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Abstract—Deep learning has revolutionized the way sensor
measurements are interpreted and application of deep learning
has seen a great leap in inference accuracies in a number of fields.
However, significant requirement of memory and computational
power have been the main bottlenecks in wide scale adoption
of these novel computational techniques on resource constrained
wearable and mobile platforms. In this demonstration we present
DeepX, a software accelerator for efficiently running deep neu-
ral networks and convolutional neural networks on resource
constrained embedded platforms, e.g., Nvidia Tegra K1 and
Qualcomm Snapdragon 800.

I. INTRODUCTION

Novel breakthroughs from the field of deep learning are
radically changing the way sensor measurments are interpreted
and applied to extract high-level information needed by mobile
apps [1]. It is critical that the gains in inference accuracy that
deep models afford become embedded in future generations of
mobile apps. However, deep learning-based models are yet to
become mainstream on embedded platforms, where inference
tasks are often challenging due to high measurements noise. In
this demonstration, we present DeepX, a software accelerator
for deep learning models that allows efficiently running deep
neural network (DNN) and convolutional neural network
(CNN) models on resource constrained mobile platforms.
DeepX significantly lowers the device resources (viz. memory,
computation, energy) required by deep learning that currently
act as a severe bottleneck to mobile adoption.
The foundation of DeepX is a pair of resource control al-
gorithms, designed for the inference stage of deep learning,
that: (1) decompose monolithic deep model network archi-
tectures into unit-blocks of various types, that are then more
efficiently executed by heterogeneous local device processors
(e.g., GPUs, CPUs); and (2), perform principled resource
scaling that adjusts the architecture of deep models to shape
the overhead each unit-blocks introduces.

II. DESIGN AND OPERATION

DeepX aims to radically reduce mobile resource use, in addi-
tion to the execution time, of performing inference with large-
scale deep learning models by exploiting a mix of network-
based computation and heterogeneous local processors. To-
wards this goal, we propose two novel techniques:
• Runtime Layer Compression (RLC): A building block

to optimizing mobile resource usage for deep learning
is an ability to shape and control them. But existing
approaches, such as those of model compression, focus
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Fig. 1: DeepX Proof-of-Concept System
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Fig. 2: Developer Boards for SoCs used for DeepX Prototype

on the training phase of deep learning models, rather
than the inference. RLC provides runtime control of the
memory and computation (along with energy as a side-
effect) consumed during the inference phase by extending
model compression principles, e.g., SVD.

• Deep Architecture Decomposition (DAD): A typical
deep model is comprised of an architecture of many lay-
ers and thousands of units. DAD efficiently identifies unit-
blocks of this architecture and creates a “decomposition
plan” that allocates blocks to local and remote processors;
such plans maximize resource utilization and seek to
satisfy user performance goals.

Overview of DeepX architecture is given in Fig. 1.

III. PROTOTYPE PERFORMANCE

We briefly highlight representative performance benefits of
DeepX under two large-scale deep models that were originally
conceived for the cloud. The first model, AlexNet [2], performs
object recognition and supports more than 1,000 object classes.
The second model, SpeakerId, is used for speech recognition.
We find when running on the Tegra K1(see Fig. 2b), DeepX
improves the energy efficiency of AlexNet by factors of 22.1×,
1.8× and 13.2× compared to benchmarks that use cloud com-
putation, and GPU- or CPU-only solutions, respectively. Under



(a) Speaker identification task (b) Speaker recognition results under DeepX running on Tegra and Snapdragon 400

Fig. 3: Text independent speaker recognition model (SpeakerId) running on Tegra and Snapdragon SoCs under DeepX Prototype

(a) Image recognition task
(b) Image recognition results under DeepX running on Tegra and Snapdragon 400

Fig. 4: Image recognition (AlexNet) running on Tegra and Snapdragon SoCs under DeepX Prototype

SpeakerId, these numbers are: 29.7×, 1.4× and 7.8×. DeepX
on the Snapdragon 800 (see Fig. 2a), for the same models,
has similar energy benefits: AlexNet, 11.2× (cloud) and 2.1×
(CPU); and SpeakerId, 8.9× (cloud) and 8.1× (CPU). DeepX
also benefits memory and execution time bottlenecks, with
execution tightly coupled to energy gains and reductions of
model memory footprint of 2.5× typical for AlexNet and
SpeakerId.

IV. DEMO: GRAPHICAL USER INTERFACE

The demonstration showcases an end-to-end prototype of
DeepX running on two latest SoCs: Qualcomm Snapdragon
800 and Nvidia Tegra K1. Snapdragon 800 is widely used
in modern mobile and wearable devices (e.g., Nexus 5 and
Galaxy Gear), whereas the Tegra K1 is aimed at high per-
formance IoT and embedded devices (e.g., Microwave ovens
and automobiles). The demonstration includes a front-end user
interface powered by HTML5 and Node.js, which accepts
recognition tasks, delegates them to two SoCs and visualizes
the recognition results together with three performance met-
rics: (i) execution time, (ii) memory usage, and (iii) battery
life. We have selected image and audio recognition tasks

with established deep models, e.g., AlexNet and 2-hidden
layer DNN, and borrowing two challenge datasets: ImageNet
Challenge Dataset 2012 [3], and Automatic Speaker Verifi-
cation Spoofing and Countermeasures Challenge Dataset [4].
Fig. 3 and 4 respectively show the GUI for audio and image
recognition tasks and their performances under DeepX. Dur-
ing the demonstration, visitors will be welcomed to interact
with DeepX GUI by selecting and running audio and image
recognition tasks running on the mobile SoCs.
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