Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

A Portable Toolkit for Supporting End-User Personalization
and Control in Context-Aware Applications

Fahim Kawsar - Kaori Fujinami - Tatsuo
Nakajima - Jong Hyuk Park - Sang-Soo Yeo

Received: datg Accepted: date

Abstract A context-aware application in the pervasive computingirerwment provides
intuitive user centric services using implicit context suPersonalization and control are
important issues for this class of application as they enabld-users to understand and
configure the behavior of an application. However most dgwekent &orts for building
context-aware applications focus on the sensor fusion aachime learning algorithms to
generate and distribute context cues that drive the apiglicavith little emphasis on user-
centric issues. We argue that, to elevate user experienitesontext-aware applications,
it is very important to address these personalization amtr@loissues at the system inter-
face level in parallel to context centric design. Towards tlirection, we preserRersonaa
toolkit that provides support for extending context-awapglications with end-user person-
alization and control features. Specifically, Persona sepa few application programming
interfaces that abstract end-user customization andaan&chanisms and enables devel-
opers to integrate these user-centric aspects with res¢@fidplication seamlessly. There are
two primary advantages of Persona. First, it can be useduaiibus existing middlewares
as a ready-to-use plug-in to build customizable and cdatitd context-aware applications.
Second, existing context-aware applications can easilguggnented to provide end-user
personalization and control support. In this paper, weudische design and implementa-

Fahim Kawsar
Computing Department, Lancaster University, UK
E-mail: fahim.kawsar@comp.lancs.ac.uk

Kaori Fujinami

Department of Computer, Information and CommunicatioreSaes
Tokyo University of Agriculture and Technology, Tokyo, d&p
E-mail: fujinami@cc.tuat.ac.jp

Tatsuo Nakajima
Department of Computer Science, Waseda University, Tokgpan
E-mail: tasuo@dcl.info.waseda.ac.jp

Jong Hyuk Park
Department of Computer Science and Engineering, Kyungnaivetsity, Korea
E-mail: parkjonghyukl@hotmail.com

Sang-Soo Yeo
Division of Computer Engineering, Mokwon University, Kare
E-mail: ssyeo@msn.com

tion of Persona and demonstrate its usefulness throughetreapment and augmentation
of a range of common context-aware applications.

Keywords End-user Personalization Context-Aware Application Toolkit

1 Introduction

A context-aware application in the pervasive computingiremwnent typically runs atop
distributed smart objects embedded with awareness temtiesl (sensors, actuators and
perception algorithms) where application uses these tsbjeccollect context information
or to perform some services that cause changes in the reéd yeg., adjusting the air-
conditioner based on sensed temperature) including détapt its own behavior [10, 21,
33]. Usually, these actuation and self-adaptation areigitgle., application autonomously
performs these actions based upon the context cues. Duss tautonomy end-users have
limited control over the application behavior which causafasions as they struggle to
understand why an application is behaving in a certain way.,(­ the nearby mirror
turned into a display showing today’s weather forecasgig) and how to changsnfigure
that behavior. Eventually, these confusions hinder theptaolo of context-aware applica-
tions [3,5]. Previous studies reported that without bmiggiisers at the center of the control,
it is very difficult to increase the adoption of context-aware applicatinipervasive comput-
ing environment [13,17]. These studies suggest that stipgarser-centric personalization
and control will significantly impact the adoption of contexvare applications.

In this paper, we address this end-user personalizatior@mnttol issues from a system
perspective. Here by personalization, we refer to the @dtivolvement of end-users to
customize the adaptive behavior of the application. Thesgeis raise two requirements:

— An appropriate user interface using which end-users catmal@nd personalize context-
aware applications.

— An appropriate system component that translates end-u®gactions into correspond-
ing system events enabling other components to adapt ttegnor to reflect end-users’
preferences.

Although, there have been numerou¥ods to systemize the gathering and distribu-
tion of context cues to build context-aware applicationsl[® 20, 23], these user-centric
requirements were met at the application level by ad-hodeémentations. Our objective is
to systemize this ad-hoc practice through a suitable systamponent and to seamlessly
integrate it with existing middlewares.

Our contributions in this work are two-fold.

1. We present a stand-alone toolR&rsonathat provides suitable system support for aug-
menting context-aware applications and can be used witbusamiddlewares. Specifi-
cally, the toolkit dfers:

— An interface engine to generate multi-modal user integdoe providing end-user
personalization and control support. The engine has bustipport for graphical
user interface and speech interface.

— A range of application programming interfaces that enalgeebbpers to capture
end-users’ interactions with context-aware applications

— A document centric approach to provide the control of thdieation to end-users
in such a way that an application’s default runtime behaftraggered by dynamic
context information) is overlaid by end-users’ preferenath a finite state engine.

2. We show the fectiveness of Persona by augmenting three existing coatexie ap-
plications with multi-modal personalization and contropport.

The rest of the paper is organized as follows: in the nexti@eete discuss the back-
ground of our work and place it against related works. Thégtlesspects of Persona are ex-
plained in Section 3 followed by its architectural detaiSaction 4. After that in Section 5,
we discuss the programming modéleved by Persona. Then in Section 6, we demonstrate
Persona’s ability to augment context aware applicatiorth pérsonalization and control
support by illustrating three applications. Before codatg we put forth a few interesting
issues in Section 7 for further discussions.

2 Background

A context-aware application that run atop or within smastiemment usually consists of
the following components:

— Basic Application Component: This component takes care of the basic application
behavior, e.g., application logic, interfaces, etc.

— Communication Component: This component manages the access to smart objects
and utilization of their services. Typical functions perfeed by this component include
locating, managing, configuring and interacting with theagnobjects. Diferent smart
objects may have fierent communication and data protocols. It is the commtioica
component that handles this heterogeneity and providdicappn with an unified ac-
cess.

— Perception and Adaptation Component:This is where application handles the context
data derived from the smart objects by applying applicasipecific context reasoning
and modeling policies. Applications use this context infation to adapt application
behavior accordingly and to further interact with the snadnjects via communication
component to actuate smart object services.

The last two components are recurrent and usually suppbstedsuitable infrastruc-
ture [2, 10, 23, 32]. Typically, such infrastructure hasdibe access issues by providing a
discovery mechanism and provides Application Programnhitigrface (API) to interact
with the smart objects transparently, and there by triegpausate the application from the
underlying environment. However, the end-user centrigessare left entirely open at the
first component and often completely missing with the prastion that application can
correctly adapt its behavior autonomously by sensing sadimg contexts. We argue that
such assumption considerably degrades the acceptalfilihe @ontext-aware systems. By
taking control and personalization away from the usersefaplications typically makes
end-users life harder, as they keep wondering why the syisté@having in a certain way
and how to configure it applying their own preferences antkstfp, 31]. This work puts
forth the argument that end-users should be the center tfat@md should have the ability
to personalize a context-aware system. Rogers [31] anddBedll. [4] concurred similar
views on their works with human-centric computing.

End-user personalization in context-aware applicatisnsot a new topic. There are
works that looked at these issue from socio-technologiesgectives. Barkhuus and Dey
presented an interesting case study on some hypothetidalenghone services and have
shown that users prefer proactive services to personatined [3]. Some researches that
precede Barkhuus’s work also argued whether informatiaulshbe pushed towards the

user or should be pulled by the user for customization of thaext aware systems [8].
Brown and Jones have also defined the interactive and preaststems where personaliza-
tion activities fall into interactive systems [6]. In allrée works, they have tried to furnish
some levels of autonomous interactivity. In line with theseks, in this paper we have tried
to systemize this end-user interactivity. Our prime mdidrais to dfer system support to
developers that enable them to bring end-users at the ceitee control and give end-
users the flexibilities to personalize a context-awareesysiVe consider, theses issues are
typically common to all proactive applications, thus pdimg a systematic and structured
support will make context-aware application developmemipter , less complicated and
more close to end-users.

Our approach basically driven by the separation-of-cangeinciple as we have taken
the end-user interaction away from the basic applicatiangmnent (mentioned earlier).
From an abstract point of view the proposed toolkit, Pergmoaides two levels of sup-
port for the application developers. First, by providingaage of APIs and well defined
amendable data structure through a plug-in module, it esatgvelopers to augment an ap-
plication with personalization support. Application dgers can provide this application
specific control and preference management in a systenaatidoin. Second, by providing
an interface engine, Persona simplifies the end-user aseidevelopment as any suitable
interaction modality can easily be integrated with an aggion to let end-users personal-
ize and control the application.The interface engine hds-ibusupport for graphical user
interface and speech interface. End-users’ interactiegardless of the interaction modal-
ity are presented to the application in a unified fashionubhowell defined system events
enabling developers to integrate them in the applicatigicloAs a consequence, develop-
ers can solely focus on the application logic to define théecdrawareness of the system,
while providing end-users with the fullest control to peratize the system.

2.1 Related Work

Considering the focus of this paper is more on system sufmgoersonalization rather than
social perspectives, we would like to discuss some relenem@arch projects. Most of the
personalized systems that we found in the pervasive literaisually built on the concept
of Personal Infromation Cloudvhere users preferred information and services follow the
users. There are two ways for providing such personal claitlser using portable device
or infra-structured embedded system. One project that owdtboth these alternatives is
Personal Interaction Point (PIP) system [18]. Intel's Bees Server utilizes small and pow-
erful wearable hardware that user can use to carry all tleeggmalized content and services
(to some extent). Users can use environment displays tegatoe content via wireless tech-
nologies [35]. Another work that focused on dedicated haréwor personalized services
is Wearable Key by Matsushita et al. [26]. Their TouchNeteaysconsists of a tranmitter
and a receiver that can be connected via human body condamtbthis idea is used to
identify the user to provide hiser personalized contents. Although these projects and sim
ilar initiatives provide fair solutions from the end-usergpective to provide personalized
services, none of them had approached a toolkit for the nbdveloper, i.e., application
developer. The work presented in this paper primarily tsrgee application developers to
provide the personalized content. Our approach enabléisaiign developers to use any of
these technologies mentioned above to be integrated iptacapon environment to support
personalization.

Rule based tools like iCAP [12], Stick-e-notes [30], AlfrElb] provide visual tool,
or sound macros to the end-users to define conditional ra@ssdoon the context to con-
nect input and output events. Similarly recognition tooismore formally Programming
by Demonstration systems like CAPpella [11] uses machiaeleg techniques to allow
end-users to associate personalized rules with real weedts. These approaches are valid
for rapid prototyping and also to personalize the pro-acbehavior of the applications.
However, they do not provide any general guideline reggrdipplication development to
systemize these supports. Two notable recent works arati®itu9] and PersonisAD [1].
In Situation, Dey etl al. extended their well known Conteablkit [10] with a new situation
component that exposes the internals of a context-awatemsythus enabling developers
and designers to build systems with intelligible and cdtabte user interfaces that are
more close to end-users [9]. In PersonisAD [1], a query nesp®f context information is
augmented with meta context information that can be usedadige users with feedback
of the system’s internal state. However, our worfetis from them as we have tried to gen-
eralize the interface development mechanism for persmatain and control support, while
multiplexing it with the internals of the applications thugh structured APIs.

Sakai proposes a framework that focuses on the end-userg@negs of mobile phone
applications [19]. But his approach cannot be applicablgeineric context aware aspects.
Furthermore, the framework is tightly coupled with the éion considering their rigid
focus on the mobile phone domain, thus making custom agigicalevelopment fairly
complex. In [29] a rule based approach has been proposechtmtand configure infor-
mation appliances. However, their approach does not camerth personalize the system
using these rules. Also we believe uttering specific phraséa our approach for control-
ling appliances are easier for the end-users than gengnaties for context aware behav-
ior. Speech and GUI-based interaction for controlling g€rspaces has been investigated
in various projects like Odisea [28], EasyLiving [7] etc.pesially the EasyLiving project
highlights the suitability of natural language based shesterface for smart spaces. Per-
sona has built in support for voice and GUI based interaatiodalities adhering to these
projects suggestions. In addition the loosely coupledgesf Persona and the plug-gable
input interface component (see Section 4.2) enables Petscaiccommodate any suitable
interaction modality into the application environment.

In traditional desktop computing graphical user interfecprovided to personalize an
application. This aspect has been well investigated inddjiand their implications are ob-
viously not appropriate for the characteristics of pemeasipplications. Dourish looked at
the personalization aspect from system design point of @eploring a collaborative doc-
ument management system. He used the term “appropriaticiériote a process by which
people adopt and adapt technology [13]. Although his wonrkeiy similar and influenced
us significantly, he focused on pre-design consideratidrggaup-ware for appropriation
features in stead of providing a system tool like ours to matie the process. In the user
modeling and usability domain, a variety of studies havenlmamducted to provide toolkits
or modeling language for assisting developers in desigefiegtive interactive systems and
modeling user activities through rigorous sensor datayai®[25, 27]. However, none of
them addresses the issue of a unified system support as veeekpthis paper.

3 Design Issues

Figure 1 depicts a hypothetical context-aware applicasicenario in pervasive computing
environment; a smart space populated with a range of smgrttskand sensing infrastruc-

[| want te use voice
not the GUI
,/ _F_Sensur

-f—my_lhffasrmctura

1 don’t want to use the
wall display, use the
table display next time

Wall Mount
Ambient Display

1 "\\Sem’ce

information

Show me the W
In the morni
e _d

== Display weather
Sensor Augmented Infarmation
Evervday Artefact if itis raining

Fig. 1 A Hypothetical Multimodal Context-Aware Application inlking sensors and smart objects

ture that provides some proactive services. As we have orediearlier, bringing end-users
at the center of the control of such applications requirastalsle user interface that allows
them to control and configure the system as well as a systerpament that can translate
these interactions into appropriate system events thateamultiplexed with the rest of the
application logic. Systemizing these processes leaddltwiog two requirements:

— A system component is necessary that can generate irtdglignd controllable user
interface. ldeally, this interface should be independeminfthe underlying application
logic.

— A system component that can capture users interactionsegmdsents these interac-
tions into the underlying application in a way that can beeystically modeled during
development time. This will enable an application to reflemti-users preferences dy-
namically at runtime.

The first requirement basically asks for a system compotetcan generate user in-
terfaces meant for personalization and control regardiEse application logic. Personal-
ization is the direct impact of a subset of users interactith the application. Consider-
ing there are various interaction modalities (speechugestligital ink, implicit controller,
augmented reality, GUI etc.) and the best candidate depamdse application itself, this
requirement is met by building an interface engine withibéctional plugs. That is, at one
side, this engine enables developers to specify the ratjinteraction by &ering them with
a collection of APIs. One the other side any multimodal ifatez can be plugged into this
engine that enables end-users to interact with the system.

The second requirements is more focused on the interactioBlation and integration
issues. First of all, it is important to understand how peadiaation and control features
can be represented in a unified manner. To discuss this dessder Fig. 1 again, the hypo-

thetical scenario gives the impression that there are pheltiategories of preferences and
controls such as:

— Artefact Preference: This category of personalization options is for enablingearuo
select the participation of any artefact in the cooperativart environment. For exam-
ple, a user may want to use a wall-mounted display insteadlisiday-augmented table
for ambient tr#fic information.

— Action Preference: This category enables a user to set preferred actions. saal
system consists of several actions that it actuates basedme conditions. Users can
enable or disable actions using this class of preferencenrdtion. For example, users
can enablalisable the automajimanual weather information display action on a hall-
way mirror.

— Interaction Modality Preference: This class of options is to provide users with the
flexibility to select their preferred interaction mechamis-or example, context-aware
shopping assistant may have multiple user interfacesltigelwriting or voice for input
and display or sound for output); users can sele¢ghbispreferred interaction modali-
ties.

— Timing Preference: This category enables users to associate an action of thety®
application with some contextual events like location,gjrexternal presence etc. For
example: a user may want the cell phone to automaticallychwid silent mode when
he/she is in the meeting room.

Albeit this listing is for an example purpose, it covers nafghe pervasive applications.
So to abstract these preference and control options in @&dmifanner it is important to de-
rive a syntactically well defined data structure that candmdwas the logical carrier for the
preference features. In Persona, we have designed such stdatture that enables devel-
opers to define these application specific preference artcotoptions. Developers are free
to build applications preference options and groupingdhmsions into some categories as
above. Persona can then encapsulate these categorieg@rteric data structure.

The next issues is how the end-
users’ interactions converge with pref-
erence and control features. In Persona, oo

T

this is done by following a document A AP[@ ' User Interface ;"
centric approach. Persona iffeved to P 5 i
the developers as an application plug-in, E ; - N
The plug-in basically provides a collec- | Knowledge Finite
tion of APIs using which application de- c Base | State
velopers can add control and personal- | 4 Onpument kaghe
ization features to an application and can [_ N 4
select appropriate interaction interface g AF‘IE i e

for those features. Persona then takes IZ_\ Preference and Conirol /_.*

care of the rest by generating the appro- - :
priate user interfaces following the pref-

erence and control specifications pro-
vided by the developers. Persona con-
verts this specifications into an XML formatted preferenoeudment. In addition to provide

the interface specification, this document is also used lbgdPa to overwrite an applica-
tion’s default behavior to reflect end-user’s preferenédégure 2 shows this simple design
methodology.

(

Fig. 2 Basic Building Blocks of Persona

Another design issue is how the end-users behavior will begetkwith the default
system behaviors. Typically, a context-aware applicat®odriven by a set of predefined
rules that are triggered when particular contexts are nedtcHowever, Persona’s design
methodology implies that the application rules will be ipdadent from end-users’ runtime
preferences. Accordingly, it is necessary to resolve thewer of the system at runtime.
Persona assumes that the end-users always have the higbesst and any system behavior
can be written & by Persona if it conflicts with end-users’ preferences. Tavigle this
runtime resolution Persona employs a finite state engirs,dperates on the document
(mentioned earlier) to define the actual runtime behavighefsystem.

To conclude this section, here we are summarizing the dgsigoiples that are fol-
lowed in Persona

1. Providing an application independent interface engagable of plugging dierent in-
teraction techniques.

2. Providing a unified data structure backed up by well defiets to enable developers
to provide preference and control specification and to cepnd-users’ interactions.

3. Providing a document centric approach to connect thewarpart of the system.

4. Providing a Finite State Engine to enable dynamic timeluti®n to reflect end-users’
preferences nullifying systems’ default behavior triggkby context sensing (when ap-
propriate).

In the next section, architectural building blocks of Peesand the programming model
are explained.

4 Architecture of Persona

Following the design guidelines presented in the previaaien, Persona is built in a

loosely structured manner where one core component playgimary actors role and pro-

vides interfaces for plugging other components. Persobasially sandwiched between a
context aware application and its corresponding middlewased to capture and distribute
context and actuate events). Figure 3 illustrates the Ibasliding blocks of Persona that are
described below.

4.1 Application Interface

This component is the access point for the application dpesb to use Persona. It provides
an array of APIs that developers can use to define the perzatiah and control options
for the application in context. Developers can create enstategorization of preferences or
can use the built-in ones (discussed in Section 3). Furthernapplications can subscribe
to Persona to receive interaction events that are relateersmnalization and control or can
poll periodically. Currently this interface is implemedt® java and fered to the develop-
ers as a library package. In the later part of this sectionyilleliscuss how developers can
use this component to support personalization and comtithigir applications.

4.2 Input Interface

As we discussed in the previous section, one of the requimtsre support end-user per-
sonalization and control is to provide appropriate usarfates. These interfaces typically

Preference
Document

(Application Interface }
(Persona Core)
.

{

A

Finite State
Engine

Input Interface Core

Input Interface Engine

Fig. 3 Internal Architecture of Persona

vary from application to application, and employ a multéusf interaction modalities, e.g.,
graphical user interfaces, speech, projected interfacegiltle interface, speech interface,
gesture based interfaces, etc. However, regardless ofiti@ction modalities, end-users’
interactions with context aware applications have thetidahmeanings to the applica-
tion. For example, consider a smart lamp that turns itselfatomatically and adjusts the
brightness adapting ambient light level. However, a user want the lamp to be turned on
manually but to adapt the brightness autonomously and cahisl@ustomization by say-
ing a particular phrase (speech), or by pressing a specificrb(tangible), or by selecting a
specific option from the GUI panel, etc. However, to the ulyileyg application that controls
the lamp, these actions have the identical meaning. Theeatadionale leads to a 2-layer
input interface architecture.

1. Input Interface Core: This core acts as a wrapper for tliedying interaction modal-
ity (speech, GUI, gesture, etc.). It provides a plug-in @edure and fers a range of
APIs to developers using which a developer can wrap any Bpewiltimodal interac-
tion interface. This core converts users’ interactionsnfraarying user interfaces into
a unified interaction primitives and passes them to undegl{#ersona Core for further
processing.

2. Input Interface Engine: This engine is interface speaifid enables an application to ex-
ploit a variety of multimodal interfaces. In the current fmtype two interaction modal-
ities are integrated.

— Speech Interface:End-users usually provide their preferences in simpleigmgl
language, like “Do not turn fb the light automatically”, “Notify me every morn-
ing”, etc. The speech interface in Persona is designed tdiéauch free from in-
teractions. Developers provide a list of phrases and seesetinat can be used for
personalizing target application through APIs. Persomeegges the corpus and the
grammar file automatically which is later used by the recogrii. This recognizer
runs in the background when an application starts. To erthlsdlespeech engine the
target application environment has to be equipped with oneuttiple microphones.

— Graphical User Interface (GUI): End-users can provide their preference by manip-
ulating GUI. Developers provide a list of options that carubed for personalizing
target application through APIs. Persona automaticallyegates this GUI analyz-
ing the options provided by the developers. Figure 4 showangpke GUI that is
automatically generated by Persona for the applicatiosgmted in Section 5.

1 httpy/cmusphinx.sourceforge.ret

10

Astefact Prefavence Agtion Praference |
| Maaie Selpct The Prefurred Acilans |

[

Devawsemusnonase: (pulial

Updalw D pdate Dane

Fig. 4 Automatically Generated GUI by Persona for a Sample Apfidtioa

Due to this clear separation and unified representationtefadntion primitives, it is
possible to support a range of multi-modal interfaces irs&vea.

4.3 Persona Core

This is the central component of Persona and connects adhgpanents (i.e., Application
Interface, Input Interface, and Finite State Engine) o6Bea with each other exploiting the
Preference Document (described in Section 4.4). Uponviecginteraction events from the
real world though Input Interface, Persona Core filters batgreference options utilizing
the Preference Document and notifies the application usipgli¢ation Interface. Also,
when conflict arises among application states, it conshéig-tnite State Engine (described
in Section 4.5). for the appropriate resolutions.

4.4 Preference Document

This is an XML file generated dynamically during the deploytngme of an application
that uses Persona for personalization and control supipabntains application specific
personalization options provided by the application dewet using Personas APIs. Each
of these personalization and control options is paranmtérby a number of interaction
possibilities and based on end-users’ interactions théeggnece and control options are
properly set. When Persona receives external real worldtgvthis document is consulted
for filtering preference data and for decision-making.

4.5 Finite State Engine:

In context-aware application, typically several actiorestaggered based on the sensed con-
text and these triggering rules are defined by the develah&isg development time. Most
of the time, these rules do not take users preferences intuat thus when end-users’ are
brought into the center of control and customization oftegreé could be conflict between
the default application behavior and users preferred hehabhis eventually might cause
an application to move into invalid states. The finite statgime component of Persona

11

[Manual Start

Toothbrush
is not preferred
= =
(=
Automatic start Run
is preferred
Run — »| Invalid

Inferred Preference Tcothbrush

Run is preferred

= -

y e
" , Automaric start
=iy

is preferred

Analyze interaction history
to infer preference

Fig. 5 Example Operations of Finite State Engine

is designed to handle these situations. It internally na@ista small cache of past prefer-
ence change and usage events, which can be exploited tcerefcom invalid conditions
to maintain application flow. To understand the working nagdm of this component, lets
consider a simple application scenario: a smart mirroelfesi in the washroom that shows
some personalized ambient information related to a usen\wulghe brushes teeth in front
of the mirror. The toothbrush is augmented to identify thery5]. The mirror can show
information automatically whenever a user brushes hisiiedtont of the mirror or the user
can manually start the mirror stating fiier identity. Now if the user does not want to use the
toothbrush but still wants the mirror to trigger its displayctionality automatically, then
the application moves to an invalid state (because thermsysam not identify the user thus
cannot retrieve the personalized information related &b tiser like schedule etc.). When
this conflict is identified by the application, it can use thété state engine to maintain its
workflow. In this scenario, depicted in Fig. 5, the finite stahgine can either alter the start
up preference to manual, so that the user can manually s&tehidentity. Alternatively,

if the toothbrush is being used it can alter the toothbrugifiepence to positive.

5 Programming Model: Integration of Persona into Applications

There are two types of users in Persona: the developers daippkcation and the end-
users of the application. Developers can use Persona fargagdrsonalization and control
support in an application whereas end-users can interglottiagé applications. Persona fil-
ters end-users interaction meant for personalization andrdingly modifies applications
behavior. From developers perspective, integrating Pergato applications requires fol-
lowing steps:

1. Listing all the preference and control options of the agaions.
2. Categorizing these options using taxonomy similar taote presented in Section 3.
3. Generating the Positive and Negative statements for@fabie preference options.

12

APL Functionality
public string addPreference(For adding a preference related to artefact, action, interaction
String name, String prefType) | modality and timing for which preference is necessary.
public void addPositiveStmt(For adding a positive statement for the preference of an
String id, String stmt) | artefact, action, interaction modality and timing.
public void addNegativeStmt(For adding a negative statement for the preference of an
String id, String stmt) | artefact, action, interaction modality and timing.
public void subscribe(For subscribing to the preference manager for receiving

Object source, string callback) | preference data captured from real world interaction.

public static float getPreference(For extracting preference from Preference Knowledge Base,

String id, String type) | return values include positive (1), negative (0) and calculated
(0.1 ~ 0.99). The 2 parameter specifies whether regular or
calculated is required.

Fig. 6 Persona APIs Available to the Developers

Application Code

1. Persona pm = new Persona(“Speech Recognizer”);
2. artefactID=pm.addPreference
(“Thermometer*, “Artefact”);
3. pm.addPositiveStmt(artefactID,
“I like to use the thermometer.");
4. pm.addNegativeStmt(artefactID,
"Do not use the thermometer anymore.");
5. actionID=pm.addPreference("Switching","Action”);
6. pm.addPositiveStmt(actionID,
“Turn on the cooler automatically."):
7. pm.addNegativeStmt(actionID,
“Never turn on the cocler automatically”);
8. pm.subscribe(this,preferenceListener);

9. pm.start();

10. public void preferencelistener(Preference data){
11. String type=data.getType();

12. String stmt-data.getPhrase();

13. String id=data.getID();

14. float value=data.getPreference();

15. if(type.equals(“action")){

16. if (stmt.equalsIgnoreCase(

17, “Never turn on the cooler automatically”)){
1. //do something in application specific way
8. 58 08 |

Preference Knowledge Base

19. <?xml version="1.0" encoding="UTF-8"7>
20. <application-preference>

21. <artefact-preference>

22. <artefact>

23. <id>artefact-1</id>

24. <name>Thermometer</name>

25. <preference>preferred</preference>

26. <positive-phrase>

27. <phrase>I like to use the thermometer</phrase>
28. </positive-phrase>

25. <negative-phrase>

30. <phrase>Do not use the thermometer anymore</phrase>
31. </negative-phrase>

32. </artefact>
33. </artefact-preference>

34. <action-preference>

5. <action>

36. <id>action-1</id>

7. <name>Switching</name>

8. <preference>preferred</preference>

39, <positive-phrase>

40. <phrase>Turn on the cooler automatically</phrase>
41. </positive-phrase>

42. <negative-phrase>

43. <phrase>Never turn on the cooler automatically</phrase>
44, </negative-phrase>

45, </action>

4 </action-preference>

47. </application-preference>

Fig. 7 Code Snippets and Preference Knowledge Base demonstR&isgnas usage in Applications

4. Listing these statements into Persona using APls. A sttorte library (Application
Interface) is provided for the application developer. Tigs is used to generate the
Preference Document and corpus of the speech recognitginesn

5. Subscribing to Persona for personalization events.

6. Invoking the suitable interaction engine. In the currgsion GUI and Speech Recog-

nizer are provided.

Steps 1-3 are design phase tasks where step 4-6 are devatgpmase tasks. The code
snippets in Fig. 7 demonstrates the latter steps (4-6xiuigjithe APIs presented in Fig.
6 for a very simple application composed of a thermometerandoler followed by the

Preference Document generated for this

application.

In this application, the cooler is automatically turnedasihbased on the sensed air tem-
perature. Speech Engine is used as the interaction mourelitis code example. The prefer-
ence document (line 19-47) is automatically created dumgication deployment time. In
line 1 we have created a persona instance with speech efigies .from line 2 to line 4 we

13

have added the thermometer to Persona, and added positiveegative statements based
on the speech interaction engine constructs (provided dygdvelopers). These statements
are used to generate the preference document. For linesn2l 8 ia the application code,
we have entries (line 22-32) in the preference documentil&im for the switching action

of the cooler we have added the action, positive and negstitements to persona, which
cause the entries (line 35-45) in the preference documeriné 9 we start the persona
core to capture real world events (speech). In this appicate have used only two types
of preference category: artefact preference and actidiengrece. As depicted, due to the
flexible design of this APl we can accommodate other categan the same manner.

The speech recognizer engine runs in the background afpémyseent. Whenever the
recognizer identifies a phrase, the persona core is notifitee persona core finds a match
for this phrase in one of the entries in the preference doatniteextracts the information
for that phrase from the preference document and sendshétagplication. It also updates
the preference document e.g. jpreference, attribute ferRre or Not Preferred based on
captured event. Similarly, for GUI engine when the GUI eviertaptured, it is sent back
to application and the persona core updates preferencergotuAs shown in line 10-38,
the application uses preference callback to receive thasrimation and it can utilize itin an
application specific way. Application can also call exflicgetPreference(id, type) to get
the preference from the preference document.

6 Evaluation through Application Development

We have adopted a scenario based evaluation method ingddu¢24] for evaluating Per-
sona’s support in providing applications with construat émd-user personalization and
control. Let us consider the following scenario:

Joanna is a broker at the New York Stock Exchange. During iy chorning routine
in the bathroom, while she is brushing her teeth and puttingher makeup, her mirror
provides information she needs to start her day. During ¢hegtivities she can watch her
daily schedule and what the weather will be like, so she casglaccordingly. Furthermore
she can find out if the subway is running properly. After amgvat the gfice she works non-
stop for several hours contacting her clients, buying artirgeon their accounts until her
agent reminds her to take afee break and tells her not to forget her lunch appointment
at 13:00 with one of her biggest clients. Later that afterm@ie goes to the restaurant to
meet her client. While she is waiting for her client, the éabhe is sitting at shows that
tonight there are still tickets left for musical Les Misrabland that perfumes are on sale at
Saks Fifth Avenue. After lunch she returns to tlie®, the computer on her desk informs her
about some important memos she received during her absafile she continues working,
her desk lamp turns on automatically and the track For ElieefBest of Beethoven is being
played as she starts responding a clients email.

This scenario is implemented using following threffetient context-aware applications:

6.1 AwareMirror Application

AwareMirror is a smart mirror installed in the washroom aeveh in Fig. 8. In addition to

its primary task of reflecting someones image it can alsoigeosome useful information
about the person who is using the mirror. Before deployirgapplication we have carried
out two potential users surveys. About 50 people aged 20da5ticipated in the surveys.

14

Fig. 8 AwareMirror Application in Operation

rephrase Prior to deploying this application we performed surveys on potential users.
The first survey was to find out the information categoriesdnapreferred by the user to be
displayed and second survey was to figure out the best setesingologies. Based on the
survey result, we have selected three categories of intism#o be presented to the users;
these are i) Schedule ii) Transportation Information,iather Forecasting. The sensing
technology preferred by the participants is implicit sagstia everyday objects rather than
any vision based explicit sensing. The artefacts and thieqenece options are explained
below.

Physical Artefacts

1. Mirror: A regular mirror augmented with LCD display to shpersonalized information
proactively and proximity sensors to detect users presence

2. Toothbrush: A regular toothbrush augmented with acoaleter sensor used to identify
auser

Preference Options

— Artefact: With/without toothbrush

— Action: Automatigmanual staytlose

— Interaction: Tangible Buttgoice/GUI for navigation.
— Timing: MorningAlways

6.2 ByteNDine Application

This application shown in Fig. 9 is designed for a pylplivate dining space scenario. The
goal of the application is to provide the latest news to thex ughile dining. A lot of people
prefer to read newspaper, magazine, books in a caf or a rastaMVe tried to capture this
practice by providing information on the dining table, whimeans the table acts as an am-
bient display. We have assumed that people will carry Adkgn that will represent hiiser
preferred topic. Accordingly the system provides that¢egatest news to the user in an
unobtrusive manner. User can browse through the news akddoaletailed information
or can simply close the display. The functional componentbthe preference options are

15

Fig. 9 ByteNDine Application in Operation

explained below.

Physical Artefacts

1. Table augmented with projector and RFID tag reader totiijensers presence and
preference.

Preference Options

— Artefact: None

— Action: Automatigmanual staytlose

— Interaction: Touch Displayoice/GUI for navigation
— Timing: Morning/Always, AlongAlways

6.3 Smart Assistant Application

This application (Fig. 10) is designed for a workspace mgron the users desktop. It is
a simple media level context aware application that carktwsers activities by the usage
of artefacts populated in the workspace. To be specific, piplication uses a chair, a desk
lamp, a tray and a few mugs and jars for sensing users conBaged on the state of these
artefacts the application can track if a user is in the wasksmand whether fghe is working
for a long time. If so the application suggests the user te takefreshment and can pro-
vide the user with some predefined schedule notificationo &le application can control
workspace lighting based on the users presence and suimguevironments brightness.
It can also play music using systems media player. The syss&® an animated chatting
agent to interact with its user. The user can additionallt etith this agent during leisure
time. Though the chatting agent is not very smatrt, it canraitethe user for a while. The
artefacts and the preference options are explained below.

Physical Artefacts

1. Chair and Lamp: Sensor augmented chair and desk lamp¢otdeters presence and
light sensitivity of the workspace.

16

Fig. 10 Smart Assistant Application in Operation

2. Media Player: A simple agent to play music.
Preference Options

— Artefact: YegNo Use of Lamp, Music Player

— Action: YegNo Suggestion for break, music play, automatic light.
— Interaction: None (All are proactive)

— Timing: AlwaysOn specific time

All three applications are developed atop a middlewareedalitrottoy [22] and aug-
mented with personalization support using Persona. Adidtapplications were previously
developed with personalization support and were report¢2li].

6.4 Observations

We were interested in several things from Personas evatuptint of view:

1. Development Task:We have found that adding personalization options in appbos
was quite simple primarily because of the abstract APIs edéte. For extending these
applications developers need to analyze the applicatinddist the user centric per-
sonalization options into some categories. Since in adedhapplications voice based
interaction is used, developers need to generate the &atehat represent users pref-
erence towards specific options.

2. Code Complexity: The second important thing we have observed is that injg&r-
sona in these existing applications is pretty straightéody Since it is independent of
the middleware and only application code need to be modifieccould do that in a
very short span of time and with the inclusion of about 27@sinf code for all three
applications. Please note that, we have used a built-irchpeeognizer. So to use other
interaction paradigm we need to build custom engines whitlingrease the develop-
ment time and cost.

3. End-users Impression:We had performed informal user trials involving 9 people (6
Male, Age Range: 21 32) to evaluate Personas user-centficrpance. Essentially,
how end-users feel like personalizing the behavior of preaapplications? We initially
introduced them the applications and then asked them tonaspeasonalize them. Each
trial took about two hours followed by an interview. We hawarid all participants wants
to personalize the application in their own way and inténgbf the combination of all

17

the personalization options for all three applicationsiisjue for each participant. They
explicitly mentioned, just like traditional desktop amgaitions, they would definitely
like to have the personalization options for physical wafplications andféectively
they would like to control everything. They do not want a shpdace to be proactive
rather to be reactive to their needs in their preferred whlgsvever, our current GUI
and speech interaction are inadequate. Although GUI seemeebtable to them in
general, speech had received contrasting ratings. 6 ofahteipants found it to be
annoying and not natural to converse with a space. Also,gaech recognizer used in
the current prototype misinterpreted voices in some casgesaused frustrations among
the participants.

7 Discussions

Our major design concern was to provide a structured reptatsen of the preference data
that makes management of personalization easier. In 8estiee have shown how to use
the APIs to represent the personalization data. Furthermae have provided an exemplary
classification scheme in Section 3. But we do not claim thiatdategorization can handle
all sorts of personalization requirements. However, tldssification can be considered as a
guideline for further derivations. Persona is flexible egtoto accommodate further classes.
For example, consider the revised lines of the scenariepted in Section 6.

"While she continues working, her desk lamp turns on autaraly and, it dims into a
pink shade and the track . In this case, the built-in categarannot handle this option. But
Persona APIs allows us to easily accommodate this. For deamgpsupport this option we
can use

artefactID=pm.addPreference(Lamp,Generic-Color-Preference);
pm.addPositiveStmt (artefactID,"I like to use pink shade.");

This line will result following entries in the Preference ¢imledge Base:

<generic-color-preference>

<artefact>

<id>artefact-2</id>

<name>Lamp</name>
<preference>preferred</preference>
<positive-phrase>

<phrase> I like to use pink shade </phrase>
</positive-phrase>

</artefact>

</generic-color-preference>

So, Persona will handle this category exactly in the sameneraas any other cate-
gory. Because of this unified design it is very easy to accodateofurther categories of
preferences.

Another important aspect is the operator used with the dedatare. Currently we use
two discrete operators (Positive and Negative,/Mesoptions) to represent users prefer-
ences. However, none of these operators are capable ofifasdmantically rich continu-

18

ous values. For example: If a user wants to set the cooler@néoctable level, the current
version of Persona cannot handle this action, unless thaingeaf comfortable is spec-
ified in the application logic. Supporting these kind of seti@lly rich preference is an
interesting topic and we are currently working on this issue

Current speech interactionfsers from poor acceptability as we have found in the end-
user evaluation. Also, current Finite State Engine supjmorécover from erroneous states
due to misinterpretation of voice is minimal as all dynamiaaions are hard to predict
during the design phase. We are working on a more looselyledugpeech interaction
engine where semantics of the user statement is analyzest estact matching. Thus, future
version of Persona will be more reliable. GUI and speech dtlecting input might not be
applicable to all systems. Given the loosely coupled natdfirBersona, it can be easily
seen that a new interaction engine can be injected seagnlasslother applications. So,
if an application needs a gesture-based interaction, aigestcognizer can replicate the
operations of the speech recognizer and in that case therpneke statement related APIs
of persona core would consider the gesture primitives. Bmesis true for other input
paradigms like handwriting or tag based interaction.

Considering the extensible and pluggable design and tivéopieissues in this section,
we believe that scaling into a large environment hasffecaat all on Persona. For example,
in Section 6 we have shown that thredfelient applications with éfierent requirements,
interactions and functionalities worked smoothly. Pessdoes not handle the application
logic. It receives the information from the environment gdsents it to the application
in a structured way using the preference attributes. Itesrésponsibility of the developer
to utilize this information in an application specific wayn€& applications are deployed,
Persona is automatically deployed. However, it is necgdbat the application environment
possesses the appropriate tool for interactions; for elgritpthe current version a display
and a microphone are needed for GUI and voice interactiagmentively.

8 Conclusion

Although several works emphasized the importance of stipgoend-user personaliza-
tion in context-aware applications, unfortunately avaiacontex-aware middlewares do
not have adequate support for that. Persona addressepéuificsissue and enables de-
velopers to allow end-users for personalizing contextravegplications in a unified way.
In this paper we have discussed the background and designalats behind Persona and
explained the resulting system architecture in detail. Aeehalso shown how Persona can
provide support to develop and extend context-aware agifwit by discussing a range of
context-aware applications. The primary contributionghié paper are two fold. First, it
allows a range of context-aware applications to supportussd personalization and con-
trol in a systematic fashion with multiplexing it with apgdition code explicitly. Second, it
can be used with dierent context-aware middlewares and thus can be used todesést-
ing context-aware applications with personalization aodti| support. We consider, out
work is useful for pervasive computing community, and sakcifor applications that are
context-aware.

References

1. M. Assad, D. J. Carmichael, J. Kay, and B. Kummerfield. &@sad: Distributed, active, scrutable
model framework for context-aware servicesFlfth International Conference on Pervasive Computing

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(Pervasive 2007)pages 55-72, 2007.

. J. E. Bardram. The java context awareness framework vaceénfrastructure and programming frame-

work for context-aware applications. [Fhe 3rd International Conference on Pervasive Computing
(Pervasive 2005)pages 98-115, 2005.

. L. Barkhuus and A. Dey. Is context-aware computing takiogtrol away from the user? three levels

of interactivity examined. Ibth International Conference on Ubiquitous Computipgges 150-156,
2003.

. G. Bell and P. Dourish. Yesterday's tomorrows: Notes oiquitbus computing’s dominant vision. In

Personal and Ubiquitous Computingolume 11(2), pages 133-143, 2007.

. V. Bellotti and K. Edwards. Intelligibility and accoubiéity: Human considerations in context-aware

systems Human-Computer Interactiori6(2-4), pages 193-212, 2001.

. P.J. Brown and G. J. F. Jones. Context-aware retrievgdloEiRg a new environment for information

retrieval and information iteringPersonal and Ubiquitous Computing(4), pages 153-263, 1997.

. B. L. Brumittet, B. Meyers, J. Krumm, A. Kern, and S. Shaféasyliving: Technologies for intelligent

environments. Ir2nd International Symposium on Handheld and Ubiquitous @dimg (HUC 2000)
pages 12-29, 2000.

. K. Cheverst, K. Mitchell, and N. Davies. Investigatinghtaxt-aware information push vs. information

pull to tourists. InMobile HCI, pages 1-6, 2001.

. A. Dey and A. Newberger. Support for cotext-aware irgéliity and control. INnACM Conference on

Human Factors in Computing Systems (CHI 20@&)ges 859-868, 2009.

A. K. Dey, G. Abowd, and D. Salber. A conceptual framewanid a toolkit for supporting the rapid
prototyping of context-aware applicationduman-Computer Interactiqri6(2-4):97-166, 2001.

A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a cafgpdProgramming by demonstration of
context-aware applications. lCM Conference on Human Factors in Computing Systems (C6#)20
pages 33 — 40, 2004.

A. K. Dey, T. Shon, S. Streng, and J. Kodama. icap: Intiaprototyping of context-aware applications.
In 4th International Conference on Pervasive Computing (Beixe 2006)pages 254-271, 2006.

P. Dourish. The appropriation of interactive techn@esgSome lessons from placeless documents. In
Computer-Supported Cooperative Work: Special Issue ofviegoUse of Groupwargpages 465-490,
2003.

S. Farrell, V. Buchmann, C. S. Campbell, and P. P. Madiitormation programming for personal user
interfaces. Irntelligent User Interfacespages 190-191, 2002.

K. Fujinami, F. Kawsar, and T. Nakajima. Awaremirror: Arponalized display using a mirror. 8nd
Third International Conference on Pervasive ComputingBeive 2005)pages 315-332, 2005.

K. Gajos, H. Fox, and H. Shrobe. End user empowermentnmahwcentered pervasive computing. In
International Conference on Pervasive Computing (Pem&agi002) pages 1-7, 2002.

R. H. Harper. Why people do and don't wear active badgesage study. IrComputer Supported
Cooperative Workpages 297-318, 1996.

D. Hilbert and J. Trevor. Personalizing shared ubigusitdevices.ACM Interactions Magazingpages
34-43, 2004.

S. Hiroshi, Y. Murakami, and T. Nakatsuru. Personaligetart suggestions for context-aware human
activity support by ubiquitous computing networks.N'T Technical Reparpages 77-84, 2004.

J. 1. Hong and J. A. Landay. An architecture for privaepsstive ubiquitous computing. [fhe Second
International Conference on Mobile Systems, Applicati@rsl Services (Mobisys 2004)ages 177—
189, 2004.

F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting gdary life with sentient artefacts. 12005
joint conference on Smart objects and ambient intelligeimueovative context-aware services: usages
and technologies (sOc-EUSAI 200pages 141-146, 2005.

F. Kawsar, K. Fujinami, and T. Nakajima. Prottoy: A mieldare for sentient environment. Interna-
tional Conference on Embedded and Ubiquitous Computingd2005) pages 1165-1176, 2005.

F. Kawsar, K. Fujinami, and T. Nakajima. Deploy spontarsty: Supporting end-users in building and
enhancing a smart home. Trhe Tenth International Conference on Ubiquitous Comuglibicomp
2008) pages 282-292, 2008.

R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenasgeebanalysis of software architectuteEE
Software 13(6), pages 47-55, 1996.

M. Marinilli and A. Micarelli. Generative programmingigen by user models. [40th International
Conference on User Modelingages 30-39, 2005.

N. Matsushita, S. Tajima, Y. Ayatsuka, and J. Rekimoteak&ble key: Device for personalizing nearby
environment. IrProceedings of the Fourth International Symposium on Waar&omputers (ISWC'00)
pages 119-126, 2000.

20

27. M..S. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. laieet for eliciting new user preferences in
recommender systems. @th International Conference on User Modelimmages 178-187, 2003.

28. G. Montoro, X. Alamn, and P. A.Haya. Spoken interactiomtelligent environments: a working system.
Advances in pervasive computing. Austrian Computer Spgages 7-12, 2004.

29. K. Nishigaki, K. Yasumoto, and T. Higashino. Frameworld aule-based language for facilitating
context-aware computing using information appliances.Fitat International Workshop on Services
and Infrastructure for the Ubiquitous and Mobile Internpaiges 345-351, 2005.

30. J. Pascoe. The stick-e note architecture: Extendingntedace beyond the user. End international
conference on Intelligent user interfaces (IUl 1997ages 261 — 264, 1997.

31. Y. Rogers. Moving on from weiser’s vision of calm compgti Engaging ubicomp experiences.Tlhe
Eighth International Conference on Ubiquitous Computibiipicomp 2006)pages 404-421, 2006.

32. M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, RakhgBell, and K. Nahrstedt. A middleware
infrastructure for active spacefEEE Pervasive Computing.(4):74-83, 2002.

33. A. Schmidt.Ubiquitous Computing-Computing in ContefhD thesis, Lancaster University, 2002.

34. O. Stiermerling, H. Kahler, and V. Wulf. How to make sadte softer - designing tailorable applications.
In Designing Interactive Systems (D]ppges 365-376, 1997.

35. R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, ahiiht. The personal server: Changing the
way we think about ubiquitous computing. Fourth International Conference on Ubiquitous Computing
(Ubicomp 2002)pages 194—209, 2002.

Authors

Fahim Kawsar is a PostDoc in the Embedded Interactive System group
of Lancaster University,UK. He received his Ph.D. and M. &raj the Dis-
tributed Computing Lab of Waseda University in 2009 and 20&€pec-
tively. His research interests evolve around ubiquitousmating with spe-
cific interest in smart object systems, human-centric systdrastructures
and tangible interfaces. He has published in the areas witdited middleware, smart ob-
jects, personalization, and physical interfaces. He wasiaient of 2006-08 Microsoft Re-
search (Asia) fellowship.

— Kaori Fujinami is an associate professor in the department of com-
Q puter, information and communication sciences at Tokywehsity of Agri-

'S culture and Technology. He received a MS in Electrical Eegiing and a

i Ph.D. in Computer Science from Waseda University in 199524@b, re-

spectively. He has been working on context recognition apdesentation
through the utilization of daily objects since 2002.

Tatsuo Nakajima is a professor in Department of Computer Science
and Engineering of Waseda University. His research topiesoperating
systems, distributed systems, real-time systems, ubiggitomputing, and
interaction design. Currently, he is is leading two pragjean operating sys-

- tem for future multicore based information appliances amdpasive tech-
nologies for motivating desirable lifestyle.

Jong Hyuk Park received his Ph.D. degree in the Graduate School of
Information Security from Korea University, Korea. He isma professor
at the Department of Computer Science and Engineering, ¢tyam Uni-
versity, Korea. He has published about 100 research papérgernational
« journals and conferences. He has been serving as chaiggaprcommit-
tee, or organizing committee chair for many internatior@iferences and workshops. He
was editor-in-chief of the International Journal of Mulédia and Ubiquitous Engineering

21

(IJMUE), the managing editor of the International Jourrfé&dmart Home (IJSH). He is As-
sociate Editoy Editor of 14 international journals including 8 journalsié@xed by SCI(E).
In addition, he has been serving as a Guest Editor for intiermal journals by some pub-
lishers: Springer, Elsevier, John Wiley, Oxford Univ. ggdindawi, Emerald, Inderscience.
His research interests include security and digital fdesnsibiquitous and pervasive com-
puting, context awareness, multimedia services, etc. Héhgdest paper award in ISA-08
conference, April, 2008.

Sang-Soo Yeaeceived his bachelor's, master's and Ph.D. degrees in
Computer Science from Chung-Ang University, Seoul, Kotda.previ-
ously taught at Dankook University, Seoul, Korea. He hasgdiKyushu
University in Japan as a visiting scholar at the Graduat®&abf Informa-
tion Science and Electrical Engineering (ISEE). And thercéame back to
Korea and he worked for BTWorks, Inc. as a General Managehaneas involved in Han-
nam University as a visiting professor at the same periogv N®is a professor at Division
of Computer Engineering, Mokwon University, Korea. Dr. Yeas been serving as Chairs
for a number of conferences and workshops; MUE 2007, IPG=BTT 2007, FGCN 2007,
WPS 2008, SH'07, MUE 2008, ISA 2008, CSA 2008, UMC 2008, BSBD& FGCN
2008, ASEA 2008, SecTech 2008, and ICUT 2009. He is an ageaiitor of the Interna-
tional Journal of Multimedia and Ubiquitous EngineeringMUJE) and he has been served
as a Guest Editor for the International Journal of Security lis Applications (1JSIA), the
International Journal of Smart Home (IJSH), and the Intéonal Journal of Autonomous
and Adaptive Communications Systems (IJAACS). Dr. Yecseegch interests include Se-
curity, Ubiquitous Computing, Multimedia Service, EmbeddBystem, and Bioinformatics.

