
Design and Implementation of a Software Infrastructure for Integrating
Sentient Artefact

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima
Department of Information and Computer Science, Waseda University, Japan

{fahim,fujinami,tatsuo}@dcl.info.waseda.ac.jp

Abstract

This paper presents a framework prototype for sentient

environments. The framework provides a generic interface
to the applications for interacting with sentient artefacts in
a unified way regardless of their type and properties. As a
result, application development is fairly simple, rapid and
independent from the context-aware environments.

1. Introduction

Ubiquitous computing envisioned a future environment
that will be aware of its operating context and will be
adaptive to ease our interaction. Our approach towards such
environment is the environment itself. That means taking
the building blocks of the environment and making them
smart and context-aware by capturing people’s implicit
interaction. We have been developing such building blocks,
namely everyday life objects by augmenting various kinds
of sensors. We call them sentient artefacts. Our vision is to
utilize these objects for value added services in addition to
their primary services.

 Based on our experiences of developing applications
that integrate these artefacts for contextual behavior, we
have figured out the necessity of a software abstraction that
hides the low level details. At the same time such
applications have several others requirements like
preference management, reliability etc. To satisfy these
requirements we are working on a software infrastructure
“Prottoy” that attempts to provide a unified view of the
underlying physical spaces to the applications. This paper
discusses about the design and implementation of the initial
version of “Prottoy”.

 The rest of the paper is organized as follows: Section 2
and 3 point out our design issues and implementation of
Prottoy. In section 4 we have presented two sample
applications. In Section 5 we have discussed on several
issues of Prottoy. Finally section 6 concludes the paper.

2. Design Issues

From our experiences of application development with
sentient artefacts we have identified the following
requirements that must be satisfied for context-aware
applications:
1. Due to the ultra heterogonous nature of such artefacts,

the application developers need a generic interface that
unifies all access issues.

2. End user preference should be reflected in the
applications.

3. A security policy in the physical spaces is necessary to
identify malicious applications.

4. Applications need to be robust and reliable.
5. The development cost, time and complexity should be

minimal.

 Considering these issues we have spawn Prottoy with
the following design goals:

1. Providing a generalized interface for the developers to

interact with the artefacts removing all access issues.
2. Providing storage and proxy service support with in

the architecture. Such proxy service can be utilized
when the artefacts are not available for reliability and
robustness.

3. Providing an authentication policy to access the
physical space.

4. Making context-aware application development fairly
simple, rapid and easy.

5. Finally providing a personalization/preference
reflection feature.

With these views and design considerations we have

deployed the initial version of ”Prottoy”. In the next
section the implementation of Prottoy is discussed.

3. Implementation

 “Prottoy” is composed of few core components and few
pluggable components as shown in the figure 1.

 Figure 1: Framework Architecture

3.1. Core Framework Components

1. Artefact Wrapper (AW): It encapsulates the
sentient artefacts, sensors, actuators or virtual
sensors like weather services, scheduler etc. We
have provided a template for the developers to
wrap their device drivers or software into this
component. AW has its own resource manager
that can advertise its service when the global
resource manager is absent. In addition it has a
simple security measure using IP filtering, that
allows an artefact to control access to its service
and information from the malicious applications,
which approaches to meet our third design goal.

2. Resource Manager (RM): As the name implies,
it simply registers the properties, services and
context information of the artefacts. When
application query comes via virtual artefacts it
responses accordingly

3. Virtual Artefact (VA): It abstracts the smart
environments and provides a unified view.
Application constructs virtual artefact instances.
VA communicates with the resource manager and
if an artefact is found VA communicates with that
artefact. If everything goes fine VA represents the
artefact in the application. From then on, to
application this VA instance is the actual artefact.
Application can subscribe to this artefact or can
poll. Application can also execute services of the
physical artefact. Thus this virtual artefact
conforms to our first design goal of a generic
interface. If storage is enabled, VA creates storage
in the application layer. If proxy is enabled then
the proxy service of VA activates when the
physical artefact is absent. The proxy provides the
application a calculated context value with a low

accuracy using the storage. These storage and
proxy functionalities approach to meet our second
design goal.

3.2. Components Pluggable to Application

1. Interpreter: It maps the context value to the

interpreted value. We argue that context
interpretation is highly application dependent as
the same context can be interpreted in different
ways based on the application requirements. So
we put this component in the application layer.

2. Preference Manager: This component is
designed for the end users of the applications
developed using Prottoy. It provides the facility to
enable or disable the participation of any artefact
of the environment on the application based on
their preference. We argue that this component
meets our final design goal to some extent.

3.3. Application Development using Prottoy

The application development using “Prottoy” is fairly
simple. In fact developers only need to generate the virtual
artefact instance for using the actual artefact. Then
developers provide the context to action mapping. A very
simple application code snippet with two virtual artefacts
looks as follows:

/*Specify the artefact properties */
PropertyList props = new PropertyList();
props.add(“location”,”lambdax”);
/*Create VA instance, with context,service requirements,properties
and storage and proxy flag*/
VirtualArtefact thermometer = new
 VirtualArtefact(“temperature”,null,props,false,false);
VirtualArtefact cooler = new
 VirtualArtefact(null,”cooler service”,prop,false,false);
/* Poll for value and subscribe */
If(thermometer.status){
 System.out.println(thermometer.poll());
 thermometer.subscribe(this,” thermometerListener”);
}
If(cooler.status){
Hashtable property=cooler.getProperty() /*Query property*/;
cooler.execute(“turn_on”); /*Execute service*/
}
public void thermometerListener(Hashtable data) /*call back */
{
 /*Hash table contains context information */
 }

As we see, applications do not need to deal with any
network or message management of the architecture; even
applications do not have to look for the resource manager

4. Sample Applications

 We have developed several applications on top of
Prottoy; here we are presenting two of them that capture

two scenarios at two distinct places namely dining space
and washroom.

Figure 2: Sample Applications

4.1. Byte N Dine:

 This application shown in figure 2(a), runs in a
public/private dining space where the dining table acts as
an ambient display. The table displays information/news
about topics based on user’s preference. We have assumed
that the user will carry a RFID tag that reflects his/her
preferred topic. This application uses chairs to identify
users’ presence by chairs’ state of use, RFID Tag reader,
proximity sensors and the table, which is embedded with a
touch screen display. All of these are wrapped in AW.

4.2. AwareMirror:

 AwareMirror shown in figure 2(b), is a smart mirror
installed in the washroom. In addition to its primary task of
reflecting some ones image it can also show some
information related to the user like schedule, weather
forecasting, transportation information etc. The mirror is
constructed using acrylic magic mirror board through
which only bright color can penetrate. A toothbrush, which
is rarely shared with others, is used as an authenticator and
also as an indicator of the users’ presence. Also proximity
sensors embedded in the mirror is used to measure the
users’ proximity from the mirror. All of these are wrapped
in AW.

5. Discussion

 Prottoy’s contributions and distinct features from other
works [1,2,3,4] can be summarized as:

1. Generic Interface for all sorts of sensor units and

actuators.
2. Complete independence of the application from the

underlying architecture.
3. Transparent storage at the application layer and

introduction of the proxy service
4. Introduction of the security measure and end user

preference management

From our experiences, we have found that application
development on top of Prottoy is fairly simple. To be

specific, developers only provide the context to action
mapping rules. None of the applications that we have
developed exceed more than a couple of hundred lines of
code

The Virtual Artefact and Artefact Wrapper in conjunction
provide the generic interface for everything from a sentient
artefact to a single sensor to a web service to an actuator.
The artefact wrapper provides the generalization that
allows the actual artefact to be replaced anytime with
another one. The proxy service is a unique feature of
Prottoy. Some of the existing systems provide storage
functionality at the artefact layer, our argument is that if the
artefact itself is absent in that case the storage is also
absent. We think the best use of the context storage or
history is the prediction of the context, so it should be
somewhere that can be accessible when the artefact is
absent. Virtual artefact perfectly solves the problem by
hosting the storage and providing proxy service. There is
no context interpreter in Prottoy core, as we think context
interpretation is completely application dependent. For
example consider a chair that provides it’s state of use. We
can use this information to infer its user is sitting/not sitting
(activity) or it’s users location (at chair’s location) based on
the applications requirement. Our argument is we cannot
broadly confine the interpretation of context information.
So we have separated it form the core and provide it as a
pluggable component at the application layer. However
there are few issues that we are further investigating like
security measure, preference component, proxy service etc.
We are working on these issues with great interest and hope
to come up with some interesting results soon.

6. Conclusion

 In this paper we have tried to provide the ins and outs
of Prottoy and it’s approach in a summarized way. We
believe our proposition and ongoing work will be able to
resolve all the issues to the utmost level and will provide a
seamless development platform for context-aware
application developer.

7. References

[1] A. K. Dey. et al. “A Conceptual Framework and a toolkit for
supporting the rapid prototyping of context-aware applications”.
Human-Computer Interaction, Vol-16 2001
[2] B. L. Brumittet et al. “Easy Living: technologies for
Intelligent Environments” In the proceedings of the 2nd
International Symposium on Handheld and Ubiquitous Computing
‘2000
[3] Caswell at el. Creating Web representations for Places
Proceedings of the 2nd International Symposium on Handheld and
Ubiquitous Computing

[4] C. Philip R. et al, “An Open Agent Architecture”. In the
proceedings of the AAAI Spring Symposium Series on Software
Agents,’94

