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I n a relatively short time, deep learn-
ing principles and algorithms have 

transformed how the world processes, 
models, and interprets data.1 For dis-
criminative learning tasks routinely 
integrated into mobile and embedded 
systems—such as recognizing spoken 
words, objects, and faces—deep net-
works have been the state of the art for 
many years. Looking ahead to future 
device-based applications of learning, 
deep models are proving pivotal in the 
development of control algorithms  
for autonomous cars and drones (for 
example, for deep reinforcement learn-
ing). Deep models are also expanding 
into the area of core system issues—
improving, for example, methods for 
encryption and compression.2

The blending of learning algorithms 
and mobile computing taking place 
today is only the beginning. We believe, 
in particular, that deep learning will 
play a prominent role in the evolution of 
smart devices (such as phones, watches, 
and embedded sensors) moving for-
ward. It is therefore of paramount 
importance that we advance our under-
standing of how to simply and effi-
ciently integrate current—and future—
deep learning breakthroughs within 
constrained computing platforms 
(for more information, see the “Deep 
Learning under Constrained Devices”  

sidebar). This, along with continued 
research into the use of deep neural 
networks that support the diverse infer-
ence needs of sensor systems, will help 
produce radical improvements in how 
on-device context modeling and activ-
ity recognition is performed.

The emergence of mobile and embed-
ded forms of deep learning has been 
slowed by the extreme resource over-
head that it can easily introduce. Deep 
networks often contain hundreds of 
layers of interconnected nodes, and 
performing a single classification from 
a frame of sensor data can require com-
putations over potentially hundreds 
of millions of parameters. Model rep-
resentations and inference algorithms 
originally conceived for deep networks 
can easily overwhelm the resources of 
constrained platforms. In response to 
this resource barrier, the past 18 months 
have seen a surge in the investigation 
of resource-efficient deep learning for 
mobile and embedded platforms.

Promising early results are appear-
ing across many domains, including 
hardware,3,4 systems,5,6 and learning 
algorithms.7,8 Likely to further acceler-
ate progress is the rate at which existing 
commercially supported deep learning 
tools, libraries, and frameworks have 
begun to address the specific needs of 
constrained devices (examples include 

TensorFlow, Caffe2, SNPE, Compute 
Library from Google, Facebook, Qual-
comm, and ARM). These tools are 
starting to offer building blocks that 
enable fundamental research in this 
area by simplifying key steps such as 
runtime support on Android devices, 
processor-optimized low/mix preci-
sion matrix multiplication, or access to 
often unavailable heterogeneous device 
processors such as digital signal proces-
sors (DSPs) or GPUs.

In this short article, we provide an 
overview of the progress we have made 
toward overcoming a variety of core 
challenges facing deep learning for 
mobile and embedded devices, while 
also attempting to connect our findings 
to those of the wider community in the 
area. This discussion is largely focused 
on improvements seen within on-device 
execution of deep networks, which 
assumes the models are trained off-
device. This is because execution (that 
is, inference) is the critical first step 
toward deep learning support, and it’s 
the focus of almost all existing work, 
although exploration of on-device 
training has begun. Finally, given space 
constraints, we only superficially touch 
upon the ways in which deep learning 
is changing the face of activity and con-
text recognition,9 again limiting our 
focus to on-device examples.
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The deep learning revolution has been powered by major ad-
vances in training algorithms, leaps in the availability of comput-
ing resources (primarily GPUs), and of course increased access 
to large-scale data. But at the core of any on-device, use of deep 
learning remains a neural architecture that must be efficiently 
executed.

PRIMER ON DEEP LEARNING  
INFERENCE AND ARCHITECTURES
Although a variety of deep model architectures have been de-
veloped, here we briefly describe two popular networks (shown 
in Figure A): deep neural networks (DNNs) and convolutional 
neural networks (CNNs). The role of training algorithms is to set 
the parameters of these neural architectures based on available 
data. This process is almost always assumed to occur off-device, 
and so the device itself is concerned with efficient inference.

Under a DNN, inference follows a feed-forward approach that 
operates on input data segments in isolation. The algorithm starts 
at the input layer and moves layer-wise sequentially while updat-
ing the activation states of all nodes within each layer. The process 
finishes at the output layer when all nodes in the layer have been 
updated. Finally, the inferred class is identified as the class cor-
responding to the output layer node with the greatest activation 
value. DNNs are often used in familiar mobile sensing tasks, such 
as spoken keyword spotting or identifying a speaker, but they’re 
also use in extracting high-level human behaviors and contexts 
from inertial, location,1 and (again) audio sensors.

Primarily used for vision and image-related tasks, CNNs are an 
alternative formulation of deep learning models. A CNN model 
contains one or more convolutional layers, pooling or subsampling 
layers, and fully connected layers. The objective of these layers is to 
extract simple representations from the input data and convert the 
representations into a more complex representation at much coarser 
resolutions within the subsequent layers. Lastly, fully connected lay-
ers often are used to help a CNN make predictions. CNNs can rec-
ognize a place type (such as a kitchen), accurately estimate age and 
gender, or more broadly recognize daily events from even noisy 
complex images, even those from wearable cameras.2 Certain de-
signs of CNN architectures like AlexNet or VGG3 can be specialized 
to support many distinct tasks, and so their particular performance 
on constrained devices can become particularly important.

SYSTEM RESOURCE BOTTLENECKS
Model training is not the only computationally challenging 
process in deep learning. Even executing the straightforward 
inferencing step using a parameter-heavy model on a resource-
limited device must overcome several challenges, including  

limited memory, limited computational power, and an unusual-
ly large inference time.4,5 For example, deep models often have 
millions of parameters, and their storage on limited memory 
devices quickly becomes infeasible. Under low memory condi-
tions, neural networks are often represented with low-precision 
parameters (8-bit or 16-bit) or by quantizing the weights of 
the architecture. Remarkably, even when heavily compressed 
with such methods, deep architectures can retain much of their 
accuracy. However, due to runtime memory limits, performing 
inference might still require frequent paging operations.

Inference time is also impacted by the overall number of 
computations. The availability of multiple cores and low-power 
processors on mobile platforms can be used to parallelize partial 
state updates of nodes to improve the inference time. More-
over, inferences often come with real-time requirements. Local 
execution of the memory- and computation-optimized models 
can potentially meet the requirements, overcoming intermittent 
connectivity problems prevalent in cloud-based systems.

Also, when running deep models continuously on embedded 
or wearable devices, high energy efficiency is crucial for maintain-
ing a prolonged battery life. The energy consumption, among 
many things, mainly depends on the amount of computations, 
the use of low-power processors—such as digital signal processors 
(DSPs)—and the number of cache accesses. Thus, energy opti-
mization requires a detailed understanding of the deep-model-
execution pipeline on heterogeneous hardware platforms.
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Figure A. Two popular neural network architectures: (1) deep neural networks (DNNs) and (2) convolutional neural 
networks (CNNs).
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EARLY SMARTPHONE  
SENSING RESULTS
In late 2014, we began our explora-
tion into deep learning, starting with 
smartphones. These early investigations 
were motivated by two questions. First, 
could typical mobile and embedded 
sensing tasks, such as activity recogni-
tion and context sensing, be improved 
by the same deep learning approaches 
that were revolutionizing so many 
other inference domains? Second, how 
feasible was it to use these notoriously 
resource-heavy modeling techniques for 
user devices such as smartphones?

Fast forward to today, and deep 
networks for activity recognition—
and smartphone sensing in general—
have become much more mainstream. 
Researchers are developing powerful 
methods to train various deep architec-
tures, raising the level of accuracy for 
models of human behavior.9 Similarly, 
the ability to push neural networks 
into phone DSPs for low-power opera-
tion, a core innovation in our 2014 
work (discussed next),10 is an upcom-
ing feature of Google’s TensorFlow in 
partnership with Qualcomm.11

Deep Networks for Activity 
Recognition and Audio Sensing
We devised early deep learning solutions 
for well-known smartphone recogni-
tion tasks to quantify the benefits for 
on-device sensing.10,12 A unique aspect 
of our approach was our focus on build-
ing constrained deep networks suitable 
for mobile and embedded devices. We 
wanted to know if deep learning was a 
viable and transformative replacement 
for the existing classifiers of mobile con-
text and activities, grounded in shallow 
learning techniques. A core finding of 
our work was that for a range of sens-
ing tasks, generic (nontask specific) 
deep networks could outperform state-
of-the-art hand-selected features and 
shallow models—even when the deep 
networks were constrained to a size that 
made them more resource efficient than 
shallow alternatives.10

We then applied these findings to the 
audio domain and developed Deep-
Ear,12 a system for training and execut-
ing small-footprint deep neural net-
works (DNNs)—specifically, Restricted 
Boltzmann Machines (RBMs)—which 
were able to classify many audio con-

texts despite being a modest size of 
2.3 million parameters each. As Table 
1 summarizes, we stress-tested Deep-
Ear, as well as a range of task-specific 
mobile audio classifiers, and on average, 
the accuracy was more than 30 percent 
higher for each task using DeepEar, 
even though each DNN was designed 
to execute not only within the CPU but 
even in the phone’s DSP, a critical factor 
we explain next.

Low-Power Deep Networks  
via Heterogeneous Compute
Just as GPUs are a primary enabler for 
scaling up the training of larger and 
larger deep networks, we have found 
that non-CPU heterogeneous proces-
sors (such as DSPs) play a key role in 
scaling down deep networks for con-
strained devices. The DSPs in phones, 
for example, are sufficiently energy-effi-
cient to compute on sensor data almost 
continuously while still supporting a 
device battery life beyond 24 hours.

Motivated by such efficiencies, we exe-
cuted our proposed activity and audio 
targeting deep networks within the con-
straints of phone DSPs of the time—in 

TABLE 1 
A comparison of accuracy between our low-resource generic-task deep classifiers and existing hand-designed and task-specific 

(shallow) classifiers from the literature for various mobile sensing tasks. Note, reported microphone accuracy is lower than might be 
expected (for example, speaker identification), because experiments were conducted under severe acoustic conditions. (Experimental 

setup and classifier specifications appear elsewhere.12,13 For each shallow classifier, we indicate the original venue of publication.)

Device type Sensor Sensing task
Task-specific shallow  
classifier (%)

Generic-task deep 
classifier (%)

Smartphone Microphone Ambient scene  
detection

81 (baseline from MobiSys 2009) 86

Smartphone Microphone Stress detection 62 (UbiComp 2012) 82

Smartphone Microphone Emotion recognition 72 (UbiComp 2010) 81

Smartphone Microphone Speaker identification 36 (Pervasive 2011) 57

Smartwatch Accelerometer, gyroscope Gesture recognition 68 (Activity Recognition in Perva-
sive Intelligent Environments 2010)

72

Smartwatch Accelerometer, gyroscope Physical activity  
recognition

82 (SenSys 2010) 93

Smartwatch Light sensor, magnetic sen-
sor, microphone, tempera-
ture sensor, proximity sensor

Location detection 
(indoor/outdoor)

87 (SenSys 2014) 94
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particular, within memory footprints 
of just 8 Mbytes (using the Hexagon 
DSP of the Qualcomm Snapdragon 
800).10,12 DeepEar, under the Hexagon 
DSP, could run for 24 hours while using 
just 6 percent of a typical phone battery 
life with interleaved DNNs supporting 
four different audio tasks. In our follow-
up system, DeepX,5 we showed that by 
dividing models across a wide range of 
commodity phone processors (CPUs, 
DSPs, and GPUs), such efficiency gains 
were possible for not just small-scale 
DNNs but also other architectures, 
including even large image-based deep 
networks (such as the CNN AlexNet 
with 61 million parameters).

Our algorithms in DeepX allowed 
neural networks to be partitioned 
across different processor types within 
a local device using a runtime form of 
model compression that used singular 
value decomposition (SVD) to cope 
with processor constraints and mini-
mize inter-processor overhead. Our 
smartphone prototype (on the Snap-
dragon 800) showed that this let various 
well-known deep models execute with 
efficiencies far in excess of baselines 
based on single processors or model 
compression alone (our prototype was 
up to seven times more energy efficient, 
for approximately a five percent loss in 
accuracy).

VGG AND MORE  
ON A SMARTWATCH
As techniques for deep learning on 
phones have matured, we have started 
studying how these issues manifest under 
smartwatches. The capabilities (com-
pute and memory) of watches, coarsely 
speaking, lag phones often by one or two 
device generations; a typical Android 
smartwatch has not only 512 Mbytes of 
RAM and a multicore CPU but also a 
GPU and DSP. Watches are also natural 
for performing continuous and diverse 
behavior and context inferences—unlike 
phones, which can spend most of the day 
in pockets and bags. These two factors 
make it both conceivable and warranted 
for watches to join phones in performing 
nontrivial deep learning.

Transforming Watches  
from Smart to Deep
As in DeepEar,12 our first proposed 
watch,13 deep learning models were 
applicable to a range of common watch 
sensing tasks (shown in Table 1). Just 
as the DeepEar experiments had done 
for the smartphone audio domain, we 
demonstrated that typical inertial and 
wearable sensor data (such as acceler-
ometer, barometer, and magnetometer 
data), fed into DNNs suitable in size for 
watches (around 200,000 parameters), 
could outperform existing task-agnostic 
classifiers from the literature.

This result further added to the 
understanding of feature representa-
tion learning by showing that these 
DNN models, produced by a single (off-
watch) training framework, could out-
perform custom per-task combinations 
of hand-selected features and shallow 
models. On average, tasks were more 
than 7 percent more accurate com-
pared to the best performing manually 
constructed classifier, while exerting a 
reasonable overhead.13 For example, a 
commodity LG smartwatch could run 
one such RBM at 3 Hz and still main-
tain a 32-hour battery life.

Leveraging Layer  
Separation and Compression
Most examples of deep models—
designed to process images, for exam-
ple—dwarf the DNNs just described. 
The well-known VGG architecture can 
perform object recognition (and many 
other visual tasks) but at a cost of 138 
million parameters or more. To prove 
the potential of smartwatches to sup-
port such demanding deep models, we 
showed that the VGG can be run locally 
on commodity smartwatches with a 
loss of approximately 3 percent accu-
racy (a tuneable parameter).7 This was 
achieved primarily through a method 
applicable to any CNN, which reduces 
the computational bottleneck of apply-
ing thousands of convolutional kernels 
through what we call kernel separation. 
This technique replaces the 2D kernels 
defined during training with a pair of 
1D vertical and horizontal kernels that, 

when used together, produce a result 
that approximates that of the original 
2D version.

We coupled this optimization with 
the earlier described SVD-based 
model-compression technique for the 
fully connected layers at the end of the 
CNN, which simplifies the description 
of how nodes are connected and allows 
a further reduction in the number of 
parameters. We studied this approach 
on commodity watches under a vari-
ety of deep models, with VGG being 
the most resource intensive.7 VGG, for 
example, executes in just under 1.2 sec-
onds (a 2.7 times gain over conventional 
implementations) on LG smartwatches. 
These results, under some of the heavi-
est examples of deep models, pair with 
our low-resource DNN-based findings 
to show how deep solutions can not 
only improve over shallow methods but 
also be adopted in watches.

OVERCOMING SEVERE 
EMBEDDED CONSTRAINTS
As we have discussed, resource con-
straints present nontrivial barriers for 
deep learning on phones and watches. 
However, within embedded processors, 
these issues are magnified to extreme 
levels. Smartphones can address multi-
ple Gbytes of RAM, but embedded pro-
cessors, such as the ARM Cortex series, 
typically are limited to just hundreds or 
even tens of Kbytes. Similar resource 
differentials also extend into energy and 
compute domains. For these reasons, 
unlike the proliferation of phone-based 
deep learning in the last 18 months, few 
examples of deep learning under embed-
ded constraints currently exist.

Toward filling this void, promising 
results are being seen in the form of 
binary deep architectures that are com-
posed solely of 1-bit weights14 instead of 
32-bit or 16-bit parameters. Such archi-
tectures offer incredibly small models 
and remove the need for expensive mul-
tiplication operations, but their ability 
to perform well with real-world prob-
lems is still an open question. Solutions 
more closely tied to hardware will also 
undoubtedly play a key role in the area, 
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such as the unique co-design opportu-
nities for embedded-scale deep models 
that are built for field-programmable 
gate arrays processors,3 or even emerg-
ing small form-factor deep learning 
accelerators (see, for example, https://
uploads.movidius.com/1463156689-
2016-04-29_VPU_ProductBrief.pdf).

Sparse Compression for  
Embedded Processors
Our contribution to the embedded area 
has been to devise a new form of model 
compression7 that enables conventional 
DNNs to both fit and execute within the 
embedded processors, such as the ARM 
Cortex M3, and even the ARM Cortex 
M0! With this technique, fully connected 
layers of the DNN are represented using 
a sparse dictionary. As shown in Figure 1, 
dense matrices that capture the pair-wise 
dependencies of nodes (that is, weight 
matrices) are replaced with a code-book 
and sparse matrix that, together, closely 
approximate the dense original. We dis-
covered a sparse-coding formulation that 
lets this approximation (and therefore the 
model accuracy) remain high. The dic-
tionary is trained from the initial model 
representation, and a large saving in com-
putation and memory results because 
nonzero elements can be ignored.

Compute savings under our approach 
are even further magnified, because, 
at execution, high-efficiency sparse 
matrix multiplication algorithms can 
be adopted in favor of conventional 
varieties that assume dense matrices. 

Although this method is only applicable 
to fully connected layers, it addresses 
the central embedded bottleneck of 
model size and still remains broadly 
useful, because the operations opti-
mized are a key component to alterna-
tives such as recurrent and convolu-
tional architectures.

Experiences on the ARM Cortex
To measure the gains of our sparse- 
coding method for embedded proces-
sors, we tested DNNs for two audio 
tasks: speaker recognition and classifi-
cation of the acoustic environments. We 
adopted an existing DNN architecture 
and training methods designed for low-
resource platforms while still maximiz-
ing audio task robustness. Our findings 
showed, for example, that at the expense 
of 2 percent in accuracy, model com-
pression by sparse coding can reduce 
these already optimized models by a 
factor of approximately 17 times for 
both tasks. In the case of speaker recog-
nition, DNNs executed within our run-
time that could leverage the sparsity of 
model representation showed a tenfold 
improvement in execution time within 
both ARM Cortex processors.

These gains make it feasible to run 
what are normally smartphone-class 
audio models in severely constrained 
processors. However, work remains to 
make deep models of this scale com-
pletely practical, because they still can’t 
execute these models in real time— 
execution is still in the order of tens of 

seconds even to process a single five-
second audio clip.

LOCAL EXECUTION  
OF MULTIPLE DEEP MODELS
Virtually all of the progress made thus 
far in mobile and embedded deep learn-
ing assumes that a single model executes 
on a constrained device. This is natural, 
because even a single deep model can 
present considerable technical challenges. 
However, most devices and applications 
will need to execute multiple models  
as part of their daily operations. For 
example, a wearable camera likely won’t 
just recognize objects; it will also identify 
people and track facial expressions.

Between-model optimization oppor-
tunities exist most often when the col-
lection of models perform related tasks 
(like image models), because each is 
trained independently, which lets natu-
ral redundancies emerge. For example, 
models that perform face recognition 
and object recognition will both learn 
layers that perform a type of edge detec-
tion during training, even though this 
operation could, in theory, be shared. 
Optimization opportunities such as this 
present an important class of perfor-
mance improvements that has received 
little attention thus far.

Multiple Model Inference Pipeline
As a first step in addressing this issue, we 
designed an inference pipeline for wear-
ables that targets the local execution of 
multiple image-based CNNs.15 This 

≈
·

m × n m × k k × n

Zero elements
(majority)

Non-zero
elements

Weight matrix (dense) Activation matrix (sparse)Code Book (dense)

Figure 1. Illustration of our sparse-coding approach that factorizes dense matrices typically necessary to describe the connectivity 
between layers. A single dense matrix is approximated with two matrices; one is the weight code-book and the other is the sparse 
layer connectivity descriptor. We note a similar factorization is used in DeepX (not shown), but sparse coding is replaced by a 
light-weight singular value decomposition (SVD)-based method.
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pipeline builds on a single fundamen-
tal optimization insight—namely, that 
CNNs are comprised of both compu-
tation-heavy convolutional layers and 
memory-heavy fully connected layers. 
Although convolutional layers only 
lightly tax the memory resources, they 
are computationally demanding. In 
contrast, fully connected layers place 
the exact opposite resource demands.

Due to these orthogonal resource 
demands of memory and compute, it’s 
possible to schedule and batch layers 
together from multiple models to better 
maximize the resources of constrained 
devices and avoid bottlenecks that pre-
vent multiple deep models from being 
executed. Our layer-centric execution 
framework for the inference stage of 
multiple CNNs focuses on optimal 
scheduling and batching decisions for 
device performance with a global view 
of all models, while still adhering to the 
layer dependencies of the neural net-
work architecture.

Beyond this core idea, the execution 
framework incorporates memory cach-
ing of frequently used fully connected 
layers, selective use of SVD-based com-
pression (described earlier), and logic 
that identifies the visual similarity in 
consecutive images to avoid unneces-
sary operations. Although designed for 
CNNs, the underlying concepts of this 
pipeline can generalize to other deep 
architectures.

DeepEye Wearable Camera
To study this multiple model pipeline, 
we integrated it within DeepEye—a 
prototype wearable camera based on a 
commodity processor (the Qualcomm 
Snapdragon 410) that offers execu-
tion of multiple CNN models without 
offloading computation to the cloud. 
DeepEye supports two use cases: life-
logging and vision assistance. Lifelog-
ging seeks to log various everyday user 
experiences, with DeepEye realizing 
this through CNNs that can recognize 
objects, places, and faces and infer 
important image regions and how 
memorable an image is for the user.  
In contrast, vision assistance aims to 

help users who have low-vision capa-
bilities by applying the same deep mod-
els that detect faces or objects, along 
with additional CNNs that infer age, 
gender, and emotions.

We compared the performance of 
DeepEye against the serial execution 
and single-model optimization alter-
natives. Experiments revealed that the 
latency for executing the multimodel 
inference pipeline is 10.10 seconds 
and 8.2 seconds for lifelogging and 
vision assistance, respectively (gains 
of 1.7 and 1.88 times over baselines, 
respectively).15 These gains translate 
into a battery life of nearly 20 hours 
(1.4 times gain over the baseline), 
assuming images are captured every 
30 seconds.

D eep learning on constrained 
devices, such as phones, watches, 

and even embedded sensors, is already 
well on its way to becoming main-
stream. This is being enabled by a 
growing community of academic 
and industrial researchers who are 
bridging the worlds of machine learn-
ing, mobile systems, and hardware 
architecture.

Looking toward what is next, in the 
short term, we’re likely to see continued 
leaps in activity and context-recogni-
tion accuracy, as insights from deep 
learning continue to propagate. We’re 
also likely to see not just inference but 
also training being performed more 
routinely on devices. More funda-
mentally, applications of deep learn-
ing today are largely limited to clas-
sification tasks, yet the broader trend 
is for these algorithms to perform a 
wider range of computation. Within 
constrained devices, the potential 
definitely exists for them to begin to 
perform control and decision tasks, 
as well as more application logic, 
where their ability to learn and adapt 
dynamically to complex conditions 
might overcome some of the more 
brittle characteristics of sensory sys-
tem behavior that have proven diffi-
cult to overcome. 

6 PERVASIVE computing www.computer.org/pervasive

From the editor in ChieF

From the editor in ChieF

for the job market and considers the 
question of whether, in the long run, 
IoT will be used as a source of good 
or evil.

In our Smartphones department, 
Nayeem Islam, Saumitra Das, and Yin 
Chen describe an approach to protect-
ing mobile devices from malicious 
events using machine-learning tech-
niques. They propose detecting mali-
cious apps using both static analysis 
and runtime behavior analysis. The 
runtime system is trained offline using 
a binary classifier and then performs 
online detection of both benign and 
malicious behavior based on this train-
ing. The authors make a very good 
point that, in the future, cyber security 
will be performed by machine-learn-
ing attackers and machine-learning 
defenders! The question will be whose 
AI will be better.

In our Human Augmentation 
department, Kai Kunze, Kouta Min-
amizawa, Stephan Lukosch, Masa-
hiko Inami, and Jun Rekimoto discuss 
their efforts to create superhuman  
sports and sporting events. They 
explore different approaches to this 
idea, including enhancing human capa-
bilities through the use of technology,  
exploring ways in which technology 
can make the sports more enjoyable 
to play and watch, and improving  
training methods to help humans 
become better within the limitations 
of the human body. They have even 
created an entirely new sport that 
uses augmented reality and gesture 
recognition—and it’s commercially 
available in Japan! Finally, they have 
founded a superhuman sports society 
in Japan and are looking at hosting 
superhuman sporting events in the 
coming years. For all of you sports 
fans, this is an area to watch as this 
field of superhuman sports takes off! 
(Also, look for our special issue on 
Human Augmentation next year; see 
the Call for Papers at www.computer.
org/pervasive-computing/2017/02/16/
augmenting-humans-call-for-papers.)

Another area to watch is in the medi-
cal field. Our Pervasive Health depart-

ment presents an effort to establish a 
National Center for Excellence in the 
US focused on collecting mobile sen-
sor data and enabling researchers to 
turn that data into valuable knowledge  
that can improve the lives of those liv-
ing with chronic health conditions. 
The effort is truly cross-disciplinary, 
with medical and behavioral experts 
working with computer scientists and 
electrical engineers. This will be an 
exciting space to watch in the coming 
years, as I expect that the collected 
data will enable new results to reach 
patients more quickly. My hope is that 
this effort can be expanded over time 
to include data and researchers from 
around the world!

the effort to standardize the collec-
tion of medical data is necessary 

and admirable. I wish more people 
would take this approach. We need 
similar infrastructures for smart cities 
data and beyond. We could take this as 
a lesson for our power infrastructure 
as well!  
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