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ABSTRACT
Mobile and embedded devices are increasingly usingmicrophones and audio-
based computational models to infer user context. A major challenge in
building systems that combine audio models with commodity microphones
is to guarantee their accuracy and robustness in the real-world. Besides
many environmental dynamics, a primary factor that impacts the robustness
of audio models ismicrophone variability. In this work, we propose Mic2Mic
– a machine-learned system component – which resides in the inference
pipeline of audio models and at real-time reduces the variability in audio
data caused by microphone-speci�c factors. Two key considerations for
the design of Mic2Mic were: a) to decouple the problem of microphone
variability from the audio task, and b) put minimal burden on end-users to
provide training data. With these in mind, we apply the principles of cycle-
consistent generative adversarial networks (CycleGANs) to learn Mic2Mic
using unlabeled and unpaired data collected from di�erent microphones.
Our experiments show that Mic2Mic can recover between 66% to 89% of the
accuracy lost due to microphone variability for two common audio tasks.
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1 INTRODUCTION
Recent advances in audio-based computational models have enabled
a number of audio sensing applications on wearable and embedded
devices. Past works have shown the feasibility of using audio signals
to infer eating activities[6, 7], ambient conditions [42], subjective
user states [8], and productivity [23, 40].
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A major challenge to widespread deployment and usability of
audio models is to maintain high accuracy and robustness in real-
world scenarios. Past works have looked at making audio models
robust against background noise [34, 43], room reverberations [21],
and speaker identities [38]. However, considerably less attention
has been paid to make audio models more robust to the challenge of
microphone variability. Das et al.[12] revealed surprising �ndings
that microphone variabilities across di�erent smartphones are com-
putationally so signi�cant that it is even possible to �ngerprint a
smartphone based on its microphone. Our own experiments (in § 2)
also validate the presence of microphone variabilities in embedded
microphones and show how they alone can degrade the accuracy
of audio models by up to 15%.

A microphone’s performance is characterized by a number of
parameters such as its frequency response, impedance rating, out-
put level, and even the signal processing applied on the raw audio
before it is made available to user applications. All these parame-
ters contribute to the transfer function of a microphone, and a�ect
how a physical audio signal is converted into digital output by the
microphone. Interestingly, di�erent microphones have di�erent
transfer functions owing to the variations in their underlying hard-
ware and software processing pipelines – as such, for the same
physical audio signal, variations in the digital outputs of di�erent
microphones are likely. From the perspective of machine learning
models, microphone variability can lead to domain shift or mis-
match between the training and test domains. As such, if an audio
model is deployed on a microphone whose properties (or transfer
function) di�er from the microphone(s) used for training the model,
this domain mismatch can lead to poor inference performance.

An easy solution to this problem is to control the variability in
microphone hardware between training and deployment phases.
This can be done by either restricting the audio application work
only on a speci�c type of microphones, or by collecting training
data from all types of microphones that will be encountered in
the deployment phase. None of these approaches are ideal: �rstly,
many audio processing services are transitioning to an API-as-
a-service model [1, 2] to allow for integration with any o�-the-
shelf microphone. Secondly, collecting audio training data from all
possible types of microphones is an expensive and time-consuming
process, and is certainly not feasible for most developers.

In this paper, we present a practical solution to recover the accu-
racy of audio models otherwise lost due to microphone variability.
We propose to frame the problem of microphone variability as an
audio translation problem, that is, given a set of audio data from a
source microphone, can we translate it such that it will resemble
data collected from a target microphone? More formally, if � and �0
are the recordings of the same audio signal from twomicrophonesA



IPSN ’19, April 16–18, 2019, Montreal, QC, Canada Mathur et al.

and B respectively, we would like to learn a microphone translation
function f , such that �0 = f (�).

Our solution, Mic2Mic, is a machine-learned system component
which runs on embedded devices and at inference-time translates
data from the test microphone domain to the training microphone
domain, thereby reducing the domain shift. More importantly,
Mic2Mic decouples the microphone variability problem from the
downstream audio task (e.g., ASR), and provides an inference-time
solution which audio model developers can simply import in their
inference pipeline to solve for microphone variability.

A major practical hurdle in learning the translation function
f is the di�culty of obtaining paired or aligned audio data from
multiple microphones – in § 5.1 we discuss howMic2Mic solves this
challenge by applying the principles of cycle-consistent generative
adversarial networks (CycleGAN) to learn a translation function
using unlabeled and unpaired data. In § 5.2, we present the training
and inference architecture of Mic2Mic and �nally, in § 6 we evalu-
ate how Mic2Mic performs on two popular audio modeling tasks,
namely Keyword Detection and Emotion Recognition. The main
contributions of this work include:
• A new perspective of looking at microphone variability as an au-

dio data translation problem, and developing a machine-learned
system component called Mic2Mic to improve the accuracy of
audio models on unseen microphones.
• A systematic study highlighting microphone variability on em-

bedded devices using state-of-the-art audio models and a careful
examination of the design space of Mic2Mic.
• The development of an audio translation model using unpaired
and unlabeled data from multiple microphones by applying the
principles of CycleGAN.
• A comprehensive evaluation of Mic2Mic on two audio tasks,
namely Keyword Detection and Emotion Recognition. Mic2Mic
outperforms all tested baselines in solving the problem of micro-
phone variability.

2 BACKGROUND
Model robustness has been a prominent topic of research in

the speech community [34, 38, 43]. A fundamental challenge to
robustness of audio models is associated with the variability in
microphones used to record the audio signal. Prior works [12, 17]
have also alluded to this phenomenon in the context of smartphone
and smartwatch microphones.

In this section, we focus our attention on embedded microphones
and provide intuition on how variabilities may get introduced in
the audio data collected by them. Next, we present an experiment
to validate the data variabilities across microphones, by controlling
confounding factors such as variations in input signals and room
acoustics. Finally, we evaluate the impact of these variabilities on a
state-of-the-art audio model. We conclude by highlighting existing
approaches to solving this problem, discussing their limitations,
and motivating our proposed solution.

Audio Processing Pipeline.As shown in Figure 1, before an audio
signal even reaches the audio classi�er, it goes through a number
of processing stages. Firstly, the physical audio signal is captured
by the acoustic sensor of the microphone and converted into an

electronic and then digital signal. Thereafter, the signal is processed
by a Digital Signal Processor (DSP) on the embedded device where
audio enhancement techniques such as noise �ltering and delay-
and-sum beamforming are applied. Finally, the processed signal is
exposed to user applications such as a pre-trained audio classi�er
to compute task-speci�c inferences.

Figure 1: Sensing and inference pipeline for audio models.
Both the hardware and software components of this pipeline can

introduce confounding artifacts in the audio signal. For example,
di�erent acoustic sensors are known to process audio signals di�er-
ently, which introduces the �rst form of variability in the collected
audio data. Das et al.[12] showed that although these variabilities
are subtle, they are computationally signi�cant to even �ngerprint
smart devices based on their microphones. We argue that in the
context of low-cost embedded devices, such hardware variabilities
are likely to be even more prominent.

On top of the hardware-related variations, the software process-
ing pipelines of microphones can add further variabilities to the
audio data. The DSP on embedded devices run a number of audio
enhancement algorithms, whose parameters are �xed by each mi-
crophone manufacturer. For example, in the case of a microphone
array, acoustic beamforming algorithms are employed to improve
the SNR of the audio – however, implementation di�erences in
such algorithms across manufacturers can lead to variability in the
output audio data.

Embedded Microphone Variations.We now provide empirical
evidence of data variabilities in embeddedmicrophones.We conduct
an experiment in a non-re�ective anechoic chamber (Figure 2(b))
where the same audio signal is simultaneously recorded on three o�-
the-shelf embedded microphones, namely Matrix Voice, ReSpeaker,
and a plug-and-play USB microphone (referred as PlugUSB). Matrix
Voice and ReSpeaker are embedded microphone arrays designed
for audio and speech applications, whereas PlugUSB is a single-
channel microphone popular with devices such as Raspberry Pi.
More details about these microphones are provided later in § 6.1.

In Figure 2 (a), we show mel-spectrograms of a 4-second speech
segment as recorded by the three microphones simultaneously. We
observe that the microphones exhibit di�erences in their frequency
responses to the same speech input, which are also visualized in the
two rightmost �gures. For example, the data captured from Matrix
Voice has low power in the high frequency ranges, which suggests
that either this microphone does not capture high frequencies well
(hardware e�ect) or they are being �ltered out by the microphone
DSP (software e�ect). Next, we discuss how these variabilities can
impact the performance of audio classi�ers.

E�ect on audio classi�ers. From the perspective of audio mod-
els, the variability in hardware and software processing pipelines
across microphones can be interpreted as a source of domain shift.
Domain shift refers to the phenomenon wherein the test data dis-
tribution di�ers from the training data distribution, leading to poor
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Figure 2: (a) Di�erence in mel-spectrograms of a speech segment as captured by three di�erent microphones. The two right-
most �gures show how data of Matrix Voice di�ers from ReSpeaker and PlugUSB. (b) Experiment setup in a non-re�ective
anechoic chamber to control for ambient acoustic variations.

generalization performance of machine learning models. As such,
if an audio model is trained on a certain type of microphone and
tested on another type, the domain mismatch between the two
microphones may cause degradation in model performance.

We now demonstrate how microphone variability can impact
state-of-the-art speech models. We conduct an experiment in the
context of an automatic speech recognition (ASR) task – for this,
we record the Librispeech-clean-test [32] dataset on the three mi-
crophones presented earlier. Librispeech-clean-test is a benchmark
dataset used to evaluate ASR model performance - it consists of 5.4
hours of U.S. English speech data from 40 speakers. The recordings
are done simultaneously on all three microphones in a controlled
environment with no background noise. We use Mozilla Deep-
Speech2 [4] pre-trained ASR model as the target audio model upon
whichwe evaluate the performance of the Librispeech datasets. This
model has an error rate of 6.5% on the original Librispeech-clean-
test dataset. This model is trained on �ve di�erent ASR datasets,
none of which were collected from the embedded microphones
on which we will evaluate the model. As such, this represents a
scenario where there is a mismatch between the training and test
microphones.

Device Matrix Voice ReSpeaker PlugUSB

WER 41.13% 23.49% 26.10%

Table 1: Word error rate of pre-trained DeepSpeech2 on
three embedded microphones.

Table 1 shows the word error rates (WERs) of DeepSpeech2 on
each microphone-speci�c test set. We observe that: a) although the
DeepSpeech2 model has an advertised WER of 6.5% on the original
Librispeech-clean dataset, when we deploy it on di�erent embedded
microphones, the WER increases above 20%. b) more importantly,
we observe that the WER varies signi�cantly across di�erent micro-
phones (ranging from 23.49% to 41.13%). These two initial �ndings
highlight that the mismatch between training and test microphones
has a severe impact on audio models. Particularly in the context of
embedded devices with high likelihood of microphone variability,
it is important to tackle this challenge to build robust and usable
audio systems.

Existing Solutions. A simple solution to this problem could be
to train an audio model on data collected from a large set of mi-
crophones such that the model learns features which are invariant
to microphone variations. While possible, we argue that it is an

expensive and non-scalable solution because it involves collecting
real-world training data on multiple microphones. More critically,
new wearable and embedded devices are being released at a rapid
pace, often with integrated custom microphones. Therefore, col-
lecting large-scale audio datasets from such diverse and newly
emerging devices is not feasible.

Recently, multichannel audio modeling techniques [24, 36] have
been proposed with the goal of improving ASR accuracy on micro-
phone arrays. Operating on the raw waveforms from the micro-
phone hardware, these works aim to jointly optimize the parame-
ters of the signal processing algorithms (e.g., source localization,
beamforming) with those of the audio model [37]. While these ap-
proaches can minimize the signal variability caused by di�erent
DSPs, they are not ideal for embedded devices for two reasons: a)
models based on raw audios are computationally expensive [36] for
resource-constrained devices; b) they make an assumption that the
microphone hardware and microphone array geometry remains
identical between the training and test runs, which may not hold
for the diverse market of embedded devices.

Finally, domain generalization techniques have been proposed
to learn noise-invariant feature representations for speech mod-
els [25, 39], however these techniques rely on paired data (i.e., pairs
of noisy and clean speech). While constructing large number of
paired noisy samples from clean speech is a trivial task, in the
case of microphone variability, it is very expensive to get paired
samples from di�erent microphones. Similarly, [17] presented a
data augmentation solution for improving the robustness of audio
models on smartphones and smartwatches, however their solution
also assumes the availability of aligned samples from multiple mi-
crophones, which as we argued is not scalable in the real-world.
Ideally a solution which can be designed just using unpaired data
from di�erent microphones would be considered more practical.

3 MIC2MIC OVERVIEW
In this section, we provide an overview of our solution to address
microphone variability. Our primary goal is to develop a practical
solution which can generalize to multiple audio tasks and which
does not put additional burden on the end-users to provide labeled
training data from new microphones.

3.1 Design Considerations
The following four key considerations have shaped the design of
our solution, Mic2Mic.
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Figure 3: System Overview of Mic2Mic

• Decouple microphone variability problem from the audio
task. Domain shift caused by the underlying microphone vari-
ability is independent of the task-speci�c audio model (e.g., ASR,
keyword detection). As such, it is important for generalizability
that Mic2Mic is independent of the downstream audio task and
hence can be applied to diverse tasks. Moreover, many commer-
cial audio models are proprietary. As such, while developing and
deploying Mic2Mic, we should not assume that parameters of
the task-speci�c model are known.
• Avoid re-training of the task-speci�c audio model. In con-
tinuation of the previous design consideration, Mic2Mic should
adapt to unseen microphones without requiring any retraining
of the task-speci�c audio model.
• Minimize burden on the end-users: When Mic2Mic is to be

deployed on an unseen microphone (or device) in the real-world,
it should not burden the user with providing carefully calibrated
and labeled data. Ideally, the solution should be developed using
unconstrained and unlabeled audio data.
• Plug-and-play system component:Mic2Mic should provide
an abstraction of a plug-and-play system component that sys-
tem developers can simply import in their inference pipeline,
independent of the audio task.

3.2 Architecture and Data�ow
Before discussing howMic2Mic is trained, we brie�y describe how it
will be incorporated in an embedded system to solve for microphone
variabilities. Figure 3 depicts the overall architecture of our system,
and its main components are as follows:
• Microphone hardware and �rmware. The microphone hard-
ware captures the analog audio signal and digitizes it using an
ADC to output PCM values. Optionally, in the case where an
embedded device consists of multiple microphones (e.g., a mi-
crophone array), the output of each individual microphone is
combined using software processing techniques such as delay-
and-sum beamforming. Both the hardware and software compo-
nents of a microphone pipeline can introduce variabilities in the
audio data, thereby leading to the domain shift problem.

• Preprocessing and feature extraction. Digitized audio data
exposed by the microphone’s software framework is �rst prepro-
cessed (e.g., audio segmentation, volume normalization), and op-
tionally light features are extracted from the audios. Our current
implementation uses log-spectrogram features, however other
kinds of features can be easily incoporated into the framework.
• Mic2MicTranslationComponent.Mic2Mic is amachine-learned

system component to minimize the domain shift caused by micro-
phone variability. Developers import Mic2Mic in their inference
pipeline, pass the log-spectrogram features as input to it and
specify the target microphone. Mic2Mic then performs a real-
time translation of the audio data from current microphone (or
test microphone) to the target microphone (or training micro-
phone). In other words, Mic2Mic pushes the test data towards
the training data distribution.
• Audio Model. Finally, the translated audio data is passed to
the task-speci�c audio model (e.g., ASR or keyword detection)
for computing inferences. As the translated data is closer to the
training data distribution than the original test data, we expect
the inference accuracy to increase.

4 FORMULATING A GENERATIVE
MODELING SOLUTION

In this section we describe how Mic2Mic is trained using unlabeled,
unpaired data frommultiple microphones. We �rst provide a primer
on generative adversarial networks (GANs), then discuss how the
problem of microphone variability can be formulated as a GAN
translation problem.

4.1 Primer on generative adversarial networks
Deep learning has enabled many new applications of discriminative
modeling, that is learning to predict a label � for an input x . On the
other hand, generative modeling means learning to draw samples
from a distribution p (x ), or in the presence of labels, from p (x ,�).
For example, in a keyword detection model, the task is to predict the
probability of the presence of a keyword in an audio segment, and it
is achieved in a discriminative fashion by choosing a keyword class
with the highest output probability for the given audio segment.
On the other hand, a generative modeling task here could be to
generate an audio segment containing a given keyword class.

Recent work using generative adversarial networks (GANs) is
focused on extending deep learning techniques to work in the
generative context [19]. The di�culty in conventional generative
modeling techniques is the lack of an obvious evaluation metric,
which can measure the ‘goodness’ of the generated data. GANs
solve this problem using two neural networks G and D, the gener-
ator and the discriminator, respectively. The generator G takes a
noise vector z as input and generates a data sample by evaluating
G (z). Besides noise, other information can be fed into the generator,
in which caseG is called a conditional generator. The discriminator
D on the other hand is trained to distinguish between the real sam-
ples from p (x ) and the generated samples from G. E�ectively, the
discriminator provides feedback about the ‘goodness’ of the gener-
ated sample to G, which uses this feedback to generate even better
data samples and fool the discriminator. In this way, the two neural
networks G and D play a competitive game and in the process,
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both become better at their respective tasks: the generator ends up
generating high-quality data that resembles the distribution p (x ),
and discriminator becomes good at distinguishing data drawn from
p (x ) vs. other data distributions.

GANs for data translation. GANs have been recently used for
the task of data translation, particularly with images. Assume we
want to learn a mapping or translation between two image domains,
namely colored and black-and-white (B/W). The GAN takes as in-
put a paired set of images (a,b) from the two domains where a is a
colored image and b is the corresponding B/W image. The colored
image a is fed to the generator, and the output G (a) is compared
against the paired B/W image b by the discriminator. D provides
feedback to G about the ‘goodness’ of the generated B/W samples,
and G uses this information to learn an even better mapping be-
tween colored and B/W image domains. Recent works[20] have
shown remarkable results in paired image data translation using
conditional GANs.

4.2 Microphone Variability as a Translation
Problem

We propose to formulate the problem of microphone variability
as a data translation problem, i.e., given an audio from a micro-
phone (e.g., a test microphone), can we translate it to a di�erent
microphone’s (e.g., a training microphone) domain? If a translation
function can indeed be learned between training and test micro-
phones, it can subsequently be used to reduce the domain shift
caused by microphone variability.

A major challenge however is that generating large-scale paired
and aligned audio datasets from multiple microphones is not trivial.
This would require asking end-users to provide pre-speci�ed speech
inputs from their microphones (e.g., repeating ’Hey Siri’ 100 times)
and moreover these inputs would need to be carefully time-aligned
to create a paired dataset of multiple microphone audios upon
which a conditional GAN can be trained. As mentioned in § 3.1, a
key design consideration for Mic2Mic is to minimize the burden on
end-users, as such the above approach is not ideal.

Therefore, we seek a solution which can learn the mapping be-
tween two microphone domains using just unpaired and unlabeled
data. In this work, we adopt principles of the CycleGAN posed in
[45] to learn an audio translation model using unpaired data.

Mic-to-Mic translations using CycleGAN. Assume we have a
set of unpaired speech samples from two microphones A and B and
we wish to learn a mapping GA!B . As discussed in §4.1, a GAN
can be trained such that it outputs a distribution GA!B (A) which
is indistinguishable from the data distribution of B. However, it
does not guarantee that each individual speech sample ai from the
source microphone A is mapped to its corresponding output bi in
the target microphone B – in other words, it is not guaranteed that
the speech content of the input sample will be preserved by the
mapping GA!B (a). In order to solve this, CycleGAN imposes a
cycle-consistency structure on the mappings, in that if an input
sample a is translated from A ! B and then back from B ! A,
we should arrive at the same input sample. As such, CycleGAN
proposes to learn two bijective mapping functions (or generators)
GA!B and GB!A such that both are inverse of each other. By

imposing the cycle consistency structure, CycleGAN is able to learn
one-to-one mappings between the source and target domains. In
Section 5.1, we provide details on the architecture of our CycleGAN
model, and how we train and deploy it on an embedded device.

5 MIC2MIC TRAINING AND
IMPLEMENTATION

In this section, we explain how the Mic2Mic translation model is
trained and then implemented on an embedded device as a system
component.

Figure 4: Mic2Mic training system

5.1 Training of Mic2Mic
In Figure 4, we show the architecture of Mic2Mic’s training system.
In our current implementation, the training of the translation model
is done centrally on the cloud. Below are the main components of
the training system.

Data Collection Subsystem. To train a translation model, we
require data from source and target microphones. The source mi-
crophone here refers to the deployment microphone on the em-
bedded device, whereas the target microphone is a representative
microphone that was used for collecting the training data for the
task-speci�c audio model. We assume that the target microphone
is known and unlabeled data from it is available (e.g., it could be
provided by the model developer or available in a public dataset).

For the source microphone, the Data Collection subsystem re-
quests speech data from the embedded device. We envision a sys-
tem component called Training Manager (described in § 5.2) on the
user’s device which – on receiving a data request from the Data
Collection subsystem – is able to collect speech data from the em-
bedded (source) microphone with user’s permission. As Mic2Mic
only requires unpaired and unlabeled data, it is very cheap to collect
without requiring extensive e�ort from end-users.

Feature Extraction Subsystem. Once the source and target mi-
crophone datasets are collected, the raw audios are converted to
log-spectrograms. To compute log-spectrograms, we use a sliding-
window approach with a Hamming window size of 32 ms and a
hop size of 16 ms, with FFT bin width of 256. The log-spectrograms
are normalized to be in the range [�1,1]. Although our current
implementation operates over log spectrograms, in principle it can
be extended to other audio features. We denote the unaligned em-
pirical distributions of log-spectrograms from the source and target
microphones as p (xA ) and p (xB ), respectively.

CycleGAN Training Subsystem.We now explain how we learn
the mapping between p (xA ) and p (xB ) using a CycleGAN. As
shown in Figure 5, a CycleGAN architecture consists of two gen-
eratorsGA!B andGB!A and two corresponding discriminatorsDB
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(a) (b)
Figure 5: (a) Architecture of a cycleGAN consisting of two bi-
jective generators and two discriminators. (b) Illustration of
the Cycle Consistency property – minimizing Lc�cle helps
in preserving the content of the translated audio.

andDA. Our two generator models follow the U-Net architecture[35]
and consist of 3 convolutional layers for extracting higher level
features from the spectrograms, 3 ResNet blocks for transforming
the features from source domain to target domain, followed by
3 transpose convolutional layers for converting the transformed
features into output spectrograms. We add skip connections[35]
between the convolutional and corresponding transpose convo-
lutional layers and use batch normalization layers between the
ResNet blocks for faster convergence. For the discriminator models,
we use a 4-layer deep fully-convolutional network with a batch
normalization layer between two consecutive layers.

The training pipeline for the CycleGAN works as follows. Sam-
ples from the distribution p (xA ) are fed to a generator GA!B , and
the outputs GA!B (xA ) are evaluated using a discriminator DB ,
which compares them to actual samples from p (xB ). The loss func-
tion used for training the CycleGAN is composed of three terms.
For the generator GA!B , they are as follows:

Least square generator loss. It measures how distinguishable
the generated dataGA!B (xA ) are from the target data distribution
p (xB ). As the distribution of the generated data becomes closer to
p (xB ), this loss becomes smaller. Mathematically, it is expressed as:

Lad� (GA!B ) = Ex⇠p (xA )
f
(DB (GA!B (x )) � 1)2

g
(1)

Cycle Consistency Loss. This term enforces the cycle consis-
tency property and drives the two generators to be inverses of one
another.

Lc�cle (GA!B ) = Ex⇠p (xA )
f
kGB!A (GA!B (x )) � x kL1

g
(2)

Identity Loss. This loss term drives the generators to be close
to identity on samples drawn from the target distribution.

Lid (GA!B ) = Ex⇠p (xB )
f
kGA!B (x ) � x kL1

g
(3)

The total loss which is minimized for training the generator
GA!B takes the form:

LGA!B = �Lad� + �Lc�cle + �Lad� , (4)

where the coe�cients� ,� ,� > 0 can be adjusted as hyper-parameters.
The discriminator DB is trained by minimizing the least squares

discriminator loss:

LDB = Ex⇠p (xA )
f
(DB (GA!B (x )))

2g + Ex⇠p (xB ) f(DB (x ) � 1)2
g
.

(5)
The pair (DA,GB!A ) is trained similarly, with subscripts A and

B interchanged. After the cycleGAN is trained, we are primarily
interested in the (source! target) generatorGA!B , which can take

audio features from the source microphone and generate equivalent
audio features from the target microphone. As such, we discard the
(target!source) generator GB!A and the two discriminators.

Figure 6: System diagram of Mic2Mic deployment

5.2 Mic2Mic Deployment
In this section, we discuss the implementation of Mic2Mic as a
system component on embedded devices. Figure 6 shows the system
architecture and its main components are as follows:

Training Manager. This sub-component is responsible for initi-
ating the training of Mic2Mic’s translation model. We assume that
task-speci�c audio model (e.g., ASR) provides information about
its training microphone(s) in the form of meta-data. The training
manager reads this metadata and decides if a translation model
needs to be learned. For instance, if the deployment microphone
(i.e., the microphone on the embedded device) is the same as the
training microphone, the problem of domain shift due to micro-
phone variability does not arise, as such a translation model is not
needed. Alternatively, if the deployment microphone di�ers from
the training microphone, the training manager initiates training of
the translation model.

As described in § 5.1 and Figure 4, the training process currently
runs on the cloud and is dependent on receiving unlabeled speech
data from the deployment microphone. The training manager ini-
tiates the collection of this data by prompting the user to provide
speech inputs on the deployment microphone. Upon receiving the
user input, we �rst �lter it through a voice activity detector (VAD)
module to separate speech content from other audio data. The
segmented speech content is then uploaded to the cloud to start
Mic2Mic’s training process.

Note that in this paper, we do not conduct a real-world user study
wherein the speech data is collected from the users directly. Instead,
as we will describe in § 6.1, we use a pre-recorded speech dataset
as a proxy for a user, and the training manager samples speech
from this dataset. Future work can extend our work by conducting
a user study in which speech data is incrementally collected from
the users. Moreover, other ways of collecting speech data such as
piggybacking on user’s speech inputs to various applications (with
user’s permission) could be explored.

Mic2Mic Translator. The output of the training process is a
(source!target) translation model which is downloaded on the
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embedded device. Thereafter, upon receiving audio data from the
device microphone, the system pre-processes the data and computes
the log-spectrogram features required by the translation model. The
computed features from the source domain (i.e., device microphone)
are then translated to the target domain (i.e., the training micro-
phone) in order to reduce the domain shift. Finally, the translated
features are fed to the task-speci�c audio model for computing
inferences. As many audio models (e.g., keyword detection [44],
DeepSpeech2 [4]) use spectrograms or MFCC coe�cients as input
features, they are compatible with our current implementation.

6 EVALUATION
In this section, we present a systematic evaluation to highlight the
accuracy gains achieved by Mic2Mic. The key research questions
that drive our experiment are:
• Does incorporatingMic2Mic in the inference pipeline improve an
audio model’s accuracy on unseen microphones (‘unseen’ refer
to those microphones which the model did not ‘see’ during the
training process)?
• How does the performance of Mic2Mic compare against audio
preprocessing and microphone calibration techniques?
• How much unpaired audio data is needed to train the Mic2Mic
translation model?
• What is the system overhead of running the translation model
on embedded devices?

The key highlights from our experimental results include:
• Mic2Mic is able to e�ectively learn a microphone translation
function using less than 20 minutes of unlabeled and unpaired
data.
• Mic2Mic can recover between 67% to 89% of the accuracy lost
due to microphone variability for two common audio tasks.
• It is feasible to run Mic2Mic on mobile and embedded devices
within reasonable resource contraints.

6.1 Data Collection
Our goal is to evaluate the performance of Mic2Mic in improv-
ing the robustness of audio models when they are deployed on
microphones di�erent from those used while training. For this,
we need two types of datasets: a) dataset for training and testing
task-speci�c audio models, and b) dataset for training and test-
ing Mic2Mic’s translation model. More importantly, these datasets
should be collected from di�erent types of embedded microphones,
while at the same time controlling for confounding factors such as
ambient noise and speech content. To the best of our knowledge,
no such datasets exist in the public domain and therefore, we �rst
present our methodology to create these datasets.

Microphone Hardware. We collect audio data from six di�erent
microphones representing three class of devices. As shown in Fig-
ure 7, we use two circular microphone arrays, namely Matrix Voice
(costing $55) and ReSpeaker (costing $80). Both are programmable
microphone arrays consisting of seven MEMS microphones lo-
cated on the periphery of the device. They record audios from all
7 microphones and perform on-device signal processing such as

Device Count Cost
Matrix Voice 2 $55
ReSpeaker 2 $80
PlugUSB 2 $5

Figure 7: Microphones used in our experiments. (Left to
right) Matrix, ReSpeaker, PlugUSB

delay-and-sum beamforming to enhance the audio signal. Eventu-
ally, they generate a single processed audio which represents the
best quality audio recording from these devices. The third class of
microphones used in our experiments are low-cost single-channel
USB microphones (costing $5). In e�ect, these devices represent
a range of microphones that are commercially available for de-
veloping speech applications on embedded platforms. We use a
Raspberry Pi 3 Model B as our target embedded platform because
all three classes of microphones are compatible with it.

Audio Tasks and Datasets. Two representative audio sensing
tasks are used in our experiments, namely Keyword Spotting and
Emotion Detection.

Keyword Spotting. In this task, the goal is to identify the presence
of a certain keyword class (e.g., Hey Alexa) in a given speech seg-
ment. To train a model for this task, we use the Speech Commands
dataset containing 65,000 one-second long utterances of 30 short
keywords [3]. Instead of using all 30 classes, we used a subset of 12
classes for our experiments (yes, no, up, down, left, right, on, o�,
stop, go, zero, one). This 12-class dataset (referred to as SC-12) was
then randomly split into training (75%) and test (25%) class-balanced
subsets. We use a small-footprint keyword detection architecture
proposed in [44] to train the model. The input to this model is a
two-dimensional tensor extracted from the one-second long key-
word recording, consisting of time frames on one axis and 24 MFCC
features on the other axis. The model outputs a probability of a
given audio recording belonging to a certain keyword class (e.g.,
Yes, No) or to an Unknown class.

Emotion Detection. In this task, the goal is to identify the emotion
of the speaker in a given speech segment. To train a model for this
task, we use the RAVDESS dataset which is a collection of 1440
speech �les recorded by 24 actors where they expressed a range
of emotions such as calm, happy, sad, angry, fearful, surprise, and
disgust. The dataset was randomly split into training (75%) and test
(25%) class-balanced subsets. We use a CNN-based speech emotion
detection architecture proposed by [9] for training our models.

Mic2Mic training data. In addition to the task-speci�c models,
we also need data to train Mic2Mic translation models. As discussed,
from the 30-class Speech Commands dataset, we only used data
from 12 keyword classes (SC-12) to train the keyword detection
model. Rest of the data (SC-rest) was used to train the Mic2Mic
translation model. Note that there is no data overlap between SC-12
and SC-rest, as such the translation model is trained completely
independent of the task-speci�c model.

Setup. The three datasets described above have a combined dura-
tion of around 20 hours and need to be recorded on all six micro-
phones in our experiment. At the same time, we need to control
for factors such as variability in the acoustic environments and
speakers so that the only di�erence between the datasets are due to
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Matrix!PlugUSB Translation ReSpeaker!Matrix Translation

Figure 8: Translation Performance ofMic2Mic for two di�erentmicrophone pairs. (a) shows an example spectrogram fromMi-
crophone A and (b) shows the spectrogram generated by applyingGA!B translation on (a). (c) shows the corresponding ground
truth spectrogram for microphone B. We observe that the generated spectrograms (b) visually resemble their corresponding
ground truth (c).

the microphone variability. Given these requirements and the large
amount of data to be collected, we decided not to use human sub-
jects for recordings. Instead, we use a JBL LSR305 reference monitor
speaker to replay the audio datasets in a quiet room. This speaker
has a relatively �at frequency response in the human speech range
which allows for a faithful replay of the datasets. The replayed
audios are recorded simultaneously on 6 Raspberry Pi devices, each
connected with a microphone and placed equidistant (12cm) from
the audio source. E�ectively, we created six versions of the audio
datasets, one for each microphone used in our experiment.

Note that the data samples are collected in a ‘paired’ manner only
to facilitate the evaluation of our method – the training of Mic2Mic
does not rely on paired or labeled data and as we will discuss later,
we enforce that no paired samples from di�erent microphones are
available for training Mic2Mic.

6.2 Evaluation of the translation model
For evaluating the translation model, we use an ‘aligned’ dataset of
1000 speech segments from two microphones. That is, we record
the same speech segment with two di�erent microphones and time-
align them. This way we have a ground truth to compare the quality
of our translations. As our translationmodel operates on 2D spectro-
grams, we use the image similarity metric of Peak Signal-to-noise
ratio (PSNR) to evaluate the performance of the translation model.
PSNR is closely related to the mean square error and is suggestive of
the distance between two images. The higher the PSNR, the closer
the images are to each other.
Results. We �rst present qualitative results to demonstrate the
performance of Mic2Mic. Figure 8 shows the performance of two
translation models: Matrix! PlugUSB and ReSpeaker! Matrix.
Spectrograms a and c correspond to speech segments collected
from source and target microphones, whereas the spectrograms
b are generated by applying GA!B translation model on a. We
observe that the generated spectrograms (b) visually resemble their
corresponding ground truth (c), thereby suggesting that Mic2Mic
was able to learn a translation function between the source and
target microphones.

In Table 2, we show the e�ect of Mic2Mic on the PSNR between
training and test spectrograms. We observe that there is a signi�-
cant increase in the PSNR pre- and post- translation, which suggests
that Mic2Mic is able to reduce the domain shift between the micro-
phones.

6.3 Accuracy gains using Mic2Mic
In this section, we evaluate the accuracy gains for audio models by
incorporating Mic2Mic in the inference pipeline.

Training
Microphones

Test
Microphones

Untranslated
PSNR

Translated
PSNR

Matrix ReSpeaker 20.51 28.08
PlugUSB 26.48 28.56

ReSpeaker Matrix 20.51 24.15
PlugUSB 21.65 28.23

PlugUSB Matrix 26.48 28.24
ReSpeaker 21.65 24.21

Table 2: Comparison of PSNR between the spectrograms coming
from two di�erent microphones before and after translation.

Experiment Setup. We present a series of experiments wherein
the microphones used to train and test the audio models are di�er-
ent. We compare the performance of Mic2Mic against a number of
baseline approaches in improving the robustness of audio models
to such microphone variability.

Inference Pipelines. When an audio model is deployed on a new
microphone, we evaluate its performance in four scenarios:
• Unmodi�ed: In this pipeline, the test data from the new micro-
phone is directly passed to the audio model without applying
any pre-processing technique.
• Speech Enhancement (SE): Before feeding the test data to the
audio model, we �rst enhance its speech quality by applying a
statistical SE technique known as Minimum Mean-Square Error
Short-Time Spectral Amplitude (MMSE-STSA) estimation [14].
• Calibrated: An alternative approach to address microphone vari-
ability is to �rst measure the di�erences between training and
test microphones in a controlled experimental setup and then
negate those di�erences during the inference stage. While this
approach of microphone calibration in controlled environments
is not practical and scalable, we use it as a baseline to show how
Mic2Mic compares with it in terms of performance. To compute
a calibration o�set between a pair of microphones, we play a
frequency sweep signal X on a reference speaker and record it
on our target microphones in a non-re�ective anechoic chamber.
The power spectral density Ri of the microphone outputs can be
expressed as follows, where Hi is the transfer function of the ith
microphone and Rx is the PSD of the original frequency sweep
signal.

Ri ( f ) = |Hi ( f ) |2.Rx ( f ) (6)
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Figure 9: Accuracy of the Keyword Detection model under di�erent scenarios of microphone variability. The numbers on the bars show how
much of the lost accuracy is recovery by using Mic2Mic.

Thereafter, a calibration o�set �i,j between two microphones i
and j representing the di�erence in their frequency responses
can be calculated as follows:

�i,j =
Hi
Hj
=

s
Ri ( f )

Rj ( f )
(7)

Finally, the pre-computed calibration o�set � is applied on the
data from the test microphone to compensate for the di�erences
in frequency response between the training and test mics.
• Mic2Mic: This pipeline follows our proposed approach as shown
in Figure 6 wherein the data from the test microphone is �rst
translated using Mic2Mic and then passed to the task-speci�c
audio model for inferences. We use 15 minutes of unpaired data
from the training and test microphones to learn a translation
model. Later in § 6.4, we provide further results on how changing
the amount of training data impact the performance of Mic2Mic.

Results. In Figure 9, we present the mean accuracy scores on test
microphones when the Keyword Spotting model is trained on the
SC-12 dataset collected from di�erent training microphones. As
expected, we observe the upper bound inference accuracy when the
model is tested on the same device on which it was trained, as there
is no accuracy lost due to microphone variability. However when
there is a mismatch between the training and test microphones,
a signi�cant accuracy loss is observed. For example, as shown in
Figure 9a, when the model trained on Matrix Voice is deployed on
ReSpeaker and PlugUSB microphones, there is an absolute accu-
racy drop of 12.4% and 6.7% respectively when compared with the
accuracy upper bound (78.8%). By incorporating Mic2Mic in the
inference pipeline, we are able to recover a signi�cant portion of
this accuracy loss (73% and 87%) respectively. In doing so, Mic2Mic
outperforms the two baseline approaches related to speech en-
hancement and microphone calibration. The superior performance
of Mic2Mic can also be observed in other training and test device
combinations as shown in Figures 9(a-c).

Similarly in Figure 10, for the emotion detection task, we observe
that accuracy drops between 4%-9% due to microphone variability
and Mic2Mic inference pipeline is able to recover above 80% of the
lost accuracy in some scenarios.

We note that although Mic2Mic is able to recover a signi�cant
percentage of the lost accuracy (up to 87%) due to microphone
variability, it underperforms the ideal scenario in which training
data from the target microphone in available. For example, in the
Matrix to PlugUSB translation, Mic2Mic improves the Keyword
Detection accuracy from 72.1% to 77.9%, however it falls short of
reaching the best-case accuracy of 82.3% which could obtained with
supervised training on PlugUSB. Future work can look at semi-
supervised approaches where Mic2Mic is combined with a small
amount of labeled data from the target microphone as a way to
further improve its performance.

Training with multiple microphones. While the above exper-
iments use data from just one microphone for training the audio
models, in practice developers will have access to data from diverse
microphones. We now evaluate if accuracy drops still persist when
an audio model is trained with multiple microphones and tested on
a new microphone.

In Figures 9(d-f) and 10(d-f), we present themean accuracy scores
when the audio models are trained on data from multiple training
microphones and deployed on an unseen test microphone. We
again observe an accuracy drop due to training and test microphone
mismatch (e.g., the accuracy drops by 10%when Keyword Detection
model trained on Matrix and PlugUSB is deployed on ReSpeaker).
Mic2Mic inference pipeline is able to recover nearly 70% of this lost
accuracy in all scenarios.

Comparison with Paired Approaches. We now compare the
performance of Mic2Mic against techniques which rely on the
availability of paired data from source and target microphones. As
we explained earlier, the need for paired data is a strong assumption
which is not practical in real-world scenarios, however it may be
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Figure 10: Accuracy of the Emotion Detection model under di�erent scenarios of microphone variability. The numbers on the bars show how
much of the lost accuracy is recovery by using Mic2Mic.

Training
Microphones

Test
MicrophonesUnmodi�ed DA GAN-paired Mic2Mic

Matrix
Matrix 78.8 NA NA NA

ReSpeaker 66.40 70.84 75.64 75.51
PlugUSB 72.1 74.5 77.48 77.9

ReSpeaker
ReSpeaker 81 NA NA NA
Matrix 66.5 70.47 76.56 78.9
PlugUSB 73.22 76.37 80.4 79

PlugUSB
PlugUSB 82.3 NA NA NA
Matrix 75.8 77.8 79.89 80.3

ReSpeaker 76.1 77.45 79.38 80.2

Table 3: Comparison of Mic2Mic against paired training ap-
proaches.

possible to do paired data collection in a lab setting, particularly
if the number of deployment devices are relatively small and the
sensing task does not require large-scale data. As such, we now
compare the performance ofMic2Mic against known paired training
approaches.

Our �rst baseline is a recently proposed approach [17] which
uses data augmentation (DA) training as a way of regularization
to improve the accuracy of audio models trained for smartphones
and deployed on smartwatches. To do so, it computes the relative
transfer function between microphones, and use it for creating an
augmented training dataset upon which the target audio model is
retrained. Further, we benchmark Mic2Mic against a GAN-based
training approach where the GAN is trained to learn a translation
function using paired microphone data. To this end, we use the
‘paired’ version of the Speech Commands dataset collected in our
experiments. This approach di�ers from Mic2Mic in two ways: a)
for training Mic2Mic’s CycleGAN, we ensure that no paired data
is passed to the training algorithm whereas in the GAN-paired
baseline, we enforce that p (xA ) and p (xB ) are paired. b) we do not
use the cycle-consistency loss in the training process.

We implement these paired baselines in the context of the Key-
word Spotting task and present the results in Table 3. We observe
that although the data augmentation (DA) approach trains a model
that beats the baseline (unmodi�ed inference pipeline), Mic2Mic
is able to outperform this approach for all combinations of micro-
phones. Further, our results show that Mic2Mic and GAN-paired
approach provide similar performance improvements in most cases,
however we observe that the GAN-paired technique has 2x faster
training convergence than the unpaired Mic2Mic approach.

6.4 How much data is needed to train Mic2Mic?
In this section, we present results on Mic2Mic’s performance

as the amount of training data is varied. As discussed, training
Mic2Mic only requires unlabeled and unpaired data from the source
and target microphones. While collecting such data is indeed cheap,
it will be ideal if the Mic2Mic can be trained with minimal amount
of data.

(a) (b)
Figure 11: Inference accuracy of the Keyword Detection model as
the amount of data used to train the Mic2Mic translation model
is varied. The inference accuracy plateaus after the CycleGAN is
trained with around 18 minutes of data.

Experiment Setup. We systematically vary the amount of un-
paired data available to train Mic2Mic’s translation model. We
gradually increase the unpaired data from the training and test
microphones from 0 minutes to 60 minutes. Once the CycleGAN
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Processor Release Year Latency
Snapdragon 835 2017 112ms
Snapdragon 820 2016 135ms
Snapdragon 410 2016 270ms
Snapdragon 400 2014 750ms

Table 4: Execution latency of Mic2Mic in translating a 5 sec-
ond audio segment.

is trained in each data con�guration, we incorporate it in the in-
ference pipeline of the Keyword Spotting model and evaluate the
accuracy gains.

Results. Figure 11 illustrates the �ndings of this experiment for
two di�erent microphone combinations. The dotted-red line shows
the upper-bound test accuracy when the Keyword Spotting model
is tested on the same microphone on which it was trained. The
dotted blue line shows the baseline accuracy when the model is
deployed on a test microphone without incorporating Mic2Mic in
the inference pipeline.

We observe that as more unpaired training data is supplied, the
Mic2Mic translation model becomes better and in turn, the infer-
ence performance of the Keyword Spotting model increases. The
inference performance plateaus around 15 minutes in Figure 11(a)
and around 18 minutes in Figure 11(b), suggesting that Mic2Mic is
able to learn a good translation model with less than 20 minutes of
unpaired data in these scenarios.

6.5 System Evaluation
We now evaluate the runtime performance of Mic2Mic’s trans-

lation model on a number of mobile and embedded platforms. For
this experiment, we executed the translation model only on the
CPU and did not use other on-board processors such as the GPU
or the DSP. Table 4 shows the latency of translating a 5 second
audio on di�erent processors. We observe that it takes around less
than 150ms to translate a 5 second audio segment on newer mobile
processors, however on older processors such as Snapdragon 400,
it may take up to 750ms. In future, we will investigate avenues to
optimize the runtime of the convolutional operations [10] in our
translation model in order to further reduce its execution latency
on embedded devices. Further, as modern processors also have
on-board GPU, we can leverage it to reduce the translation time.

7 DISCUSSION AND LIMITATIONS
In this section, we discuss the limitations of our work, and outline
the avenues for future work on this topic.

Scalability of Pairwise Translations.A limitation of our current
implementation is that we learn pairwise translations between
training and test microphones, as such in order to scale this solution
to a large number of devices, multiple such models need to be
learned. As a future work, we are investigating the development
of a common microphone translation model that can be applied
to any given pair of microphones. Recently, a similar solution in
the image-to-image translation domain has been proposed, namely
StarGAN [11] which uses a n-dimensional one-hot vector to encode
the input and output image labels in the model architecture.

Deployment Overhead.Mic2Mic adds an extra step of data trans-
lation in the inference pipeline of audio models. In future, we will
explore avenues for optimizing the translation model to reduce
its latency and power consumption on embedded devices. As our
translation model consists of a number of convolution layers, we
plan to use techniques proposed for optimizing CNNs on embedded
devices [10].

Training with Diverse Microphones. Our experiments showed
that microphone diversity in the training set, albeit useful, is not
su�cient to counter the challenge of domain shift.When the deploy-
ment microphone is di�erent from the diverse trainingmicrophones,
approaches such as Mic2Mic are still useful. However, in the rare
case when data from all deployment microphones are available
while training, we expect that domain adaptation techniques such
as Mic2Mic are not needed.

Controlled Study Setup. Audio model robustness in real-world
is a challenging, multifaceted problem. We study the challenge of
microphone variability, therefore we controlled for other poten-
tial variabilities such as ambient noise, speaker accents etc. How-
ever when Mic2Mic is deployed in the real-world, it will have to
encounter other such forms of noise while learning a translation
model. In future work, we will study the generalizability of Mic2Mic
when the unpaired training data also contains other forms of noise
besides microphone variability.

8 RELATEDWORK
We now review prior works on sensor variability in embedded
devices, audio enhancement approaches and the use of GANs in
audio applications.

Sensor Heterogeneity in Embedded Devices. A number of past
works have found that the accuracy of sensor classi�cation models
degrades in the real-world, owing to the variations in sensor de-
vices [5, 16]. Blunck et al. [16] showed the impact of a GPS sensor
variability on the data quality and the performance of inference
models on smartphones. Stisen et al. [18] highlighted that even soft-
ware factors such as CPU loads can cause a large variability in the
accelerometer outputs of smartphones and smartwatches. In other
works, [17] proposed a data augmentation based training approach
to counter device heterogeneities, while [28] presented a number
of user-driven and automatic methods to calibrate accelerometer
responses from various target devices.

Audio Enhancement for Speech Models. In order to make au-
dio models robust against real-world noise, a number of speech
and audio enhancement techniques have been proposed. Classic
techniques for speech enhancement include Wiener �ltering [26],
subspace algorithms [15], and statistical methods such as STSA-
MMSE [14]. Recently, deep learning has been prominently use
to tackle this problem with solutions ranging from simple feed-
forward neural networks [22], denoising auto-encoders [29], and
RNNs with LSTM units [30, 41]. The common approach adopted
by these works is to �rst add arti�cial noise to clean audios, and
then feed the time-aligned clean and noisy audio pairs to a neural
network, for it to learn a mapping function from noisy to clean
audios. As such, these approaches are not suitable for our problem
domain, because collecting perfectly time-aligned paired data from
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multiple microphones is very challenging. Our proposed solution of
using CycleGANs can learn mappings between microphones using
unpaired and unlabeled audio samples.

Audio and Speech applications of GANs. In the last few years,
GANs have been used extensively for generating images [20, 27].
Only recently, there has been an increased focus on using GANs
for speech enhancement and speech generation. [33] proposed an
application of GANs for speech enhancement by operating them
on raw audios. Michelsanti et al. [31] adapted a conditional GAN
designed for image-to-image translation for the task for speech
enhancement and speaker veri�cation. [13] introduced WaveGAN
which can be used to synthesize diverse audios such as bird vocaliza-
tions, drums, and piano sounds. However, none of these solutions
tackle the problem of microphone variability on embedded devices,
which is the primary focus on our work.

9 CONCLUSION
In this work, we examined the impact of microphone variability on
the robustness of audio-based computational models. After system-
atically exploring the runtime behavior of multiple audio models
under di�erent microphone environments, we propose a machine-
learned system component, namely Mic2Mic which can translate
audio data between microphone domains. Our results show that
Mic2Mic can recover between 66% and 89% of the accuracy drop
caused by microphone variabilities and it consistently beats a num-
ber of signal processing and calibration baselines.
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