
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

A Portable Toolkit for Supporting End-User Personalization
and Control in Context-Aware Applications

Fahim Kawsar · Kaori Fujinami · Tatsuo
Nakajima · Jong Hyuk Park · Sang-Soo Yeo

Received: date/ Accepted: date

Abstract A context-aware application in the pervasive computing environment provides
intuitive user centric services using implicit context cues. Personalization and control are
important issues for this class of application as they enable end-users to understand and
configure the behavior of an application. However most development efforts for building
context-aware applications focus on the sensor fusion and machine learning algorithms to
generate and distribute context cues that drive the application with little emphasis on user-
centric issues. We argue that, to elevate user experiences with context-aware applications,
it is very important to address these personalization and control issues at the system inter-
face level in parallel to context centric design. Towards this direction, we presentPersona, a
toolkit that provides support for extending context-awareapplications with end-user person-
alization and control features. Specifically, Persona exposes a few application programming
interfaces that abstract end-user customization and control mechanisms and enables devel-
opers to integrate these user-centric aspects with rest of the application seamlessly. There are
two primary advantages of Persona. First, it can be used withvarious existing middlewares
as a ready-to-use plug-in to build customizable and controllable context-aware applications.
Second, existing context-aware applications can easily beaugmented to provide end-user
personalization and control support. In this paper, we discuss the design and implementa-

Fahim Kawsar
Computing Department, Lancaster University, UK
E-mail: fahim.kawsar@comp.lancs.ac.uk

Kaori Fujinami
Department of Computer, Information and Communication Sciences
Tokyo University of Agriculture and Technology, Tokyo, Japan
E-mail: fujinami@cc.tuat.ac.jp

Tatsuo Nakajima
Department of Computer Science, Waseda University, Tokyo,Japan
E-mail: tasuo@dcl.info.waseda.ac.jp

Jong Hyuk Park
Department of Computer Science and Engineering, Kyungnam University, Korea
E-mail: parkjonghyuk1@hotmail.com

Sang-Soo Yeo
Division of Computer Engineering, Mokwon University, Korea
E-mail: ssyeo@msn.com



2

tion of Persona and demonstrate its usefulness through the development and augmentation
of a range of common context-aware applications.

Keywords End-user· Personalization· Context-Aware Application· Toolkit

1 Introduction

A context-aware application in the pervasive computing environment typically runs atop
distributed smart objects embedded with awareness technologies (sensors, actuators and
perception algorithms) where application uses these objects to collect context information
or to perform some services that cause changes in the real world (e.g., adjusting the air-
conditioner based on sensed temperature) including adaptation of its own behavior [10, 21,
33]. Usually, these actuation and self-adaptation are implicit, i.e., application autonomously
performs these actions based upon the context cues. Due to this autonomy end-users have
limited control over the application behavior which cause confusions as they struggle to
understand why an application is behaving in a certain way (e.g., why the nearby mirror
turned into a display showing today’s weather forecasting,etc.) and how to change/configure
that behavior. Eventually, these confusions hinder the adoption of context-aware applica-
tions [3,5]. Previous studies reported that without bringing users at the center of the control,
it is very difficult to increase the adoption of context-aware applications in pervasive comput-
ing environment [13,17]. These studies suggest that supporting user-centric personalization
and control will significantly impact the adoption of context-aware applications.

In this paper, we address this end-user personalization andcontrol issues from a system
perspective. Here by personalization, we refer to the active involvement of end-users to
customize the adaptive behavior of the application. These issues raise two requirements:

– An appropriate user interface using which end-users can control and personalize context-
aware applications.

– An appropriate system component that translates end-user interactions into correspond-
ing system events enabling other components to adapt their behavior to reflect end-users’
preferences.

Although, there have been numerous efforts to systemize the gathering and distribu-
tion of context cues to build context-aware applications [2, 10, 20, 23], these user-centric
requirements were met at the application level by ad-hoc implementations. Our objective is
to systemize this ad-hoc practice through a suitable systemcomponent and to seamlessly
integrate it with existing middlewares.

Our contributions in this work are two-fold.

1. We present a stand-alone toolkitPersonathat provides suitable system support for aug-
menting context-aware applications and can be used with various middlewares. Specifi-
cally, the toolkit offers:

– An interface engine to generate multi-modal user interfaces for providing end-user
personalization and control support. The engine has built-in support for graphical
user interface and speech interface.

– A range of application programming interfaces that enable developers to capture
end-users’ interactions with context-aware applications.

– A document centric approach to provide the control of the application to end-users
in such a way that an application’s default runtime behavior(triggered by dynamic
context information) is overlaid by end-users’ preferences with a finite state engine.



3

2. We show the effectiveness of Persona by augmenting three existing context-aware ap-
plications with multi-modal personalization and control support.

The rest of the paper is organized as follows: in the next section we discuss the back-
ground of our work and place it against related works. The design aspects of Persona are ex-
plained in Section 3 followed by its architectural detail inSection 4. After that in Section 5,
we discuss the programming model offered by Persona. Then in Section 6, we demonstrate
Persona’s ability to augment context aware applications with personalization and control
support by illustrating three applications. Before concluding we put forth a few interesting
issues in Section 7 for further discussions.

2 Background

A context-aware application that run atop or within smart environment usually consists of
the following components:

– Basic Application Component: This component takes care of the basic application
behavior, e.g., application logic, interfaces, etc.

– Communication Component: This component manages the access to smart objects
and utilization of their services. Typical functions performed by this component include
locating, managing, configuring and interacting with the smart objects. Different smart
objects may have different communication and data protocols. It is the communication
component that handles this heterogeneity and provides application with an unified ac-
cess.

– Perception and Adaptation Component:This is where application handles the context
data derived from the smart objects by applying applicationspecific context reasoning
and modeling policies. Applications use this context information to adapt application
behavior accordingly and to further interact with the smartobjects via communication
component to actuate smart object services.

The last two components are recurrent and usually supportedby a suitable infrastruc-
ture [2, 10, 23, 32]. Typically, such infrastructure handles the access issues by providing a
discovery mechanism and provides Application ProgrammingInterface (API) to interact
with the smart objects transparently, and there by tries to separate the application from the
underlying environment. However, the end-user centric issues are left entirely open at the
first component and often completely missing with the presumption that application can
correctly adapt its behavior autonomously by sensing surrounding contexts. We argue that
such assumption considerably degrades the acceptability of the context-aware systems. By
taking control and personalization away from the users, these applications typically makes
end-users life harder, as they keep wondering why the systemis behaving in a certain way
and how to configure it applying their own preferences and styles [5, 31]. This work puts
forth the argument that end-users should be the center of control and should have the ability
to personalize a context-aware system. Rogers [31] and Bellet. al. [4] concurred similar
views on their works with human-centric computing.

End-user personalization in context-aware applications is not a new topic. There are
works that looked at these issue from socio-technological perspectives. Barkhuus and Dey
presented an interesting case study on some hypothetical mobile phone services and have
shown that users prefer proactive services to personalizedones [3]. Some researches that
precede Barkhuus’s work also argued whether information should be pushed towards the



4

user or should be pulled by the user for customization of the context aware systems [8].
Brown and Jones have also defined the interactive and proactive systems where personaliza-
tion activities fall into interactive systems [6]. In all three works, they have tried to furnish
some levels of autonomous interactivity. In line with theseworks, in this paper we have tried
to systemize this end-user interactivity. Our prime motivation is to offer system support to
developers that enable them to bring end-users at the centerof the control and give end-
users the flexibilities to personalize a context-aware system. We consider, theses issues are
typically common to all proactive applications, thus providing a systematic and structured
support will make context-aware application development simpler , less complicated and
more close to end-users.

Our approach basically driven by the separation-of-concern principle as we have taken
the end-user interaction away from the basic application component (mentioned earlier).
From an abstract point of view the proposed toolkit, Personaprovides two levels of sup-
port for the application developers. First, by providing a range of APIs and well defined
amendable data structure through a plug-in module, it enables developers to augment an ap-
plication with personalization support. Application developers can provide this application
specific control and preference management in a systematic fashion. Second, by providing
an interface engine, Persona simplifies the end-user interface development as any suitable
interaction modality can easily be integrated with an application to let end-users personal-
ize and control the application.The interface engine has built-in support for graphical user
interface and speech interface. End-users’ interactions regardless of the interaction modal-
ity are presented to the application in a unified fashion through well defined system events
enabling developers to integrate them in the application logic. As a consequence, develop-
ers can solely focus on the application logic to define the context-awareness of the system,
while providing end-users with the fullest control to personalize the system.

2.1 Related Work

Considering the focus of this paper is more on system supportfor personalization rather than
social perspectives, we would like to discuss some relevantresearch projects. Most of the
personalized systems that we found in the pervasive literature usually built on the concept
of Personal Infromation Cloudwhere users preferred information and services follow the
users. There are two ways for providing such personal clouds: either using portable device
or infra-structured embedded system. One project that combined both these alternatives is
Personal Interaction Point (PIP) system [18]. Intel’s Personal Server utilizes small and pow-
erful wearable hardware that user can use to carry all their personalized content and services
(to some extent). Users can use environment displays to access the content via wireless tech-
nologies [35]. Another work that focused on dedicated hardware for personalized services
is Wearable Key by Matsushita et al. [26]. Their TouchNet system consists of a tranmitter
and a receiver that can be connected via human body conductorand this idea is used to
identify the user to provide his/her personalized contents. Although these projects and sim-
ilar initiatives provide fair solutions from the end-user perspective to provide personalized
services, none of them had approached a toolkit for the content developer, i.e., application
developer. The work presented in this paper primarily targets the application developers to
provide the personalized content. Our approach enables application developers to use any of
these technologies mentioned above to be integrated into application environment to support
personalization.



5

Rule based tools like iCAP [12], Stick-e-notes [30], Alfred[16] provide visual tool,
or sound macros to the end-users to define conditional rules based on the context to con-
nect input and output events. Similarly recognition tools,or more formally Programming
by Demonstration systems like CAPpella [11] uses machine learning techniques to allow
end-users to associate personalized rules with real world events.These approaches are valid
for rapid prototyping and also to personalize the pro-active behavior of the applications.
However, they do not provide any general guideline regarding application development to
systemize these supports. Two notable recent works are Situation [9] and PersonisAD [1].
In Situation, Dey etl al. extended their well known Context Toolkit [10] with a new situation
component that exposes the internals of a context-aware system thus enabling developers
and designers to build systems with intelligible and controllable user interfaces that are
more close to end-users [9]. In PersonisAD [1], a query response of context information is
augmented with meta context information that can be used to provide users with feedback
of the system’s internal state. However, our work differs from them as we have tried to gen-
eralize the interface development mechanism for personalization and control support, while
multiplexing it with the internals of the applications through structured APIs.

Sakai proposes a framework that focuses on the end-user preferences of mobile phone
applications [19]. But his approach cannot be applicable ingeneric context aware aspects.
Furthermore, the framework is tightly coupled with the application considering their rigid
focus on the mobile phone domain, thus making custom application development fairly
complex. In [29] a rule based approach has been proposed to control and configure infor-
mation appliances. However, their approach does not cover how to personalize the system
using these rules. Also we believe uttering specific phrasesas in our approach for control-
ling appliances are easier for the end-users than generating rules for context aware behav-
ior. Speech and GUI-based interaction for controlling smart spaces has been investigated
in various projects like Odisea [28], EasyLiving [7] etc. Especially the EasyLiving project
highlights the suitability of natural language based speech interface for smart spaces. Per-
sona has built in support for voice and GUI based interactionmodalities adhering to these
projects suggestions. In addition the loosely coupled design of Persona and the plug-gable
input interface component (see Section 4.2) enables Persona to accommodate any suitable
interaction modality into the application environment.

In traditional desktop computing graphical user interfaceis provided to personalize an
application. This aspect has been well investigated in [14,34] and their implications are ob-
viously not appropriate for the characteristics of pervasive applications. Dourish looked at
the personalization aspect from system design point of viewexploring a collaborative doc-
ument management system. He used the term “appropriation” to denote a process by which
people adopt and adapt technology [13]. Although his work isvery similar and influenced
us significantly, he focused on pre-design considerations of group-ware for appropriation
features in stead of providing a system tool like ours to automate the process. In the user
modeling and usability domain, a variety of studies have been conducted to provide toolkits
or modeling language for assisting developers in designingeffective interactive systems and
modeling user activities through rigorous sensor data analysis [25, 27]. However, none of
them addresses the issue of a unified system support as we explore in this paper.

3 Design Issues

Figure 1 depicts a hypothetical context-aware applicationscenario in pervasive computing
environment; a smart space populated with a range of smart objects and sensing infrastruc-



6

Fig. 1 A Hypothetical Multimodal Context-Aware Application involving sensors and smart objects

ture that provides some proactive services. As we have mentioned earlier, bringing end-users
at the center of the control of such applications requires a suitable user interface that allows
them to control and configure the system as well as a system component that can translate
these interactions into appropriate system events that canbe multiplexed with the rest of the
application logic. Systemizing these processes leads to following two requirements:

– A system component is necessary that can generate intelligible and controllable user
interface. Ideally, this interface should be independent from the underlying application
logic.

– A system component that can capture users interactions and represents these interac-
tions into the underlying application in a way that can be systematically modeled during
development time. This will enable an application to reflectend-users preferences dy-
namically at runtime.

The first requirement basically asks for a system component that can generate user in-
terfaces meant for personalization and control regardlessof the application logic. Personal-
ization is the direct impact of a subset of users interactionwith the application. Consider-
ing there are various interaction modalities (speech, gesture, digital ink, implicit controller,
augmented reality, GUI etc.) and the best candidate dependson the application itself, this
requirement is met by building an interface engine with bi-directional plugs. That is, at one
side, this engine enables developers to specify the required interaction by offering them with
a collection of APIs. One the other side any multimodal interface can be plugged into this
engine that enables end-users to interact with the system.

The second requirements is more focused on the interaction translation and integration
issues. First of all, it is important to understand how personalization and control features
can be represented in a unified manner. To discuss this, lets consider Fig. 1 again, the hypo-



7

thetical scenario gives the impression that there are multiple categories of preferences and
controls such as:

– Artefact Preference:This category of personalization options is for enabling a user to
select the participation of any artefact in the cooperativesmart environment. For exam-
ple, a user may want to use a wall-mounted display instead of adisplay-augmented table
for ambient traffic information.

– Action Preference: This category enables a user to set preferred actions. Usually a
system consists of several actions that it actuates based onsome conditions. Users can
enable or disable actions using this class of preference information. For example, users
can enable/disable the automatic/manual weather information display action on a hall-
way mirror.

– Interaction Modality Preference: This class of options is to provide users with the
flexibility to select their preferred interaction mechanism. For example, context-aware
shopping assistant may have multiple user interfaces (likehandwriting or voice for input
and display or sound for output); users can select his/her preferred interaction modali-
ties.

– Timing Preference:This category enables users to associate an action of the proactive
application with some contextual events like location, time, external presence etc. For
example: a user may want the cell phone to automatically switch to silent mode when
he/she is in the meeting room.

Albeit this listing is for an example purpose, it covers mostof the pervasive applications.
So to abstract these preference and control options in a unified manner it is important to de-
rive a syntactically well defined data structure that can be used as the logical carrier for the
preference features. In Persona, we have designed such a data structure that enables devel-
opers to define these application specific preference and control options. Developers are free
to build applications preference options and grouping those options into some categories as
above. Persona can then encapsulate these categories into ageneric data structure.

Fig. 2 Basic Building Blocks of Persona

The next issues is how the end-
users’ interactions converge with pref-
erence and control features. In Persona,
this is done by following a document
centric approach. Persona is offered to
the developers as an application plug-in,
The plug-in basically provides a collec-
tion of APIs using which application de-
velopers can add control and personal-
ization features to an application and can
select appropriate interaction interface
for those features. Persona then takes
care of the rest by generating the appro-
priate user interfaces following the pref-
erence and control specifications pro-
vided by the developers. Persona con-
verts this specifications into an XML formatted preference document. In addition to provide
the interface specification, this document is also used by Persona to overwrite an applica-
tion’s default behavior to reflect end-user’s preferences.Figure 2 shows this simple design
methodology.



8

Another design issue is how the end-users behavior will be merged with the default
system behaviors. Typically, a context-aware applicationis driven by a set of predefined
rules that are triggered when particular contexts are matched. However, Persona’s design
methodology implies that the application rules will be independent from end-users’ runtime
preferences. Accordingly, it is necessary to resolve the behavior of the system at runtime.
Persona assumes that the end-users always have the highest priority and any system behavior
can be written off by Persona if it conflicts with end-users’ preferences. To provide this
runtime resolution Persona employs a finite state engine, that operates on the document
(mentioned earlier) to define the actual runtime behavior ofthe system.

To conclude this section, here we are summarizing the designprinciples that are fol-
lowed in Persona

1. Providing an application independent interface engine capable of plugging different in-
teraction techniques.

2. Providing a unified data structure backed up by well definedAPIs to enable developers
to provide preference and control specification and to capture end-users’ interactions.

3. Providing a document centric approach to connect the various part of the system.
4. Providing a Finite State Engine to enable dynamic time resolution to reflect end-users’

preferences nullifying systems’ default behavior triggered by context sensing (when ap-
propriate).

In the next section, architectural building blocks of Persona and the programming model
are explained.

4 Architecture of Persona

Following the design guidelines presented in the previous section, Persona is built in a
loosely structured manner where one core component plays the primary actors role and pro-
vides interfaces for plugging other components. Persona isbasically sandwiched between a
context aware application and its corresponding middleware (used to capture and distribute
context and actuate events). Figure 3 illustrates the basicbuilding blocks of Persona that are
described below.

4.1 Application Interface

This component is the access point for the application developers to use Persona. It provides
an array of APIs that developers can use to define the personalization and control options
for the application in context. Developers can create custom categorization of preferences or
can use the built-in ones (discussed in Section 3). Furthermore, applications can subscribe
to Persona to receive interaction events that are related topersonalization and control or can
poll periodically. Currently this interface is implemented in java and offered to the develop-
ers as a library package. In the later part of this section, wewill discuss how developers can
use this component to support personalization and control in their applications.

4.2 Input Interface

As we discussed in the previous section, one of the requirements to support end-user per-
sonalization and control is to provide appropriate user interfaces. These interfaces typically



9

Fig. 3 Internal Architecture of Persona

vary from application to application, and employ a multitude of interaction modalities, e.g.,
graphical user interfaces, speech, projected interface, tangible interface, speech interface,
gesture based interfaces, etc. However, regardless of the interaction modalities, end-users’
interactions with context aware applications have the identical meanings to the applica-
tion. For example, consider a smart lamp that turns itself onautomatically and adjusts the
brightness adapting ambient light level. However, a user may want the lamp to be turned on
manually but to adapt the brightness autonomously and can dothis customization by say-
ing a particular phrase (speech), or by pressing a specific button (tangible), or by selecting a
specific option from the GUI panel, etc. However, to the underlying application that controls
the lamp, these actions have the identical meaning. The above rationale leads to a 2-layer
input interface architecture.

1. Input Interface Core: This core acts as a wrapper for the underlying interaction modal-
ity (speech, GUI, gesture, etc.). It provides a plug-in architecture and offers a range of
APIs to developers using which a developer can wrap any specific multimodal interac-
tion interface. This core converts users’ interactions from varying user interfaces into
a unified interaction primitives and passes them to underlying Persona Core for further
processing.

2. Input Interface Engine: This engine is interface specificand enables an application to ex-
ploit a variety of multimodal interfaces. In the current prototype two interaction modal-
ities are integrated.

– Speech Interface:End-users usually provide their preferences in simple english
language, like “Do not turn off the light automatically”, “Notify me every morn-
ing”, etc. The speech interface in Persona is designed to handle such free from in-
teractions. Developers provide a list of phrases and sentences that can be used for
personalizing target application through APIs. Persona generates the corpus and the
grammar file automatically which is later used by the recognizer 1. This recognizer
runs in the background when an application starts. To enablethis speech engine the
target application environment has to be equipped with one or multiple microphones.

– Graphical User Interface (GUI): End-users can provide their preference by manip-
ulating GUI. Developers provide a list of options that can beused for personalizing
target application through APIs. Persona automatically generates this GUI analyz-
ing the options provided by the developers. Figure 4 shows a sample GUI that is
automatically generated by Persona for the application presented in Section 5.

1 http://cmusphinx.sourceforge.net/



10

Fig. 4 Automatically Generated GUI by Persona for a Sample Application

Due to this clear separation and unified representation of interaction primitives, it is
possible to support a range of multi-modal interfaces in Persona.

4.3 Persona Core

This is the central component of Persona and connects other components (i.e., Application
Interface, Input Interface, and Finite State Engine) of Persona with each other exploiting the
Preference Document (described in Section 4.4). Upon receiving interaction events from the
real world though Input Interface, Persona Core filters out the preference options utilizing
the Preference Document and notifies the application using Application Interface. Also,
when conflict arises among application states, it consults the Finite State Engine (described
in Section 4.5). for the appropriate resolutions.

4.4 Preference Document

This is an XML file generated dynamically during the deployment time of an application
that uses Persona for personalization and control support.It contains application specific
personalization options provided by the application developer using Personas APIs. Each
of these personalization and control options is parameterized by a number of interaction
possibilities and based on end-users’ interactions the preference and control options are
properly set. When Persona receives external real world events, this document is consulted
for filtering preference data and for decision-making.

4.5 Finite State Engine:

In context-aware application, typically several actions are triggered based on the sensed con-
text and these triggering rules are defined by the developersduring development time. Most
of the time, these rules do not take users preferences into account, thus when end-users’ are
brought into the center of control and customization often there could be conflict between
the default application behavior and users preferred behavior. This eventually might cause
an application to move into invalid states. The finite state engine component of Persona



11

Fig. 5 Example Operations of Finite State Engine

is designed to handle these situations. It internally maintains a small cache of past prefer-
ence change and usage events, which can be exploited to recover from invalid conditions
to maintain application flow. To understand the working mechanism of this component, lets
consider a simple application scenario: a smart mirror installed in the washroom that shows
some personalized ambient information related to a user when he/she brushes teeth in front
of the mirror. The toothbrush is augmented to identify the user [15]. The mirror can show
information automatically whenever a user brushes his teeth in front of the mirror or the user
can manually start the mirror stating his/her identity. Now if the user does not want to use the
toothbrush but still wants the mirror to trigger its displayfunctionality automatically, then
the application moves to an invalid state (because the system can not identify the user thus
cannot retrieve the personalized information related to that user like schedule etc.). When
this conflict is identified by the application, it can use the finite state engine to maintain its
workflow. In this scenario, depicted in Fig. 5, the finite state engine can either alter the start
up preference to manual, so that the user can manually state his/her identity. Alternatively,
if the toothbrush is being used it can alter the toothbrush preference to positive.

5 Programming Model: Integration of Persona into Applications

There are two types of users in Persona: the developers of theapplication and the end-
users of the application. Developers can use Persona for adding personalization and control
support in an application whereas end-users can interact with the applications. Persona fil-
ters end-users interaction meant for personalization and accordingly modifies applications
behavior. From developers perspective, integrating Persona into applications requires fol-
lowing steps:

1. Listing all the preference and control options of the applications.
2. Categorizing these options using taxonomy similar to theone presented in Section 3.
3. Generating the Positive and Negative statements for eachof the preference options.



12

Fig. 6 Persona APIs Available to the Developers

Fig. 7 Code Snippets and Preference Knowledge Base demonstratingPersonas usage in Applications

4. Listing these statements into Persona using APIs. A stand-alone library (Application
Interface) is provided for the application developer. Thislist is used to generate the
Preference Document and corpus of the speech recognition engine.

5. Subscribing to Persona for personalization events.
6. Invoking the suitable interaction engine. In the currentversion GUI and Speech Recog-

nizer are provided.

Steps 1-3 are design phase tasks where step 4-6 are development phase tasks. The code
snippets in Fig. 7 demonstrates the latter steps (4-6) utilizing the APIs presented in Fig.
6 for a very simple application composed of a thermometer anda cooler followed by the
Preference Document generated for this application.

In this application, the cooler is automatically turned on/off based on the sensed air tem-
perature. Speech Engine is used as the interaction modalityin this code example. The prefer-
ence document (line 19-47) is automatically created duringapplication deployment time. In
line 1 we have created a persona instance with speech engine.Then from line 2 to line 4 we



13

have added the thermometer to Persona, and added positive and negative statements based
on the speech interaction engine constructs (provided by the developers). These statements
are used to generate the preference document. For lines 2, 3 and 4 in the application code,
we have entries (line 22-32) in the preference document. Similarly, for the switching action
of the cooler we have added the action, positive and negativestatements to persona, which
cause the entries (line 35-45) in the preference document. In line 9 we start the persona
core to capture real world events (speech). In this application we have used only two types
of preference category: artefact preference and action preference. As depicted, due to the
flexible design of this API we can accommodate other categories in the same manner.

The speech recognizer engine runs in the background after deployment. Whenever the
recognizer identifies a phrase, the persona core is notified.If the persona core finds a match
for this phrase in one of the entries in the preference document, it extracts the information
for that phrase from the preference document and sends it to the application. It also updates
the preference document e.g. ¡preference¿ attribute to Preferred or Not Preferred based on
captured event. Similarly, for GUI engine when the GUI eventis captured, it is sent back
to application and the persona core updates preference document. As shown in line 10-38,
the application uses preference callback to receive this information and it can utilize it in an
application specific way. Application can also call explicitly getPreference(id,type) to get
the preference from the preference document.

6 Evaluation through Application Development

We have adopted a scenario based evaluation method introduced in [24] for evaluating Per-
sona’s support in providing applications with construct for end-user personalization and
control. Let us consider the following scenario:

Joanna is a broker at the New York Stock Exchange. During her daily morning routine
in the bathroom, while she is brushing her teeth and putting on her makeup, her mirror
provides information she needs to start her day. During these activities she can watch her
daily schedule and what the weather will be like, so she can dress accordingly. Furthermore
she can find out if the subway is running properly. After arriving at the office she works non-
stop for several hours contacting her clients, buying and selling on their accounts until her
agent reminds her to take a coffee break and tells her not to forget her lunch appointment
at 13:00 with one of her biggest clients. Later that afternoon she goes to the restaurant to
meet her client. While she is waiting for her client, the table she is sitting at shows that
tonight there are still tickets left for musical Les Misrables and that perfumes are on sale at
Saks Fifth Avenue. After lunch she returns to the office, the computer on her desk informs her
about some important memos she received during her absence.While she continues working,
her desk lamp turns on automatically and the track For Elise from Best of Beethoven is being
played as she starts responding a clients email.

This scenario is implemented using following three different context-aware applications:

6.1 AwareMirror Application

AwareMirror is a smart mirror installed in the washroom as shown in Fig. 8. In addition to
its primary task of reflecting someones image it can also provide some useful information
about the person who is using the mirror. Before deploying this application we have carried
out two potential users surveys. About 50 people aged 20-50 participated in the surveys.



14

Fig. 8 AwareMirror Application in Operation

rephrase Prior to deploying this application we performed two surveys on potential users.
The first survey was to find out the information categories that are preferred by the user to be
displayed and second survey was to figure out the best sensingtechnologies. Based on the
survey result, we have selected three categories of information to be presented to the users;
these are i) Schedule ii) Transportation Information, iii)Weather Forecasting. The sensing
technology preferred by the participants is implicit sensing via everyday objects rather than
any vision based explicit sensing. The artefacts and the preference options are explained
below.

Physical Artefacts

1. Mirror: A regular mirror augmented with LCD display to show personalized information
proactively and proximity sensors to detect users presence.

2. Toothbrush: A regular toothbrush augmented with accelerometer sensor used to identify
a user

Preference Options

– Artefact: With/without toothbrush
– Action: Automatic/manual start/close
– Interaction: Tangible Button/Voice/GUI for navigation.
– Timing: Morning/Always

6.2 ByteNDine Application

This application shown in Fig. 9 is designed for a public/private dining space scenario. The
goal of the application is to provide the latest news to the user while dining. A lot of people
prefer to read newspaper, magazine, books in a caf or a restaurant. We tried to capture this
practice by providing information on the dining table, which means the table acts as an am-
bient display. We have assumed that people will carry a tag/token that will represent his/her
preferred topic. Accordingly the system provides that topics latest news to the user in an
unobtrusive manner. User can browse through the news and look for detailed information
or can simply close the display. The functional components and the preference options are



15

Fig. 9 ByteNDine Application in Operation

explained below.

Physical Artefacts

1. Table augmented with projector and RFID tag reader to identify users presence and
preference.

Preference Options

– Artefact: None
– Action: Automatic/manual start/close
– Interaction: Touch Display/Voice/GUI for navigation
– Timing: Morning/Always, Alone/Always

6.3 Smart Assistant Application

This application (Fig. 10) is designed for a workspace running on the users desktop. It is
a simple media level context aware application that can track users activities by the usage
of artefacts populated in the workspace. To be specific, the application uses a chair, a desk
lamp, a tray and a few mugs and jars for sensing users contexts. Based on the state of these
artefacts the application can track if a user is in the workspace and whether he/she is working
for a long time. If so the application suggests the user to take a refreshment and can pro-
vide the user with some predefined schedule notification. Also the application can control
workspace lighting based on the users presence and surrounding environments brightness.
It can also play music using systems media player. The systemuses an animated chatting
agent to interact with its user. The user can additionally chat with this agent during leisure
time. Though the chatting agent is not very smart, it can entertain the user for a while. The
artefacts and the preference options are explained below.

Physical Artefacts

1. Chair and Lamp: Sensor augmented chair and desk lamp to detect users presence and
light sensitivity of the workspace.



16

Fig. 10 Smart Assistant Application in Operation

2. Media Player: A simple agent to play music.

Preference Options

– Artefact: Yes/No Use of Lamp, Music Player
– Action: Yes/No Suggestion for break, music play, automatic light.
– Interaction: None (All are proactive)
– Timing: Always/On specific time

All three applications are developed atop a middleware called Prottoy [22] and aug-
mented with personalization support using Persona. All three applications were previously
developed with personalization support and were reported in [21].

6.4 Observations

We were interested in several things from Personas evaluation point of view:

1. Development Task:We have found that adding personalization options in applications
was quite simple primarily because of the abstract APIs of Persona. For extending these
applications developers need to analyze the applications and list the user centric per-
sonalization options into some categories. Since in all three applications voice based
interaction is used, developers need to generate the statements that represent users pref-
erence towards specific options.

2. Code Complexity: The second important thing we have observed is that injecting Per-
sona in these existing applications is pretty straightforward. Since it is independent of
the middleware and only application code need to be modified we could do that in a
very short span of time and with the inclusion of about 270 lines of code for all three
applications. Please note that, we have used a built-in speech recognizer. So to use other
interaction paradigm we need to build custom engines which will increase the develop-
ment time and cost.

3. End-users Impression:We had performed informal user trials involving 9 people (6
Male, Age Range: 21 32) to evaluate Personas user-centric performance. Essentially,
how end-users feel like personalizing the behavior of proactive applications? We initially
introduced them the applications and then asked them to use and personalize them. Each
trial took about two hours followed by an interview. We have found all participants wants
to personalize the application in their own way and interestingly the combination of all



17

the personalization options for all three applications is unique for each participant. They
explicitly mentioned, just like traditional desktop applications, they would definitely
like to have the personalization options for physical worldapplications and effectively
they would like to control everything. They do not want a smart place to be proactive
rather to be reactive to their needs in their preferred ways.However, our current GUI
and speech interaction are inadequate. Although GUI seemedacceptable to them in
general, speech had received contrasting ratings. 6 of the participants found it to be
annoying and not natural to converse with a space. Also, the speech recognizer used in
the current prototype misinterpreted voices in some cases that caused frustrations among
the participants.

7 Discussions

Our major design concern was to provide a structured representation of the preference data
that makes management of personalization easier. In Section 5 we have shown how to use
the APIs to represent the personalization data. Furthermore, we have provided an exemplary
classification scheme in Section 3. But we do not claim that this categorization can handle
all sorts of personalization requirements. However, this classification can be considered as a
guideline for further derivations. Persona is flexible enough to accommodate further classes.
For example, consider the revised lines of the scenario presented in Section 6.

”While she continues working, her desk lamp turns on automatically and, it dims into a
pink shade and the track . In this case, the built-in categories cannot handle this option. But
Persona APIs allows us to easily accommodate this. For example, to support this option we
can use

artefactID=pm.addPreference(Lamp,Generic-Color-Preference);

pm.addPositiveStmt(artefactID,"I like to use pink shade.");

This line will result following entries in the Preference Knowledge Base:

<generic-color-preference>

<artefact>

<id>artefact-2</id>

<name>Lamp</name>

<preference>preferred</preference>

<positive-phrase>

<phrase> I like to use pink shade </phrase>

</positive-phrase>

</artefact>

</generic-color-preference>

So, Persona will handle this category exactly in the same manner as any other cate-
gory. Because of this unified design it is very easy to accommodate further categories of
preferences.

Another important aspect is the operator used with the data structure. Currently we use
two discrete operators (Positive and Negative, Yes/No options) to represent users prefer-
ences. However, none of these operators are capable of handling semantically rich continu-



18

ous values. For example: If a user wants to set the cooler at a comfortable level, the current
version of Persona cannot handle this action, unless the meaning of comfortable is spec-
ified in the application logic. Supporting these kind of semantically rich preference is an
interesting topic and we are currently working on this issue.

Current speech interaction suffers from poor acceptability as we have found in the end-
user evaluation. Also, current Finite State Engine supportto recover from erroneous states
due to misinterpretation of voice is minimal as all dynamic situations are hard to predict
during the design phase. We are working on a more loosely coupled speech interaction
engine where semantics of the user statement is analyzed rather exact matching. Thus, future
version of Persona will be more reliable. GUI and speech for collecting input might not be
applicable to all systems. Given the loosely coupled natureof Persona, it can be easily
seen that a new interaction engine can be injected seamlessly into other applications. So,
if an application needs a gesture-based interaction, a gesture recognizer can replicate the
operations of the speech recognizer and in that case the preference statement related APIs
of persona core would consider the gesture primitives. The same is true for other input
paradigms like handwriting or tag based interaction.

Considering the extensible and pluggable design and the previous issues in this section,
we believe that scaling into a large environment has no affect at all on Persona. For example,
in Section 6 we have shown that three different applications with different requirements,
interactions and functionalities worked smoothly. Persona does not handle the application
logic. It receives the information from the environment andpresents it to the application
in a structured way using the preference attributes. It is the responsibility of the developer
to utilize this information in an application specific way. Once applications are deployed,
Persona is automatically deployed. However, it is necessary that the application environment
possesses the appropriate tool for interactions; for example, in the current version a display
and a microphone are needed for GUI and voice interactions respectively.

8 Conclusion

Although several works emphasized the importance of supporting end-user personaliza-
tion in context-aware applications, unfortunately available contex-aware middlewares do
not have adequate support for that. Persona addresses this specific issue and enables de-
velopers to allow end-users for personalizing context-aware applications in a unified way.
In this paper we have discussed the background and design rationales behind Persona and
explained the resulting system architecture in detail. We have also shown how Persona can
provide support to develop and extend context-aware application by discussing a range of
context-aware applications. The primary contributions ofthis paper are two fold. First, it
allows a range of context-aware applications to support end-user personalization and con-
trol in a systematic fashion with multiplexing it with application code explicitly. Second, it
can be used with different context-aware middlewares and thus can be used to extend exist-
ing context-aware applications with personalization and control support. We consider, out
work is useful for pervasive computing community, and specially for applications that are
context-aware.

References

1. M. Assad, D. J. Carmichael, J. Kay, and B. Kummerfield. Personisad: Distributed, active, scrutable
model framework for context-aware services. InFifth International Conference on Pervasive Computing



19

(Pervasive 2007), pages 55–72, 2007.
2. J. E. Bardram. The java context awareness framework - a service infrastructure and programming frame-

work for context-aware applications. InThe 3rd International Conference on Pervasive Computing
(Pervasive 2005), pages 98–115, 2005.

3. L. Barkhuus and A. Dey. Is context-aware computing takingcontrol away from the user? three levels
of interactivity examined. In5th International Conference on Ubiquitous Computing, pages 150–156,
2003.

4. G. Bell and P. Dourish. Yesterday’s tomorrows: Notes on ubiquitous computing’s dominant vision. In
Personal and Ubiquitous Computing, volume 11(2), pages 133–143, 2007.

5. V. Bellotti and K. Edwards. Intelligibility and accountability: Human considerations in context-aware
systems.Human-Computer Interaction, 16(2-4), pages 193–212, 2001.

6. P. J. Brown and G. J. F. Jones. Context-aware retrieval: Exploring a new environment for information
retrieval and information itering.Personal and Ubiquitous Computing, 5(4), pages 153–263, 1997.

7. B. L. Brumittet, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving: Technologies for intelligent
environments. In2nd International Symposium on Handheld and Ubiquitous Computing (HUC 2000),
pages 12–29, 2000.

8. K. Cheverst, K. Mitchell, and N. Davies. Investigating context-aware information push vs. information
pull to tourists. InMobile HCI, pages 1–6, 2001.

9. A. Dey and A. Newberger. Support for cotext-aware intelligibility and control. InACM Conference on
Human Factors in Computing Systems (CHI 2009), pages 859–868, 2009.

10. A. K. Dey, G. Abowd, and D. Salber. A conceptual frameworkand a toolkit for supporting the rapid
prototyping of context-aware applications.Human-Computer Interaction, 16(2-4):97–166, 2001.

11. A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a cappella: Programming by demonstration of
context-aware applications. InACM Conference on Human Factors in Computing Systems (CHI 2004),
pages 33 – 40, 2004.

12. A. K. Dey, T. Shon, S. Streng, and J. Kodama. icap: Interactive prototyping of context-aware applications.
In 4th International Conference on Pervasive Computing (Pervasive 2006), pages 254–271, 2006.

13. P. Dourish. The appropriation of interactive technologies: Some lessons from placeless documents. In
Computer-Supported Cooperative Work: Special Issue on Evolving Use of Groupware, pages 465–490,
2003.

14. S. Farrell, V. Buchmann, C. S. Campbell, and P. P. Maglio.Information programming for personal user
interfaces. InIntelligent User Interfaces, pages 190–191, 2002.

15. K. Fujinami, F. Kawsar, and T. Nakajima. Awaremirror: A personalized display using a mirror. In3rd
Third International Conference on Pervasive Computing (Pervasive 2005), pages 315–332, 2005.

16. K. Gajos, H. Fox, and H. Shrobe. End user empowerment in human centered pervasive computing. In
International Conference on Pervasive Computing (Pervasive 2002), pages 1–7, 2002.

17. R. H. Harper. Why people do and don’t wear active badges: Acase study. InComputer Supported
Cooperative Work, pages 297–318, 1996.

18. D. Hilbert and J. Trevor. Personalizing shared ubiquitous devices.ACM Interactions Magazine, pages
34–43, 2004.

19. S. Hiroshi, Y. Murakami, and T. Nakatsuru. Personalizedsmart suggestions for context-aware human
activity support by ubiquitous computing networks. InNTT Technical Report, pages 77–84, 2004.

20. J. I. Hong and J. A. Landay. An architecture for privacy-sensitive ubiquitous computing. InThe Second
International Conference on Mobile Systems, Applications, and Services (Mobisys 2004), pages 177–
189, 2004.

21. F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting everyday life with sentient artefacts. In2005
joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages
and technologies (sOc-EUSAI 2005), pages 141–146, 2005.

22. F. Kawsar, K. Fujinami, and T. Nakajima. Prottoy: A middleware for sentient environment. InInterna-
tional Conference on Embedded and Ubiquitous Computing (EUC 2005), pages 1165–1176, 2005.

23. F. Kawsar, K. Fujinami, and T. Nakajima. Deploy spontaneously: Supporting end-users in building and
enhancing a smart home. InThe Tenth International Conference on Ubiquitous Computing (Ubicomp
2008), pages 282–292, 2008.

24. R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software architecture.IEEE
Software, 13(6), pages 47–55, 1996.

25. M. Marinilli and A. Micarelli. Generative programming driven by user models. In10th International
Conference on User Modeling, pages 30–39, 2005.

26. N. Matsushita, S. Tajima, Y. Ayatsuka, and J. Rekimoto. Wearable key: Device for personalizing nearby
environment. InProceedings of the Fourth International Symposium on Wearable Computers (ISWC’00),
pages 119–126, 2000.



20

27. M. . S. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. Interfaces for eliciting new user preferences in
recommender systems. In9th International Conference on User Modeling, pages 178–187, 2003.

28. G. Montoro, X. Alamn, and P. A.Haya. Spoken interaction in intelligent environments: a working system.
Advances in pervasive computing. Austrian Computer Society, pages 7–12, 2004.

29. K. Nishigaki, K. Yasumoto, and T. Higashino. Framework and rule-based language for facilitating
context-aware computing using information appliances. InFirst International Workshop on Services
and Infrastructure for the Ubiquitous and Mobile Internet, pages 345–351, 2005.

30. J. Pascoe. The stick-e note architecture: Extending theinterface beyond the user. In2nd international
conference on Intelligent user interfaces (IUI 1997), pages 261 – 264, 1997.

31. Y. Rogers. Moving on from weiser’s vision of calm computing: Engaging ubicomp experiences. InThe
Eighth International Conference on Ubiquitous Computing (Ubicomp 2006), pages 404–421, 2006.

32. M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt. A middleware
infrastructure for active spaces.IEEE Pervasive Computing, 1(4):74–83, 2002.

33. A. Schmidt.Ubiquitous Computing-Computing in Context. PhD thesis, Lancaster University, 2002.
34. O. Stiermerling, H. Kahler, and V. Wulf. How to make software softer - designing tailorable applications.

In Designing Interactive Systems (DIS), pages 365–376, 1997.
35. R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light. The personal server: Changing the

way we think about ubiquitous computing. InFourth International Conference on Ubiquitous Computing
(Ubicomp 2002), pages 194–209, 2002.

Authors

Fahim Kawsar is a PostDoc in the Embedded Interactive System group
of Lancaster University,UK. He received his Ph.D. and M. Engg. at the Dis-
tributed Computing Lab of Waseda University in 2009 and 2006respec-
tively. His research interests evolve around ubiquitous computing with spe-
cific interest in smart object systems, human-centric system infrastructures

and tangible interfaces. He has published in the areas of distributed middleware, smart ob-
jects, personalization, and physical interfaces. He was a recipient of 2006-08 Microsoft Re-
search (Asia) fellowship.

Kaori Fujinami is an associate professor in the department of com-
puter, information and communication sciences at Tokyo University of Agri-
culture and Technology. He received a MS in Electrical Engineering and a
Ph.D. in Computer Science from Waseda University in 1995 and2005, re-
spectively. He has been working on context recognition and representation

through the utilization of daily objects since 2002.

Tatsuo Nakajima is a professor in Department of Computer Science
and Engineering of Waseda University. His research topics are operating
systems, distributed systems, real-time systems, ubiquitous computing, and
interaction design. Currently, he is is leading two projects: an operating sys-
tem for future multicore based information appliances and persuasive tech-

nologies for motivating desirable lifestyle.

Jong Hyuk Park received his Ph.D. degree in the Graduate School of
Information Security from Korea University, Korea. He is now a professor
at the Department of Computer Science and Engineering, Kyungnam Uni-
versity, Korea. He has published about 100 research papers in international
journals and conferences. He has been serving as chairs, program commit-

tee, or organizing committee chair for many international conferences and workshops. He
was editor-in-chief of the International Journal of Multimedia and Ubiquitous Engineering



21

(IJMUE), the managing editor of the International Journal of Smart Home (IJSH). He is As-
sociate Editor/ Editor of 14 international journals including 8 journals indexed by SCI(E).
In addition, he has been serving as a Guest Editor for international journals by some pub-
lishers: Springer, Elsevier, John Wiley, Oxford Univ. press, Hindawi, Emerald, Inderscience.
His research interests include security and digital forensics, ubiquitous and pervasive com-
puting, context awareness, multimedia services, etc. He got the best paper award in ISA-08
conference, April, 2008.

Sang-Soo Yeoreceived his bachelor’s, master’s and Ph.D. degrees in
Computer Science from Chung-Ang University, Seoul, Korea.He previ-
ously taught at Dankook University, Seoul, Korea. He has joined Kyushu
University in Japan as a visiting scholar at the Graduate School of Informa-
tion Science and Electrical Engineering (ISEE). And then hecame back to

Korea and he worked for BTWorks, Inc. as a General Manager andhe was involved in Han-
nam University as a visiting professor at the same period. Now he is a professor at Division
of Computer Engineering, Mokwon University, Korea. Dr. Yeohas been serving as Chairs
for a number of conferences and workshops; MUE 2007, IPC-07,FBIT 2007, FGCN 2007,
WPS 2008, SH’07, MUE 2008, ISA 2008, CSA 2008, UMC 2008, BSBT 2008, FGCN
2008, ASEA 2008, SecTech 2008, and ICUT 2009. He is an associate editor of the Interna-
tional Journal of Multimedia and Ubiquitous Engineering (IJMUE) and he has been served
as a Guest Editor for the International Journal of Security and Its Applications (IJSIA), the
International Journal of Smart Home (IJSH), and the International Journal of Autonomous
and Adaptive Communications Systems (IJAACS). Dr. Yeo’s research interests include Se-
curity, Ubiquitous Computing, Multimedia Service, Embedded System, and Bioinformatics.


