
Persona: A Portable Tool for Augmenting Proactive
Applications with Multimodal Personalization Support

Fahim Kawsar
Department of Computer Science

Waseda University
Tokyo, Japan

fahim@dcl.info.waseda.ac.jp

 Tatsuo Nakajima
Department of Computer Science

Waseda University
Tokyo, Japan

tatsuo@dcl.info.waseda.ac.jp

ABSTRACT

User centric personalization plays an important role for the
adoption of proactive applications. However, stipulating system
support to facilitate personalization features in proactive
applications generically is still an open issue. In this paper we
have addressed this particular issue and presented Persona, a tool
that enables adding personalization features in proactive
applications in a generic manner. A key feature of Persona is
portability that allows it to be injected in various pervasive
middlewares as a plug-in. Consequently, existing proactive
applications can easily be extended with Persona for
personalization support. We have discussed the design and
implementation rationale behind Persona and shown it's direct
implications with two different middlewares and several proactive
applications.

Keywords
Personalization, Proactive Application, Pervasive Environment,
Toolkit.

1. INTRODUCTION
When we talk about proactive systems, often the term
personalization is misinterpreted. This is because of the
presumption of the context aware characteristics of proactive
applications. However, if the context aware characteristics
conflict with users’ preference, the applications’ success ratios
drop radically. Every user has own understanding and perspective
towards an application and wants to personalize it regardless of its
proactive behavior [1,2,15,17,22]. For the success of the
application, it is essential to allow end users to personalize
proactive applications. Here by personalization, we mean the
active involvement of the end users to customize the adaptive
behavior of the system. Current approaches implicitly associate
personalization options with user contexts for proactive behavior.
As a result, end users have minimal or no control over the pro-
activity of the applications. In this paper, we have addressed this
particular issue and presented Persona, a system tool that allows

application developers to extend pervasive applications so that
end users can personalize the pro-activity of the applications.
Considering the disappearing nature of pervasive environments,
general approaches used in desktop computing [5,20] for
preference management are not suitable for pervasive
applications. Another impediment is filtering users’ interactions
that are meant for personalization. This is due to the inherent
context modeling used in proactive applications. Persona has
taken a unique approach to address these two impediments. It
provides semantically rich data structure using which
personalization options can easily be accommodated in proactive
applications. Also, it supports several multi-modal interactions
and has built-in support for two commonly used interaction
paradigm in pervasive domains (Voice and Graphical User
Interface). Users interactions are filtered out by Persona that are
related to personalization utilizing the semantic data structure
enabling an application to adapt users preferences. Furthermore,
Persona can be used with various pervasive middlewares as a
plug-in. So existing proactive applications atop different
middlewares can be extended for incorporating user centric
personalization features.
The rest of the paper is organized as follows: we place Persona
against related works in section 2. The design principles of
Persona are presented in section 3 followed by its technical detail
in section 4. Then we proceed to the evaluation of Persona in
section 5. We discuss some generic issues on section 6. Finally
section 7 concludes the paper.

2. RELATED WORK
Most researches on personalization in proactive environment have
taken a social perspective. Barkhuus and Dey presented an
interesting case study on some hypothetical mobile phone services
and have shown that users prefer proactive services to
personalized ones [10]. However their focus domain was only
mobile phone services and the implication cannot be applicable to
the proactive system, which involves many physical artefacts.
Some researches that precede Barkhuus's work also argued
whether information should be pushed towards the user or should
be pulled by the user for customization of the context aware
systems [8]. Brown and Jones have also defined the interactive
and proactive systems where personalization activities fall into
interactive systems [16]. In all three works, they have tried to
furnish some levels of interactivity. However, we argue that a
clear distinction between personalized and proactive systems is
not appropriate, because all proactive systems needs to be
personalized before hand or at runtime so that they match users
mental model. It is not obvious that end users will welcome all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MUM’07, December 12-14, 2007, Oulu, Finland.
Copyright 2007 ACM 978-1-59593-916-6/00/0004…$5.00.

proactive behaviors. Each user has a different understanding and
choice; the same proactive behavior cannot be applicable to all
users because the pro-activity itself needs to be personalized by
the user first. Our hypothesis in this paper is that personalization
is an inherent part of proactive systems, which conflicts with
some previous research proposition. We strongly argue that there
cannot be a distinct borderline between personalization and pro-
activity; on the contrary they are complementary to each other.
In traditional desktop computing usually graphical user interface
is provided to personalize an application. This aspect has been
well investigated in [5,20] and their implications are obviously not
appropriate for the characteristics of pervasive applications.
Dourish looked at the personalization aspect from system design
point of view exploring a collaborative document management
system. He used the term appropriation to denote a process by
which people adopt and adapt technology [15]. Although, his
work is very similar and influenced us significantly, he focused on
pre-design consideration of group-ware for appropriation features
rather than providing any system tool like ours to automate the
process.
Sakai proposes a framework that focuses on the end user
preferences of mobile phone applications [21]. But his approach
cannot be applicable in generic context aware aspects.
Furthermore, the framework is tightly coupled with the
application considering their rigid focus on the mobile phone
domain, thus making custom application development fairly
complex. In [9] a rule based approach has been proposed to
control and configure information appliances. However, their
approach does not cover how to personalize the system using
these rules. In the user modeling and usability domain, a variety
of studies have been conducted to provide toolkits or modeling
language for assisting developers in designing effective
interactive systems and modeling user activities through rigorous
sensor data analysis [11,12]. However, none of them addresses
the issue of a unified system support as we explore in this paper.

3. DESIGN PRINCIPLES
Persona is designed considering the following principles:
1) Syntactic Data Structure: Persona exploits a semantically rich
data structure to represent the overall preference options of an
application in a generic manner. Developers can use this data
structure to construct application specific preference options.
Persona internally uses this data structure to filter the real word
events and provide the applications with specific events and data
meant for personalizing an application.
2) Independent of Interaction Modality: Personalization is the
direct impact of a subset of user’s interaction with the application.
Considering there are various interaction modalities (speech,
gesture, digital ink, implicit controller, augmented reality, GUI
etc.) and the best candidate depends on the application itself,
Persona is built following a loosely structured design. Persona’s
core functionalities are independent of the underlying interaction
modality. Any suitable interaction engine can be plugged into
Persona without altering its primary functions or the applications
running on top of it.
. 3) Application Specific Conflict Resolution: Pervasive
applications are usually deployed in multiple user environments
where different users might have different personalization
perspective towards the same system. Persona approaches this
issue by separating the conflict resolution scheme from its core
functionalities. Application specific policies can be fed into
Persona for runtime conflict resolution.
4) Portability: Persona is sandwiched between pervasive
middlewares and applications. It is independent of any external
middleware support thus can easily be used with various
middlewares without altering their functional features. Existing
applications developed atop various middlewares can easily be
extended for personalization features using Persona.
In the next section, the data structure with architectural building
blocks of Persona and the programming model are explained.

Figure 1. A Hypothetical Proactive Application

4. SYSTEM DESCRIPTION
Following the design guidelines presented in the previous section,
Persona is built in a loosely structured manner where one core
component plays the primary actor’s role and provides interfaces
for plugging other components. However, before discussing the
technical details, we present the rationale that set the basis of
Persona’s underlying data structure and henceforth the
architecture.

4.1 Data Structure
This unified data structure mentioned as one of the design goals,
is just a logical carrier of the application specific preferences.
Developers are free to build applications’ preference options and
grouping those options into some categories. Persona can then
encapsulate these categories into a generic data structure. To
further illustrate this aspect, lets consider Figure 1 that depicts a
typical application scenario in pervasive environment. For this
kind of applications, we may consider the following
categorization of personalization options.
 a) Artefact Preference: This category of personalization options
is for enabling a user to select the participation of any artefact in
the cooperative smart environment. For example, a user may want
to use a wall-mounted display instead of a display-augmented
table for ambient traffic information.
b) Action Preference: This category enables a user to set
preferred actions. Usually a system consists of several actions that
it actuates based on some conditions. Users can enable or disable
actions using this class of preference information. For example,
users can enable/disable the automatic/manual weather
information display action on a hallway mirror.
c) Interaction Modality Preference: This class of options is to
provide users with the flexibility to select their preferred
interaction mechanism. For example, context-aware shopping
assistant may have multiple user interfaces (like handwriting or
voice for input and display or sound for output); users can select
his/her preferred interaction modalities.

d) Timing Preference: This category enables users to associate an
action of the proactive application with some contextual events
like location, time, external presence etc. For example: a user may
want the cell phone to automatically switch to silent mode when
she is in the meeting room.
Albeit this classification is for an example purpose, it covers most
of the pervasive applications. Once developers logically derive the
categories, personalization options for each category can be added
to Persona using some abstract APIs. These APIs logically
convert the personalization options associated with categories into
an internal data format that Persona uses for extraction,
representation and processing of personalization features. To
manipulate this data three operators are used:
a) Positive (P): This operator represents user's willingness to use
the feature in context.
b) Negative (N): This operator represents user's unwillingness to
use the feature in context.
c) Calculated (C): This operator is used by Persona internally to
resolve conflict or to provide appropriate calculated decisions
regarding preference feature based on a finite state engine.

4.2 Architecture
Persona is basically sandwiched between the proactive
applications and the middleware used for that application. Figure
2 illustrates the basic building blocks of Persona that are described
below.

1) Persona Core: This is the central player of Persona. It
provides interfaces using which other components of Persona, i.e.
Application Interface, Input Interface, Preference Knowledge
Base and Finite State Engine are glued together. Basically upon
receiving interaction events from the real world though Input
Interface Persona Core filters out the preference option utilizing
the Preference Knowledge Base and notifies the application using
Application Interface. Also, when conflict arises among
application actions, it consults the Finite State Engine for the
appropriate resolutions.

Figure 2. Architecture of Persona

2) Application Interface: This component is the access point for
the application developers to use Persona. It provides an array of
APIs that developers can use to define the personalization options
of the application. Developers can create custom categorization of
preference or can use the built-in ones presented in section 4.1.
Furthermore, applications can subscribe to Persona to receive
interaction events that are related to personalization or can poll
periodically.
3) Input Interface: Persona is designed to host a diverse range of
interaction techniques. This component offers a unified interface
using which different interaction modality can be integrated into
Persona. The rationale behind this unification is a set of generic
interaction constructs that developers need to develop following
Persona specific semantics. However in current prototype, we
have deployed Persona with two built-in interaction modalities:
speech and GUI.
a. Speech Engine: End users usually provide their preference

in simple English language, like “Do not turn off the light
automatically”, “Notify me every morning”, etc. The speech
engine in Persona is designed to handle such free from
interactions. Developers provide a list of phrases and
sentences that can be used for personalizing target
application through APIs. Persona generates the corpus and
the grammar file automatically which is later used by the
recognizer [23]. This recognizer runs in the background
when application starts. Upon recognizing a phrase it notifies
the persona core. To enable Persona’s speech engine the
target application environment has to be equipped with on or
multiple microphones.

b. Graphical User Interface (GUI) Engine: End users can
provide their preference by manipulating GUI. Developers
provide a list of options that can be used for personalizing
target application through APIs. Persona automatically
generates this GUI analyzing the options provided by the
developers. Figure 3 shows a sample GUI that is
automatically generated by Persona for the application
presented in section 4.3 and coded in Figure 5

Figure 3. Automatically Generated GUI by Persona for a

Sample Application

Because of the fair loose coupling, these engines can be replaced
by other alternatives like gesture, handwriting etc. seamlessly.
One interesting aspect is that, preference information is just
another type of input information, thus these interaction engines
also collect direct interaction data meant to control the
application. It is Persona Core that internally filters the preference
data from the control data and represents it to the application in a
unified way using appropriate category.

4) Preference Knowledge Base: This is an XML file generated
dynamically during the deployment time of the applications and
contains application specific personalization options provided by
the application developer using Persona’s APIs. It also contains
end users’ preferences for each option and is updated at real time
to reflect users’ preference. When Persona receives external real
world events, this knowledge base is consulted for filtering
preference data and for decision-making.
5) Finite State Engine: In Persona conflict resolution is
application specific and assumed to be provided by the application
developers. The finite state engine is the interface that the
developers can modify to provide their application specific
policies. It internally maintains a small cache of past preference
change and usage events, which can be exploited while defining
resolution policy and to deduce calculated preference. This engine
can also be used to recover from invalid conditions to maintain
application flow. For illustrating the internals of this engine lets
consider a simple application scenario: a smart mirror installed in
the washroom that shows some ambient information related to a
user when he/she brushes teeth in front of the mirror. The
toothbrush is augmented to identify the user. The mirror can show
information automatically whenever a user brushes his teeth in
front of the mirror or the user can manually start the mirror stating
his identity. Now if the toothbrush’s preference is negative while
automatic start up is preferred, then the application moves to an
invalid state (because the system can not identify the user thus can
not retrieve the information related to that user, like schedule
etc.). When this conflict is identified by the application, it can use
the finite state engine to receive calculated preference to maintain
its workflow. In this scenario, depicted in Figure 4 the state
engine can either alter the start up preference to manual, so that
the user can manually state his/her identity. Alternatively if the
toothbrush is being used, it can alter the toothbrush preference to
positive.

Figure 4. Example Operations of Finite State Engine

4.3 Programming Model: Integration of
Persona into Applications
Essentially there are two types of users in Persona: the developers
of the application and the end users of the application. Developers
can use Persona for adding personalization support in application
whereas end users can interact with the applications. Persona
filters end users’ interaction meant for personalization and
accordingly modifies application’s behavior. From developers’
perspective, integrating Persona into applications includes
following steps:
1. Listing all the preference options of the applications.

2. Categorizing these preference options using taxonomy
similar to the one presented in Section 4.1.

3. Generating the Positive and Negative statements for each of
the preference options.

4. Listing these statements into Persona using APIs. A stand-
alone library (Application Interface) is provided for the
application developer. This list is used to generate the
Preference Knowledge Base and corpus of the recognition
engine.

5. Subscribing to Persona for personalization events.
6. Invoking the suitable interaction engine. In the current

version GUI and Speech Recognizer are provided.
Step 1-3 are design phase tasks where step 4-6 are development
phase tasks. The code snippets in Figure 5 demonstrates the latter
steps (4-6) utilizing the APIs presented in Table 1 for a very
simple application composed of a thermometer and a cooler

Table 1. A Subset of Persona’s Application Programming Interfaces (API)

Figure 5. Code Snippets and Preference Knowledge Base demonstrating Persona’s usage in Applications

API Functionality

public string addPreference(String name,
 String prefType)

For adding a preference related to artefact, action, interaction
modality and timing for which preference is necessary.

 public void addPositiveStmt(String id,
 String stmt)

For adding a positive statement for the preference of an artefact,
action, interaction modality and timing.

public void addNegativeStmt(String id,
 String stmt)

For adding a negative statement for the preference of an artefact,
action, interaction modality and timing.

public void subscribe(Object source,
 string callback)

For subscribing to the preference manager for receiving preference
data captured from real world interaction.

public static float getPreference(
 String id, String type)

For extracting preference from Preference Knowledge Base, return
values include positive (1), negative (0) and calculated (0.1 ~ 0.99).
The 2nd parameter specifies whether regular or calculated is required.

followed by the Preference Knowledge Base used for this
application. The cooler is automatically turned on/off based on
the sensed air temperature. Speech Engine is used as the
interaction modality in this code example. The Preference
Knowledge Base (line 19-47) is automatically created during
application deployment time. In line 1 we have created a persona
instance with speech engine. Then from line 2 to line 4 we have
added the thermometer to persona, and added positive and
negative statements based on the speech interaction engine
constructs (Provided by the developers). These statements are
used to generate the Preference Knowledge Base. For line 2, 3 and
4 in the application code, we have entries (line 22-32) in the
Preference Knowledge Base. Similarly, for the switching action of
the cooler we have added the action, positive and negative
statements to persona, which cause the entries (line 35-45) in the
Preference Knowledge Base for this action. In line 9 we start the
persona core to capture real world events (speech). In this
application we have used only two types of preference category:
artefact preference and action preference. As depicted, due to the
flexible design of this API we can accommodate other categories
in the same manner. The speech recognizer engine runs in the
background after deployment. Whenever the recognizer identifies
a phrase, the persona core is notified. If the persona core finds a
match for this phrase in one of the entries in the Preference
Knowledge Base, it extracts the information for that phrase from
the Preference Knowledge Base and sends it to the application. It
also updates the Preference Knowledge Base, e.g. <preference>
attribute to Preferred, Not Preferred or Calculated based on
captured event. Similarly, for GUI engine when the GUI event is
captured, it is sent back to application and the preference manager
updates Preference Knowledge Base. As shown in line 10-38, the
application uses preference callback to receive this information
and it can utilize it in an application specific way. Application can
also call explicitly getPreference(id,type) to get the
regular or calculated preference from the Preference Knowledge
Base, in case of calculated one, persona core uses the finite state
engine to generate the preference. The developer can use this
information in application specific way to reflect users preference
in application’s proactive behavior.

5. EVALUATION
In this section we will provide the evaluation of Persona. We have
adopted a scenario based evaluation method introduced in [18]
considering Persona closeness to end users.

5.1 Scenario Based Evaluation
Lest consider the following Scenario:
“Joanna is a broker at the New York Stock Exchange. During her
daily morning routine in the bathroom, while she is brushing her
teeth and putting on her make-up, her mirror provides information
she needs to start her day. During these activities she can watch
her daily schedule and what the weather will be like, so she can
dress fittingly. Furthermore she finds out if the subway is running
properly. After arriving at the office she works non-stop for
several hours contacting her clients, buying and selling on their
accounts until her agent reminds her to take a coffee break and
tells her not to forget her lunch appointment at 13:00 with one of
her biggest clients. Later that afternoon she goes to the restaurant
to meet her client. While she is waiting for her client, the table she
is sitting at shows that tonight there are still tickets left for musical

“Les Misérables” and that perfumes are on sale at Saks Fifth
Avenue. After lunch she returns to the office, the computer on her
desk informs her about some important memos she received during
her absence. While she continues working, her desk lamp turns on
automatically and the track “For Elise” from Best of Beethoven is
being played as she starts responding a client’s email.”
This scenario is implemented using three different proactive
applications as shown in Figure. 6. All three applications are
developed atop a middleware called Prottoy [3] and augmented
with personalization support using Persona as mentioned in Table
2. All three applications were previously developed with
personalization support and were reported in [4].

5.1.1 Observations
We are interested in several things from Persona’s evaluation
point of view:
Development Task: We have found that adding personalization
options in applications was quite simple primarily because of the
abstract APIs of Persona. For extending these applications
developers need to analyze the applications and list the user
centric personalization options into some categories. Since in all
three applications voice based interaction is used, developers need
to generate the statements that represent users preference towards
specific options.
Code Complexity: The second important thing we have observed
is that injecting Persona in these existing applications is pretty
straightforward. Since, it is independent of the middleware and
only application code need to be modified we could do that in a
very short span of time and with the inclusion of about 270 lines
of code for all three applications. Please note that, we have used a
built-in speech recognizer. So to use other interaction paradigm
we need to build custom engines which will increase the
development time and cost.
End users’ Impression: We had performed informal user trials
involving 9 people (6 Male, Age Range: 21~32) to evaluate
Persona’s user-centric performance. Essentially, how end users
feel like personalizing the behavior of proactive applications? We
initially introduced them the applications and then asked them to
use and personalize them. Each trial took about two hours
followed by an interview. We have found, all the participants
wants to personalize the application in their own way and
interestingly the combination of all the personalization options
for all three applications is unique for each participant. They
explicitly mentioned, just like traditional desktop applications,
they would definitely like to have the personalization options for
physical world applications and effectively they would like to
control everything. They do not want a smart place to be proactive
rather to be reactive to their needs in their preferred ways.
However, our current GUI and speech interaction are inadequate.
Although GUI seemed acceptable to them in general, speech had
received contrasting ratings. 6 of the participants found it to be
annoying and not natural to converse with a space. Also, the
speech recognizer used in the current prototype misinterpreted
voices in some cases that caused frustrations among the
participants.

Figure 6: Applications implementing the scenario

Table 2. A Subset of Persona’s Application Programming Interfaces (API)

 Functionality Augmented Artefacts Preference Options

Artefact: With /without toothbrush

Action: Automatic/manual start/close

Interaction: Tangible Button/Voice/GUI for
navigation.

Aware
Mirror

Display useful
information on
the mirror

1. Mirror augmented with proximity
sensors to detect user’s presence
2. Toothbrush as an identifier of the
user.

Timing: Morning/Always

Artefact: None

Action: Automatic/manual start/close

Interaction: Touch Display/Voice/GUI for
navigation

Byte

N
Dine

Display preferred
information on
the table display

1. Table augmented with projector
and RFID tag reader to identify
users presence and preference.

Timing: Morning/Always, Alone/Always

Artefact: Yes/No Use of Lamp, Music Player

Action: Yes/No Suggestion for break, Email
notification, music play, automatic light.
Interaction: None (All are proactive)

Smart

Assistant

Suggesting user
for a refreshment,
providing just in
time message and
controlling
lighting.

1. Sensor augmented chair and desk
lamp to detect users presence and
light sensitivity of the workspace.
2. Media player and email agent to
play music and identifying email
reception. Timing: Always/On specific time

5.2 Portability Test
The next evaluation that we have performed is portability test.
There are many pervasive middlewares in the literature. However,
for this test we have picked two middlewares Context Toolkit [1]
and Prottoy [3] based on the availability. Using these two
middlewares, we have built a slightly variant version of the
application DUMMBO [6] that captures the collaborative tasks
like meeting etc. Instead of using iButton and a digital white
board as in original application, we have used RFID tag and a
touch panel display augmented table as shown in Figure 7.
However, in this case we have facilitate preference options
regarding capturing, i.e., only voice, only text on the display, both
voice and text, timing duration etc. We have found using Persona
with these middlewares was just adding another class file to
accommodate the steps 3-6 mentioned in section 4.3 mimicking the
code of Figure 5. Essentially persona can be used just as a library
in the application space. We have used the speech recognizer

engine for this application and a custom policy was implemented
in the finite state engine to resolve conflicts.

Figure 7: A variant of DUMMBO [6] Application

6. DISCUSSION
In this section, we will discuss some generic issues and put forth
the avenue of our future work.
Preference Data Structure: Our major design concern was to
provide a structured representation of the preference data that
makes management of personalization easier. In section 4.3 we
have shown, how to use the APIs to represent the personalization
data. Furthermore, we have provided an exemplary classification
scheme in section 4.1. But we do not claim that this categorization
can handle all sorts of personalization requirements. However,
this classification can be considered as a guideline for further
derivations. Persona is flexible enough to accommodate further
classes. For example, consider the revised lines of the scenario
presented in section 5.
“….While she continues working, her desk lamp turns on
automatically and, it dims into a pink shade and the track ….”
In this case, our exemplary categories cannot handle this option.
But Persona APIs allows us to easily accommodate this. For
example, to support this option we can use
artefactID=pm.addPreference(“Lamp”,”Generic-

 Color-Preference”);
pm.addPositiveStmt(artefactID,"I like to use
 pink shade.");

This line will result following entries in the Preference
Knowledge Base:
<generic-color-preference>
 <artefact>
 <id>artefact-2</id>
 <name>Lamp</name>
 <preference>preferred</preference>
 <positive-phrase>
 <phrase> I like to use pink shade </phrase>
 </positive-phrase>
 </artefact>
</generic-color-preference>

So, Persona will handle this category exactly in the same manner
like other category. Because of this unified design, it is very easy
to accommodate further categories of preferences.
Another important aspect is the operator used with the data
structure. Currently we use two discrete operators (Positive and
Negative, Yes/No options) and one continuous operator
(Calculated) to represent users preferences. However, none of
these operators are capable of handling semantically rich
continuous values. For example: If a user wants to set the cooler
at a comfortable level, current version of Persona cannot handle
this action, unless the meaning of comfortable is specified in the
application logic. Supporting these kind of semantically rich
preference is an interesting topic and we are currently working on
this issue.
Interaction Modality: Current speech interaction suffers from
poor acceptability as we have found in the end user evaluation.
Also, current Finite State Engine support to recover from
erroneous states due to misinterpretation of voice is minimal as all
dynamic situation is hard to predict during the design phase. We
are working on a more loosely coupled speech interaction engine
where semantics of the user statement is analyzed rather exact
matching. Thus, future version of Persona will be more reliable.
GUI and speech for collecting input might not be applicable to all
systems. If we look at the loosely coupled design of Persona, it is
visible that new interaction engine can be injected easily. So, if an
application needs a gesture-based interaction, a gesture recognizer

can replicate the operations of the speech recognizer and in that
case the preference statement related APIs of persona core would
consider the gesture primitives. The same is true for other input
paradigms like handwriting or tag based interaction.
Multiple Users and Multiple Applications: In the current version,
Persona does not have any component to identify the users, so
maintaining profiles for multiple users is not supported. Though,
we do not think identifying users is the primary responsibility of
Persona, we are working on the implicit identification of users and
integration of the technique in Persona to support multiple
profiles. Currently, one global Preference Knowledge Base is
maintained and altered by interaction events in single/multi user
scenario. In the case of multiple applications, there should be no
conflict as long as different applications use different phrases
(GUI works without any conflict) for voice-based interaction. The
same is true for gesture, handwriting, tag or computer vision
based interactions.
Conflict Resolution: Usually pervasive applications are deployed
in multi-user scenario and a very common issue is the conflict
among users when multiple users try to personalize/control the
same shared service simultaneously. Conflict resolution is an
independent research problem and there are several researches
that are exploring this problem for suitable solutions [14,19]. The
most common techniques for resolving conflict are policies and
rules with priority schemes among the entities. In our current
finite state engine prototype, we have not used any resolution
scheme that caused by the conflict among multiple users using a
shared service. However, any suitable policy can be adopted in the
finite state engine, or a more sophisticated resolver can be
plugged into Persona. From this perspective, Persona does not
solve the conflict resolution problem rather it just provides
support for that.
Scalability in Large and Complex Environment: Some readers
might argue about the applicability of Persona in large-scale
environment. Considering the extensible and pluggable design and
the previous issues in this section, we believe that scaling into a
large environment has no affect at all on Persona. For example, in
section 5 we have shown that three different applications with
different requirements, interactions and functionalities worked
smoothly.
No Generalization for Application Logic: Persona does not
handle the application logic. It receives the information from the
environment and presents it to the application in a structured way
using the preference attributes. It is the responsibility of the
developer to utilize this information in an application specific
way.
Deployment: Once applications are deployed, Persona is
automatically deployed. However, it is necessary that the
application environment possesses the appropriate tool for
interactions; for example, in the current version a display and a
microphone are needed for GUI and voice interactions
respectively.

6.1 Future Work
For supporting multiple user profiles, we are now working on the
integration of a user identification scheme within the persona
core. Our voice based interaction is tightly coupled with the
developer specific phrases. Currently we are working on
synthesizing the sense of free form English language and applying
this sense to Preference Knowledge Base. Also, during the

evaluation of our systems, we have found that some users want
the system to identify their preference automatically from their
previous activities. In this case history information and learning is
very important. So, we would like to incorporate this adaptation
support in future. Furthermore, we would like to develop more
realistic applications from different domain using Persona.

7. CONCLUSION
Although several works emphasized the importance of
personalization in proactive applications, unfortunately available
pervasive middlewares have no support for it. Persona addresses
this specific issue and enables developers to allow end users for
personalizing applications in a unified way. The loosely structured
design makes Persona extensible for accommodating additional
features. Furthermore, Persona’s portability enables existing
applications atop various middlewares to support personalization
in an intuitive way. The primary contribution of this paper is two
fold. First, we have shown an intuitive design concept for
structuring preference options in a proactive application to enable
unified system support for preference management. Second
contribution of the paper is a solid implementation of the concept
in a portable toolkit with multiple built-in interaction techniques.
From the pervasive computing point of view, we believe this work
will seek major attention of the community, since we have
approached the personalization aspect in a unique way minimizing
the overhead of many system related issues considerably.

8. REFERENCES
[1] A. K. Dey. G. D. Abowd, D. Salber, “A Conceptual

Framework and a toolkit for supporting the rapid prototyping
of context-aware applications”. Human-Computer
Interaction, Vol-16 2001.

[2] D. A. Norman. “The Design of Everyday Things” NY:Basic
Books.

[3] F. Kawsar, K. Fujinami, and T. Nakajima. “Prottoy: A
Middleware for Sentient Environment.” In The 2005 IFIP
International Conference on Embedded And Ubiquitous
Computing, 2005.

[4] F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting
Everyday Life with Sentient Artefacts. In Smart Object and
Ambient Intelligence Conference, 2005.

[5] O. Stiermerling, H. Kahler and V. Wulf. “How to make
software softer - designing tailorable applications.” In
Symposium on Designing Interactive Systems, 1997.

[6] J. Brotherton, G. D Abwod, K. Troung, “Supporting Capture
and Access Interfaces for Informal and Opportunistic
Meeting”, GVU Technical Report GIT-GVU-99-06.

[7] K. Fujinami, T. Nakajima, “Towards System Software for
Physical Space Applications”, In Proc of the 20th ACM
Symposium on Applied Computing (SAC) 2005, pp. 1613-
1620, Santa Fe, USA, March 2005

[8] K. Cheverst, K. Mitchell, and N. Davies. “Investigating
context-aware information push vs. information pull to
tourists.”; In Mobile HCI 2001.

[9] K. Nishigaki, K. Yasumoto, and T. Higashino. “Framework
and Rule-Based Language for Facilitating Context-Aware
Computing Using Information Appliances”. In First

International Workshop on Services and Infrastructure for
the Ubiquitous and Mobile Internet, 2005

[10] L. Barkhuus and A. Dey. “Is Context-Aware Computing
Taking Control Away from the User? Three Levels of
Interactivity Examined. ”; In The 5th International
Conference on Ubiquitous Computing, 2003.

[11] M. Marinilli, A. Micarelli,, “Generative Programming
Driven by User Models”, The 10th International Conference
on User Modeling 2005.

[12] M . S. McNee,S. K. Lam, J. A. Konstan and J. Riedl,
“Interfaces for Eliciting New User Preferences in
Recommender Systems” The 9th International Conference on
User Modeling (UM'2003)

[13] M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications, 2001.

[14] N. Dunlop, J. Indulska, and K. Raymond, “Methods for
Conflict Resolution in Policy-Based Management
Systems”,Proc. 7th IEEE International Enterprise Distributed
Object Computing Conference, Brisbane, Sept 2003, pp 98-
109.

[15] P. Dourish, “The Appropriation of Interactive Technologies:
Some Lessons from Placeless Documents.” Computer-
Supported Cooperative Work: Special Issue on Evolving Use
of Groupware, 12, 2003, 465-490.

[16] P. J. Brown and G. J. F. Jones. “Context-aware retrieval:
Exploring a new environment for information retrieval and
information Itering.”; Personal and Ubiquitous Computing,
5(4), 1997.

[17] R. H. Harper. Why People Do and Don’t Wear Active
Badges: A Case Study. In Computer Supported Cooperative
Work, 1996.

[18] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-
based analysis of software architecture. IEEE Software,
13(6):47–55, November1996.

[19] S. Evi, S.W. Loke, and P. Stanski, “Methods for Policy
Conflict Detection and Resolution in Pervasive Computing
Environments”, Policy Management for Web workshop in
conjunction with WWW2005 Conference, Chiba, Japan, 10-
14 May 2005

[20] S. Farrell, V. Buchmann, C. S. Campbell, and P. P. Maglio.
“Information programming for personal user interfaces.”; In
Intelligent User Interfaces, 2002.

[21] S. Hiroshi., Y. Murakami, and T. Nakatsuru. Personalized
Smart Suggestions for Context-aware Human activity
Support by Ubiquitous Computing Networks. NTT Technical
Report, 2-2, 2004.

[22] V. Bellotti and K. Edwards. “Intelligibility and
Accountability: Human Considerations in Context-Aware
Systems.”, Human-Computer Interaction, 16,2-4, 2001.

[23] Sphinx4 Speech Recognizer.
http://cmusphinx.sourceforge.net/sphinx4.

