempt to make the classifier behave consistently under dataset
shift with no information about the test set fall under do-



main generalization. The easiest way to achieve this con-
sistency is by finding features which are invariant under the
dataset shift [19]. This could be done by designing special-
ized denoising algorithms which minimize the effect of noise
sources on the learned features. Alternatively, the training of
the speech recognition algorithm may itself be changed by
augmenting the training data with a representative range of
types of noise [18].

As a future work, we plan to explore solutions in both these
areas to address the issue of audio model robustness. More
generally, we plan to explore how domain adaptation and
generalization could be applied to other sources of data vari-
abilities observed in mobile sensing, such as variations in ac-
celerometer data caused by how users carry their devices.
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