Noname manuscript No.
(will be inserted by the editor)

Design and Implementation of a Framework for Building
Distributed Smart Object Systems

Fahim Kawsar - Tatsuo Nakajima - Jong
Hyuk Park - Sang-Soo Yeo

Received: date / Accepted: date

Abstract A smart object system encompasses the synergy between compu-
tationally augmented everyday objects and external applications. This paper
presents a software framework for building smart object systems following a
declarative programming approach centered around custom written documents
that glue the smart objects together. More specifically, in the proposed frame-
work applications’ requirements and smart objects’ services are objectified
through structured documents. A runtime infrastructure provides the sponta-
neous federation between smart objects and applications through structural
type matching of these documents. There are three primary advantages of our
approach- firstly, it allows developers to write applications in a generic way
without prior knowledge of the smart objects that could be used by the appli-
cations. Secondly, smart object management (locating, accessing, etc.) issues
are completely handled by the infrastructure thus application development
becomes rapid and simple. Finally, the programming abstraction used in the
framework allows extension of functionalities of smart objects and applications

Fahim Kawsar

Computing Department, Lancaster University.
Lancaster, LA1 4WA, UK

E-mail: fahim.kawsar@Qcomp.lancs.ac.uk

Tatsuo Nakajima

Department of Computer Science, Waseda University.
3-4-1 Okubo, Shinjuku-Ku, Tokyo, Japan.

E-mail: tatsuo@dcl.info.waseda.ac.jp

Jong Hyuk Park

Department of Computer Science and Engineering, Seoul National University of Technology.
172 Gongreung 2-dong, Nowon-gu, Seoul, 139-742, South Korea.

E-mail: parkjonghyukl@hotmail.com

Sang-Soo Yeo

Division of Computer Engineering, Mokwon University.
Daejeon 302-318, South Korea

E-mail: ssyeo@msn.com

very easily. We describe an implemented prototype of our framework and show
examples of its use in a real life scenario to illustrate its feasibility.

Keywords Smart Object - Middleware - Pervasive Systems

1 Introduction

One of the consequences of pervasive technologies (e.g., miniaturization of the
computer technologies and proliferation of wireless internet, short-range radio
connectivity, etc.) is the integration of processors and tiny sensors into every-
day objects. This revolutionized our perception of computing. We are in an
era, where we communicate directly with our belongings, e.g., watches, um-
brella, clothes, furniture or shoes and they can also intercommunicate. These
everyday objects are designed to provide supplementary services beyond the
primary purpose, an initiative that has been denoted as Smart Object! comput-
ing. It has drawn significant attention from the research community, primarily
because of its promising potential in various industries e.g., supply chain man-
agement, medicine, environment monitoring, entertainment, smart spaces, etc.

In this paper, we look at the system issues for building a framework for
smart objects. In particular we discuss how can we build smart object systems
with suitable infrastructure to meet the dynamic and fluid nature of pervasive
environment. Specifically, we focus on two issues 1) a suitable smart object ar-
chitecture for representing smart objects and an application model to leverage
the services of smart objects dynamically and 2) an infrastructure that sup-
ports such interaction while taking care of component (smart objects in this
case) management issues away from the applications. The basic idea of our
framework is to follow a declarative approach by using documents to external-
ize an application’s requirements in a generic way without considering smart
object management issues. Similarly, smart objects’ services are externalized
by structured documents. The runtime infrastructure provides a semantic as-
sociation between the applications and smart objects using structural type
matching of these documents. Because of such loose coupling, applications
and smart objects can be built and extended orthogonally.

In section 2, we present the background and design issues of our frame-
work and place our work against the state-of-the art. After that proposed
design detail and implementation of the framework are described in section 3
and section 4 respectively. Then in section 5, we present the quantitative and
qualitative evaluations of the framework through multiple application scenar-
ios. Then we discuss some generic issues in section 6 before concluding the

paper.

2 Background and Design Issues

Typically in a smart object system, context-aware applications run atop dis-
tributed smart objects embedded with awareness technologies (sensors, actua-

L In this article, smart objects and augmented artefacts carry similar meaning and will
be used interchangeably.

¥ Ambient Display m—
Application A
Lamp Application !
A = (v G
_— _ » S== Proximity Detector

==
‘%/2ht Sensor

Case 1: One object with functions
A Regular Table Lamp Smart Table Lamp

| Person |l
Identifier

U ¥ Candidate
‘ Smart Objects

Case 2: Multiple objects with identical functions

(a) (b)

Fig. 1: (a) Any suitable application can be added to a compatible smart object
(table lamp in this case) at any time; Smart object’s features can be extended
by adding new peripherals. (b) Augmentation variation of smart objects, a
single smart object with multiple functions and multiple smart objects with
identical functions.

tors and perception algorithms) where applications use these objects to collect
context information or to perform some services that cause changes in the real
world (e.g., adjusting the air-conditioner based on sensed temperature). Con-
sidering smart objects are parts of our environment, they should retain their
physical properties and interaction metaphor. These objects should be easy
to setup, adaptive to users’ needs, and interchangeable with new models. Ide-
ally, smart objects should be identical to existing home appliances e.g., a table
lamp, a dish washer, a TV etc. A user may buy one or multiple physical smart
objects and applications for them and should be able to install them very easily
just like other home appliances. In addition, the user should be able to incre-
mentally enhance the smart object functionalities by upgrading its features
or installing new applications. Consider a hypothetical table lamp application
that proactively turns the lamp on and adjusts its brightness adapting am-
bient room lighting. A user can initially buy a regular lamp, and few weeks
later he/she can buy a light sensor, attach it to the lamp and download this
application into the lamp to make it proactive (Figure 1 (a)). This scenario
highlights two primary design challenges of building smart object systems:

1. Independent Application Development: Applications for smart ob-
jects need to be developed independently without considering which smart
object from which manufacturer will be used in the application. Each of the
smart objects might have different interfaces and might implement differ-
ent protocols, even semantically same smart objects (e.g. two smart chairs
from two different manufacturers) might be heterogenous from implemen-
tation point of view. We can not expect application to be written with
prior knowledge of all of the myriad sort of smart objects of different types

that it may encounter. The range of possibilities is simply too large and it
is impossible to consider all smart objects during the development period.
2. Temporal Evolution of Smart Object System: Unlike conventional
distributed component systems where applications typically resides in the
digital world along with their components, smart object systems are de-
ployed in the real world, i.e., our living spaces. An essential property of our
living space is its evolutionary nature and receptibility to continual change.
In the scenario presented above, the table lamp’s functions is extended over
time. In a smart object system, such functional extensions can either be
supported by upgrading the application or upgrading the object (or intro-
ducing new objects). Thus it is important to construct smart objects and
applications in a way that allow developers (and ideally the end-users) to
extend smart object systems’ functionalities in an incremental fashion.

Another design aspect is the augmentation modalities of smart objects.
Augmentations depend on the designer’s intuition and it is hard to confine
the augmentation scope. Consider Figure 1-(b), depicting two ideal situations;
in case 1 we have a smart table providing two supplementary functions: an
ambient display and a proximity detector. In case 2 we have a mirror whose
display functionality can be triggered by any of the three smart objects, e.g.,
a toothbrush, a comb or a razor. The suitable augmentation of these objects
depends on the underpinned scenario, regardless of the multiple functionalities
that can be afforded. Thus it is not possible to classify smart objects by object
type. This is particularly important as this emphasizes that defining standard
interfaces for smart object is not a feasible solution.

Considering smart everyday objects are distributed in a physical space, the
development philosophies of a smart object system seem similar to the philoso-
phies of encapsulation and reuse behind component based frameworks, e.g.,
Component Object Model (COM) [?], Java Beans [?] as well as more network
friendly descendants like DCOM, Jini/EJB [?], OMG’s CORBA [?]. However,
these systems put significant development complexities due to the challenges
of smart object systems mentioned above. For example, the challenge of ap-
plication level component management is typically handled by existing frame-
works using interface standardization. A programmer writes a small software
to interact with a specific component / device, e.g., a networked printer. Any
application can use the printer using this small software, as long as both the
components (printer component, and application) agree beforehand on ex-
actly how components will communicate with each other and the application
manages this interaction locally (locating/spawnning/etc.). If the application
functionlity is extended to use another device, or the same device is replaced
by a new one then the application must be rewritten to interact with the new
device component. Because of such strict dependency, it is difficult to write ap-
plications that can run on any semantically compatible smart objects without
prior negotiation and to extend both the applications and smart objects.

Some researchers have used mobile code approach, to dynamically down-
load the heterogenous component interfaces at application ends [?,?]. In SpeakEasy

[?] mobile codes (typed data streams and services) are exchanged among het-
erogeneous devices to create an interoperable environment. However such ap-
proaches are impractical considering, for every new smart object an applica-
tion encounters, it would need to download new codes, even for components
that are semantically same, e.g., two identical chair from two different man-
ufacturer. On a more lower granularity level, UPnP? defines a standard set
of protocols for specific device types (e.g., audio/video devices) for interoper-
ability. Jini describes devices using interface description and language APIs
allowing applications to utilize those interfaces where as UPnP attempts to
standardize protocols to allow devices to intercommunicate seamlessly. How-
ever, application that leverages these devices’ services still needs to know the
interfaces, and any change at the device end causes the application to fail.
Furthermore, these systems provide little support for extending applications
or appliance services. For example, it is hard to add features in an existing
smart object and using that feature immediately in the application with these
infrastructures. Patch Panel [?] is a programming tool that provides a generic
set of mechanisms for translating incoming events to outgoing events using
EventHeap [?] communication platform. It allows new applications to leverage
the services of existing components. This tool along with its visual program-
ming environment have been used for prototyping ubiquitous environment [?]
and mobile user interface [?]. Our overall approach is close to Patch Panel as
we seek to support incremental integration. However, we exploit a distributed
state model over generalized documents that enable incremental addition of
features to both artefacts and applications. Also, our declarative approach en-
ables developer to build applications in a generic fashion without requiring to
know the target environment ahead of the execution. InterPlay [?] is a home
A/V device composition middleware and uses pseudo sentences to capture
user intent, which is converted into a higher level description of user tasks.
These tasks are mapped to underlying devices that are expressed using device
description. Although our approach is very close to InterPlay as we employ
similar mapping of tasks to device services, our challenge is to provide generic
abstractions and to support incremental extension and deployment of both
artefacts and applications. Our smart object model (described later in the
paper) is a major leap from InterPlay which signifies our contribution.

plication development processes strictly. These middlewares usually provide
end-to-end API centric support for the application developer, i.e., smart ob-
jects are encapsulated into wrappers and an array of APIs is provided to the
applications to manipulate them. The problem of this approach is that the
applications and smart objects become virtually incompatible in other en-
vironments. For instance, Gaia is [?] meta operating system and its design
philosophy is centered around the concept of Active Space that is capable of
knowing all the avaialbe resources and providing services to users in a con-
textual manner. Although, Gaia has covered a lot of design requirements of

2 Universal Plug and Play - http://www.upnp.org

pervasive systems, its primary shortcoming in the context of smart object sys-
tem is its device representation mechanism that is not suitable for wrapping a
smart object. In addition, the tight coupling among the applications and the
underlying framework makes it very difficult to port and extend applications
or underlying components. Context Toolkit [?] focuses on the component ab-
straction by providing the notion of Context Widget and Context Aggregator.
Discoverer manages these components and additionally there is a Context In-
terpreter component that performs the task of context interpretation. Context
Toolkit provides very low-level abstraction. The developer needs to provide the
details about the context source like location, port etc. Moreover, the appli-
cation is inherently dependent on the framework as the application is tightly
coupled with the architecture components like interpreters, aggregators etc.
The primary problem of Context Toolkit in the light of smart object system
is the scope of Context Widget that follows a one-to-one mapping, thus if a
smart object provides multiple functionalities, for each functions we need a
new widget. On the other hand, objects that can actuate are represented by
a service model. Thus for a smart object that can both sense and actuate,
we need two different programming abstractions, widget and service. Further-
more, such widgets are not capable of hosting augmented features in a plug
and play manner. Adding a new feature to an existing smart object requires
regeneration of the widget. This limits the extension of smart object services
or leveraging new services using existing abstractions. The Aura architecture
is built on the concept of user centric task to support mobile users i.e., a task
with all its resources and files can follow a user [?]. Environment services can
be dynamically loaded based on task requirement and can be adapted to dyn-
camic changes e.g., sudden badwidth drop. Aura also approached to provide a
generic platform for pervasive computing. However, many technical aspects are
not addressed in the project, e.g., how to handle smart objects, how to handle
heterogeneity of devices, how to build generic portable applications, etc. JCAF
[?] is Java based architecture following the pattern of J2EE for context aware
domain. It is mainly composed of two components, context service and con-
text client. Context service is analogous to J2EE server where context client is
analogous to J2EE servlet notion. The architecture does not address the smart
object specific design concerns, e.g., providing a suitable representation model
for reusable and extensible smart objects etc. Also, there is no specification
about how to handle the heterogeneity of the underlying context sources while
providing unified abstraction.

In summary, existing infrastructures have limited support for building
smart object systems considering the design requirement imposed by smart
object systems. Nevertheless, most of these infrastructures were not built for
supporting smart object systems, so it is expected that specific design require-
ments are not addressed by them. In the next section, a solution framework
that addresses smart object specific features is introduced with explanations
of its design rationales.

3 A Document Based Solution Framework

The characteristics of smart object systems raise a number of important ques-
tions - how will we build pervasive applications to manipulate smart objects
with no prior knowledge? how will we manage those unknown smart objects?
how will we build and extend application and smart objects for such dynamic
environment? One way to address these issues is if we look at the functional
aspects at the application end only and leave the protocol heterogeneity issues
at the infrastructure end while enabling applications to use a generic access
mechanism to access smart object services regardless of their types. From an
implementation perspective, this can be achieved by applying the principle of
reflection, i.e., allowing a program to access, reason and alter its own inter-
pretation [?,?]. Application can access its components at runtime if it exposes
its runtime requirement to an underlying middleware that provides unified
access to its components. To do this, there must be an agreement between
the participating entities, i.e., application, smart objects and the middleware.
Documents encoded in XML and related technology can be successfully used
to model this information. In the past, we have seen that XML based simple
protocol and data format are successfully used for connecting arbitrary de-
vices. XWeb [?] is an excellent example of such systems where every device
exposes an XML file to describe itself. These device states are accessible to
other devices that can speak XWeb protocol, and accordingly they can request
XWeb to perform operations on each other. From an abstract point of view,
XWeb can be seen as a logical extension of HTTP for devices.

Building on these works, we have taken document based development
framework in this work. The proposed framework forces an application to
expose its functional tasks that need the service of a smart object (i.e., a com-
ponent) in a document without addressing how to access that smart object
service. Similarly, a smart object is forced to expose its service specifications
via documents. A secondary infrastructure then connects the application to
the smart objects by matching these documents. However, applications and
smart objects are not directly connected. Instead they communicate to the
intermediary infrastructure to delegate their service requests and service re-
sponses respectively. This underlying infrastructure can provide the technical
building blocks to allow applications to use arbitrary number of smart objects
as long as they provide the functionalities that are expected by the applica-
tion. The infrastructure takes the management of smart objects away from
the applications, so applications do not need to care for access, configuration
or management issues. To facilitate this, both the application and smart ob-
jects are forced to implement a standard communication protocol. The basic
idea here is to combine the client-server and blackboard models of software
architecture. While the loosely coupled client-server model ensures that the
heterogeneity is handled away from the application, blackboard model ensures
the unified access and delivery of smart objects services appropriately.

The design challenge imposed by the augmentation variation of smart ob-
jects is handled by following a core-cloud development model for smart objects

Smart Objects are designed
following core-cloud model

Application

[Application :

Application

Smart Object

Smart Object

@] ED)

)

Infrastructure Independent
| Smart Objects

Infrastructure Independent

ature D: Descriptive Document

Fig. 2: A Conceptual Document based Framework

in the framework. The core of a smart object is a generic runtime that can
host any number of smart features as plug-ins. This design allows developers
to decouple smart features of a smart object and applying same features in
multiple smart objects. Thus a smart objects might be used in multiple ways
under different circumstances for different applicatios/purposes. In addition,
features can be incrementally added to a smart object to extend its initial func-
tionalities. Simultaneously, application’s functionalities can also be extended
by introducing new smart objects or updated smart objects that allow some of
the application tasks to leverage the features of newly added or updated smart
objects. The combination of these approaches, i.e., document based framework
for connecting applications with smart objects, and core-cloud model for rep-
resenting smart objects support the temporal evolution requirements for smart
object systems.

The conceptual document based framework is depicted in Figure ?7?. The
framework consists of a Smart Object Wrapper that implements the core-
cloud model for smart objects, an Application Development Model and a Run-
time Intermediary Infrastructure called FedNet. Smart object wrapper rep-
resents a smart object by encapsulating its augmented functionalities in one
or multiple Profiles (cloud) atop a runtime (core) and allows additions of
profiles incrementally. Applications runtime specifications are exposed as a
collection of implementation independent functional Tasks. These tasks are
atomic actions that require smart objects’ services. An infrastructure compo-
nent FedNet, manages these applications and smart objects and maps the task
specifications of the applications to the underlying smart objects’ services by
matching respective documents thus externalizing smart object management
and addressing heterogeneity issues away from the applications allowing de-
velopers to focus on the application functionalities only. Primarily these two
abstractions Profile and Task are used in the framework and realized by cor-
responding documents. Thus, the proposed framework provides a very simple
programming model that allows application developers:

— To develop smart objects and profile through consistent abstraction with
structured documents without concerning the target application require-
ment.

— To develop application integrating smart objects without concerning inter-
faces and the management of smart objects.

— To extend both applications and smart objects.

In the next section a prototype implementation of this framework is discussed.

4 Framework Implementation

There are three primary components in the proposed framework: i) Smart Ob-
ject Wrapper to construct smart objects ii) Application Development Process
to write applications and iii) A secondary infrastructure FedNet, that pro-
vides the runtime association between applications and smart objects. In the
following sections, these three components that are implemented in Java are
discussed in sequence.

4.1 Smart Object Wrapper

Smart object wrapper provides this digital representation and follows the core-
cloud model where basic smart object functionalities are combined in a core
component. This core primarily encapsulates the communication capability of
a smart object and provides a runtime to host the augmented features that
can be added as plug-ins. Each augmented feature is called a service Profile
in our approach. These profiles are physical object independent and represent
generic services, for example: sensing room temperature could be one profile,
and multiple physical objects (e.g., a window, an air-conditioner, etc.) can be
augmented with a thermometer for supporting this profile.

4.1.1 Internal Architecture of Smart Object Wrapper

The internal architecture of the smart object wraper is shown in Figure 3 and
consists of the following;:

1. The Core: It encapsulates the common features (e.g., communication,
static memory, etc.) shared across smart objects and provides a runtime
to host the service profiles. The entire core is packaged in an executable
generic binary and runs independently. Inside the core the communication
module facilitates communication support and encapsulates the transport
layer. In the current implementation, primarily IEEE 802.11x (TCP/IP)
and Bluetooth (RFCOMM) are supported in this module. The discovery
module allows service advertisement. The notification module enables the
rest of the modules to indicate their status. The static memory contains
property data, profile descriptions, and other temporal data. The client
handler is the request broker for services and delegates the external re-
quests to specific profiles. Finally, the profile repository hosts the array
of profiles. The profile repository has dynamic class loaders to load the
profiles dynamically when requested.

10

(Sensor X Actuator) H e
iProfile
(Profile Handler) i o : i £

C -)(e)(i) Smart Objects are

(Fiofte Repdtony) designed following

H : core-cloud model

i static NMetification Module Client

H & Core

;| Mmony Discovery Module acloillis

§ s H Cloud _
(Communication Module)

Fig. 3: Smart Object Wrapper Architecture

2. Profile: Each profile represents a specific functionality and implements
the underlying logic of the functions, e.g., providing context by analyzing
the attached sensors’ data or actuating an action by changing the smart
objects’ states. Each profile is either sensor type or actuator type which is
abstracted by a generic Profile Handler component. Each profile is packaged
as generic binary and linked with the core dynamically.

4.1.2 Programming Model

In the current work, a profile based programming abstraction is offered to the
developers and building smart objects involve two-step development effort:

1. Writing a module to handle the device (i.e., sensors and actuators) specific
code (i.e., accessing the sensors, collecting sensor data, etc.). This module
should generate the higher level context and should execute the device
functions as needed.

2. Connecting the above module with the smart object wrapper component.
This component should provide suitable support to represent the generated
context in framework specific ways. In addition, it should also interpret
framework specific service requests in device specific way.

While the first task is completely device specific, the second task is more
recurrent and thus suitable programming support is desirable. In the cur-
rent implementation, the profile handler provides this support, and exposes a
template for the developers to plug in their device code and context calcula-
tion/service actuation logic. Once developers attach their device specific code
to profile handlers, the entire profile can be packaged as generic binary that
can be plugged into the core. A profile implementation needs to inherit a base
Profile class. This class enables the core to load this profile and to further
communicate (forwarding application requests etc.) with it. Figure 4 shows
the partial implementation of the proximity profile of the smart mirror. Here
the mirror is instrumented with an infra-red sensor and the class IRSensor
(line 8) implements the protocol specific code to access the sensor and to col-
lect sensed data. Once the sensor data is analyzed for generating appropriate

11

1. public class ProximityProfile extends Profile {

Z.

3. protected String position,distance;

4, public ProximityProfile(5tring path}

5. {

6. super(path);

Ta position=""; distance="";

B new IRSensor(this); /* Handles the Protocol Heterogeneity */
9. 1}

10.

11. public void setSML() s+ Sets the Profile Qutput in Predefined SML Syntax */
1z, £

13. this.sml.setOutput("position”, this.position);

14. this.sml.setOutput{"proximity”, this.distance);

15 this.notifyAccessPoint();

6. }

17. %

Fig. 4: Sample Code implementing Sensor Type Profile

context information the setSML()(line 11) function is invoked to generate
profile output in framework specific way.

4.1.8 Documents to Represent Smart Objects

In the proposed framework the specifications of profiles are objectified in exter-
nal documents that are used by the underlying infrastructure to allow discov-
ery and interaction of external applications and other smart objects with the
object in context. In addition, documents are also used by the core of a smart
object to load its profiles dynamically. There are primarily two documents
utilized for smart object wrapper, these are:

1. Smart Object Description Document (SODD): This document is
the generic description of the smart object in context as shown in Figure
5(a). It provides the meta information regarding the smart object. However
the most important part of this document is the profiles node. The smart
object core parses this node to dynamically load the profiles. The node
contains links to the generic binaries of the respective profiles. This docu-
ment is also used by the secondary infrastructure FedNet to discover the
services of the smart objects and associate smart objects with applications.

2. Profile Description Document (PDD): Each smart object contains
one or multiple profiles and usually with different input and output spec-
ifications. However, to create synergies between smart objects and appli-
cations, it is needed to have a pre-negotiations on the format of the move-

12

<?xml version="1.0"%>

<ariefact>
<name=Mirror</names
<vendors<ivendar> <Pxml version="1.0"2>
<profiles> <profile= o
<profile Rame="Proximity <name=Proximity</name=
5 e T o Sensing the proximity </purposes
T(.;J{:fbabé >A SpaceMimanProximityProfileiRProfile jarccodebases sor<ftypes
</profile=
</profiles> <identification>IR Sensor</identification=
<fartefact> <relerenceFrame/>
<inputs/>
" <outputs>
(a) Smart Object Description Document for a Mirror <outputs
<name>pos me>
B <dalatype>st: tatype>
<aclualor> <valuei>
f:yer|t: ication> Display </identification= <Joutput>
«:mtef-t <foutputs>
<state= SR e
</delector=
<nam Image </name> <QaS-attributes>
<inputs=> <qos=
<inpu <hame=latency<ihame:
nesimage</names <datatype=int</datatype=>

<paramelers
<MIMEdatatype=image/jpg</MIMEdalatype=
<valuesscreen.jpg</value>
/parameters
More Parameter ——

<measurement-unit=millisecond</measurement-unit=
<high-thrashold=100</high-threshald=
<low-threshold=50</iow-threshold=>
</gos>
</QoS-altribute>
</profile=

(c) Profile Description Document for sensor type profiles.
Sensor Modeling Language is used in the <detector> node.

</actuator>

(b) Profile Description Document for actuator type profiles.
Actuator Modeling Language is used in the <actuator> node.

Fig. 5: Documents to represent Smart Objects

able data. In the current framework context, this issue is addressed by
forcing each profile to publish its input/output data format in structured
documents so that the external applications and peer smart objects know
how to interact with the profile’s service. This document is also used by
profile handler to encode implementation output and to decode service re-
quest inputs. Each PDD contains either a detector or an actuator node
based on the profile type. It also contains a quality of service (QoS) block
which specifies profile’s quality. The sensor type profile’s description fol-
lows the specification of the customized Sensor Modeling Language (SML)
adopted from SensorML3. The primary reasons of adopting SensorML are
its soft typed attribute, reference frame and parameters, with which the
semantics of different sensor data platforms can easily be understood and
interchanged. For an actuator profile custom designed Actuator Modeling
Language (AML) is used as shown in Figure 5(b). The state node is used
to abstract the operational states of a smart object’s service. It contains
the input parameters to change the states along with required data type.

4.2 Application Development Process

Typical applications that run on smart objects are context aware in nature and
composed of three components: i) basic application component, ii) communi-
cation component, and iii) perception and adaptation component. The first
and third components are basically application specific and usually differ from
application to application. However, the second component, i.e., the commu-
nication component is recurrent across applications and provides access and

3 OpenGIS Sensor Modeling Language Specification: http://www.opengeospatial.org

13

management of smart objects. In the proposed document-based framework
these recurrent tasks are supported through indirection using documents, i.e.,
application specifies its requirements in a high level structured document with-
out considering how to attain those requirements. However, there is a 3-Step
development process that an application developer has to follow in the current
framework context.

4.2.1 3-Step Application Development Process

An application developer can follow any library and implementation language

to code the execution logic of the application. To enable the application to

interact with the underlying environments, however, a developer must ensure
the followings:

1. Step 1 - Structuring Applications by Functional Tasks: The first
step of the application development is to structure the application in a col-
lection of functional tasks that require the services of smart object profiles
(e.g., context data, service actuation etc.).

2. Step 2 - Externalizing Functional Task List in a Structured Doc-
ument: The next step is to externalize application’s requirements as a
collection of functional tasks in a structured Task Description Document
(TDD). Each task specifies the respective profiles it needs to accomplish
its goal. Figure 6 shows part of the Task Description Document for a smart
display application. Each task also contains Quality of Service (QoS) re-
quirements for the target profiles. This document is used by the secondary
infrastructure FedNet to provide a spontaneous federation. As we see in
the Figure 6, the application does not state a specific smart object, rather
it only puts forward its profile requirements. This enables any suitable
smart object to be used in the application. Applications tasks can also
describe the required communication mode, i.e., synchronous (poll) and
asynchronous (subscription) for aggregating context data from smart ob-
jects.

3. Step 3 - Accessing an Access Point in a RESTful Manner: The
final step in application development is enabling an application to inter-
act (discovery, access, etc.) with smart objects in a unified manner. In the
current framework the discovery and management processes are eliminated
from the application scope. FedNet performs the discovery on behalf of an
application by utilizing its task description document, and allows appli-
cation to access the smart object services by assigning a common point
of interaction regardless of underlying smart objects’ types and protocol
heterogeneity. The identity of this common access point is injected into the
meta data block of the Task Description Document as shown in Figure 6
during application deployment. When the application is launched required
physical smart objects data semantics (detector and actuator nodes of the
Profile Description Document) are provided to the application from this
access point, to let the application prepare for the moveable data accord-
ingly. Considering the simplicity and proliferation of web technologies, the
access mechanism and data exchange protocol between the application and

14

<?xmi version="1.0" encoding="UTF-8"7=
<application>

<name=Smart Display Application</nan
p-purpose>Providing Personalized infromation with Situatior
aryPath=ApplicationSpace/SmartDisplay/SmartDisplayApp,|

Awareness</app-purpose:
<binaryPath>

=10.0.1.3</IP>
<por>8824</port>

<id>T1<fid>

<purpose=Measuring Proximity</purposez
<required-profile-type=Sensor</required-profiie-type>
<prafile-name=Froximity: e-name:=
<communication-mode= asynchronous<fcommunicalion-mode=
<profile-QoS-altribute=

<qos>
<name=latency</name:>
<datatype=int</datatype=
<measurement-\ illisecond</measurement-unit=
<high-thresh threshold=>

<low-threshold:
</gos>
</profile-QoS-attribute=
<flask>
——-~ More Tasks—-—
</task-list=
</application=

Fig. 6: Task Description Document (partly)for a Smart Display Application

access point are based on HT'TP and XML following the Representational
State Transfer (REST) approach [?].

Every application in the current framework is disseminated as a generic binary.
Application uses generic web technologies in a RESTful manner to access
the infrastructure (i.e., access point) and thereby smart objects. This allows
applications to be packaged independently. In the meta data part of the Figure
6, the binaryPath node specifies the path of application binary.

4.3 FedNet Runtime Infrastructure

Earlier sections showed that both the applications and smart objects are in-
frastructure independent and expressed in high level descriptive documents
(i.e., task and profile specifications). FedNet provides the runtime association
among them by utilizing only the documents of these applications and smart
objects. FedNet itself is packaged in a generic binary and composed of four
components as shown in Figure 7.

1. Smart Object Repository manages all the smart objects running in Fed-
Net environment. During smart objects’ deployment, the executable binary
implementing the smart object wrapper and the Smart Object Description
Document (SODD) are submitted to this repository. When a profile is
added to a smart object, the profile information is dynamically injected
into SODD and the respective profile is attached to the smart object.

2. Application Repository hosts all the applications that run on FedNet
environment. During an application’s deployment, the binary executable

15

Application Repository Task Specification by

D t:
o o o a Sements (FedNet Core)
° o o 0 (4} . € Query Smart Object
Generate

Spawn Access Repository by

application;= § task; Paint 9 Subset Matching Documents
T R e / Smart Object Repository
: : : (x) ()
Hook to o °
Application e °

smart-objecti= 3 profile;

Smart Smart Smart
Smart Object Object Object f====+{ Object
3
Federation L Z

Application Specific Access Point

Fig. 7: Internal Architecture of FedNet

and the Task Description Document (TDD) are submitted to this reposi-
tory. FedNet Core generates an access point for the application and updates
the respective TDD by dynamically injecting the identity of the correspond-
ing access point.
. FedNet Core provides the foundation for the runtime federation. When
an application is deployed the task specification is extracted from the appli-
cation repository by the FedNet Core. It analyzes the task list by querying
the smart object repository using structural type matching of documents
and generates an appropriate template of the federation and attaches it into
a generic access point component for that application. This type match-
ing is performed by using XQuery*. When an application is launched, the
corresponding access point is instantiated and the respective template is
filled by the actual smart objects available in the environment right at that
moment thus forming a spontaneous federation.
Access Point represents the runtime physical environment needed by
an application. FedNet assigns a unique access point for each application
rather than providing a common access point for all applications. FedNet
takes this approach considering the following two principles:

— Every application has unique runtime requirements for smart objects.

— Even though there are multiple applications deployed in the environ-
ment, there might be cases when some applications are not running
all the time. Thus maintaining a common access point involving mul-
tiple smart objects that are not used by the running applications leads
to high runtime cost (e.g., unnecessary resource consumption, manage-
ment complexities etc.).

4 http://www.w3.org/TR/xquery/

16

This means multiple federations of smart objects can co-exist in the en-
vironment. Simultaneously, each smart object can participate in multiple
federations. An application delegates all its requests to the access point
which in turn forwards them to the specific smart objects. The smart ob-
jects response to these requests by providing their profile outputs either
by pushing the environment state (actuation) or pulling the environment
states (sensing) back to the access point that are fed to the application.

5 Quantitative Evaluation of the Framework

The proposed Framework is composed of three primary components: Smart
Object Wrapper that implements the Core-Cloud model for smart objects,
a task-based application development process and a document centric run-
time infrastructure FedNet that creates a spontaneous association among the
smart objects and applications. From quantitative evaluation point of view,
the point of interests are the performance of FedNet in forming the runtime
association and the overhead associated with the communication across the
entire framework. It has been discussed in section 4 that both the applications
and smart objects are deployed in the environment as generic binary executa-
bles per se with no inherent dependency on FedNet unless the applications
require smart objects services. Thus, it is imperative to look at how FedNet
supports this runtime association and how the performance of the application
integrating smart objects are affected by this association. To look at these
aspects, a prototype home entertainment smart object system integrating a
range of smart objects are developed. In the following this prototype system
and its constituents are explained followed by the depiction of the runtime
performance of the framework.

5.1 A Prototype Home Entertainment Smart Object System

In this section, first a hypothetical scenario is presented to illustrate the pri-
mary workflow and capabilities of the prototype system. Then the implemen-
tation of the system is explained.

5.1.1 A Scenario

Alice recently got a UPnP HDTYV and a Bluetooth Headset from her parents.
Today when she was telling her colleague Bob about the superb picture qual-
ity of her TV, Bob introduced her an application that she can buy from the
internet to make her entertainment room exciting and smarter. It can auto-
matically control room temperature and ambient room-light level, can pause,
restart a TV program, can increase-decrease TV wvolume while a conversation
is going on, and can redirect the audio stream of HDTV to external speak-
ers or headsets. The application requires some other smart objects (Chairs,

17

Air-conditioner, Lights, Table, Window) that are expected to be available in
the room. She decided to buy the application. In the application website, the
roles(profile) of each smart objects are mentioned. However these roles can be
played by other compatible smart objects too. For example, the application as-
sumes that the window is augmented with a small weather box that can provide
current room temperature, humidity etc, that the application uses to control
the air-conditioner. This weather box can be installed under the coffee table or
under any other artefact with a flat surface. Alice already has a smart couch,
that can identify if someone is sitting on it and a UPnP enabled Air Condi-
tioner. After the office, Alice went to the Tokyo Hand Creative store and bought
one stand lamp that matches the required profiles. She decided not to buy any
other smart objects as she thought she could use her currently available smart
objects for rest of the required profiles. Instead she bought only the required
service profiles for the rest of the smart objects. Fach profile comes with Do-
It-Yourself hardware installable into smart objects and a RFID that contains
the software for that profile. Later that night, Alice came home, reorganized
his new entertainment room with the lamp(ambient light profile), augmented
the window with room-temperature profile and coffee table with ambient-noise
profile and installed all these profiles and the application using her home’s
FedNet system. Alice could not wait to start her new entertainment center so
she activated the system. The application perceived the room condition and
accordingly set the room temperature and lamp brightness. Since Alice turned
on the TV, the application fed the TV’s audio stream into Alice’s new shiny
Bluetooth Headset as she started watching a baseball game.

5.1.2 Description of the Smart Object System

The above scenario is realized by a few smart objects and an application that
integrates these objects. The entire system is composed of the following:

— Smart Couch: A regular couch is augmented with state-of-use profile. The
profile comes with 6 force sensors and three photo sensors. All sensors
are connected to a Phidget Interface Kit [?] which in turn is connected
to a Gumstix® platform. The Gumstix runs linux and has Bluetooth and
IEEE 802.11b interfaces. The Gumstix contains the core and the newly
attached profile binary. The couch once augmented with state-of-use profile
can identify when someone is sitting on it.

— Smart Lamp: A regular X10 stand-lamp that is augmented with ambient-
light profile. The profile comes with 2 Phidget photo sensors, an interface
kit and a Gumstix platform. The lamp with ambient-light profile can pro-
vide the brightness of the room.

— Smart Window A regular window that is augmented with room-temperature
profile that can track the room temperature by analyzing indoor and out-
door environment temperature. The profile comes with a Cooike sensor
node [?] that is connected to a Gumstix platform over Bluetooth.

http://www.gumstix.com

18

— Smart Coffee Table: A regular coffee table that is augmented with ambient-
noise profile that can track ambient noise of the room. The profile comes
with a small microphone unit that is connected to Gumstix platform over
Bluetooth.

— UPnP TV and Air Conditioner: Due to the unavailability of the real device,
simulated UPnP TV and Air Conditioner were utilized using CyberLinkS
implementation of UPnP.

— Bluetooth Headphone: A regular bluetooth headphone with Advanced Au-
dio Distribution Profile (A2DP)7 profile support. The headphone was also
connected to a Gumstix platform.

— JukeBox Friend Application: This application basically implements the sce-
nario described above. By perceiving ambient light level and room temper-
ature via smart lamp and smart window it can proactively adjust the room
ambient brightness and room temperature. If the TV is turned on, the ap-
plication tries to sense the ambient noise level by contacting the coffee table
and accordingly sets the volume. Furthermore, if a Bluetooth headphone
is found, the application redirects the TV audio stream into Bluetooth
headphone. Please note that, here the application contacts the respective
profiles regardless of the smart objects that host the profiles. Furthermore,
for the purpose of measurement the applications task requests were man-
ually controlled through a secondary interface.

FedNet Infrastructure: The FedNet infrastructure runs in a laptop com-
puter (Apple MacBook Pro, 2.4 GHz, 4 GB RAM, Mac OSX 10.4, with IEEE
802.11b interface). This machine is the host of the FedNet Core, Smart Ob-
ject Repository, Application Repository and the Access Point for the JukeBox
Friend application.

5.1.3 Quantitative Measurements

The whole purpose of building this smart object system is to evaluate the run-
time performance of FedNet. Intentionally, heavy-weight protocols like UPnP
and Bluetooth were chosen so that the approximate worst-case overhead of
bootstrapping process, access point formation, communication among appli-
cation components can be recorded. The application task requests were man-
ually controlled to see the performance of FedNet. In the following the results
are reported.

Bootstrapping Time: The first concern is the bootstrapping time of Fed-
Net, i.e., Smart Object Repository, Application Repository and FedNet Core.
In the current experimental setup, the Smart Object Repository needs to con-
tact six Gumstix platforms that represent the smart objects and their profiles
to set the repository with the availability of the profiles and to populate the
FedNet directory. Since other components (e.g. Application Repository and
FedNet Core) reside in the primary node, their initialization time does not

6 http://cgupnpjava.sourceforge.net/
7 http://www.a2dp.info

19

add any overhead to the overall system. Figure 8(a) shows the performance of
this bootstrapping process for the environment having six smart objects with
gradual formation of the repository in a parallel fashion. Please note that, here
the native protocols are implemented in the smart object, thus it is assumed
that smart objects are already setup, i.e., Bluetooth discovery and Piconet
formation are already performed for smart window and Bluetooth headphone.
As shown in the Figure 8(a) on an average 5.32 seconds is required to cre-
ate a FedNet environment with six smart objects of varying native transport
protocols for profiles and bridged to FedNet via IEEE 802.11b. The variation
of 180 milliseconds (approximately) were observed due to the communication
latency and occasional packet losses.

5600 - 1800 -
5540 - 1600 -
5480 - 1400 -
o = o
a 5420) Y 1200 -
E 5360 g 1000 -
£ 5300 - £ di
U 5240 o
£ ' £ 600 ©
= 5180 - =
5120 - 400 -
5080 - 200 -
5000 0
1 2 3 4 5 6 1 2 4 8 16 32
Number of Smart Objects No of Task-Profile Couple
(a) FedNet Bootstrapping Time (b) Access Point Formation Time

Fig. 8: Bootstrapping and Access Point Formation Time

Realtime Access Point Formation Time: The next concern is the
Access Point formation time by FedNet for specific application. Recall from
section 4 that an Access Point template is attached to an application by Fed-
Net Core during application deployment time. This template is filled by actual
smart objects (e.g., association between the application and the smart objects
by mapping application tasks to smart object service profiles.) when the appli-
cation starts up. Thus the Access Point formation time is directly proportional
to the number of tasks that require service profiles of different smart objects.
The Access Point formation process requires FedNet to contact the respective
smart object by consulting its FedNet directory and application task speci-
fication and to create a link between the application tasks and smart object
profiles. The following Figure 8 (b) shows the Access Point formation time
for 32 task-profile couple with 6 six different smart objects. For analysis pur-
pose, half of the task were push type (actuate) and the rest half is pull type

20

(sense). Approximately 1.2 seconds were required to setup the 32 task-profile
couple, i.e., establishing six communication channels between the application
and smart objects via Access Point. The initial 0.6 seconds can be considered
as the setup overhead for the FedNet Core to parse the application tasks and
to map the tasks to respective profiles by consulting its FedNet Directory.

<> Phidget Sensor
Cookie Sensor

2 UPnP Device
X10 Lamp 300
w 240
UPnP A.C. [}
¥ v
E 180
E=
.
UPnP TV
2 1e \\0—0
-
8
60
Bluetooth Headphone*

1 0 i
0 60 120 180 240 300 Packet 1 Packet 2 Packet 3 Packet 15

Latency in msec

Outward Latency Inward Latency
Applications to Smart Objects Smart Objects to Applications

*Bluetooth Discovery is not performed here. The latency is calculated after forming the pico net

Fig. 9: Communication Latency

Communication Overhead: There are basically two types of communi-
cation links in the entire framework. Outward link from application to smart
objects through Access Point when application requests the service of a smart
object and Inward link from smart object to application when smart object
service profiles push service data to the application. The outward link is syn-
chronous where an acknowledge is being pushed to the application from smart
objects. The inward link is asynchronous where application only receives sub-
scribed smart objects service data without providing an acknowledgement. In
both type of communication, there might involve device level translation of
data packets into FedNet defined data packets if the smart objects native pro-
tocol is different than the primary transport protocol used in FedNet. Figure
9 shows the communication latency both outward and inward for the smart
objects with different transport protocol. As shown, for X10 and Bluetooth
headphones outward communication latency is in the range 0-60 milliseconds.
However, UPnP devices were slow to response due to the fact of larger conver-
sation time of the UPnP packets into FedNet packets. For inward communica-
tion, there is always latency in the delivery of the first packet. This is due to
the activation of the communication link that was established during Access

21

Point formation period. However, after that the delivery latency of the packets
was reduced. In inward communication cases too, UPnP packets took longer
time to be delivered than Bluetooth or Phidget Sensor based packets due to
the packet translation time of UPnP.

Overall System Performance: From the overall functionality perspec-
tive, FedNet and the target system provided a stable performance. Application
and all the smart object profiles were externalized through the Task Descrip-
tion Document and Profile Description Document. FedNet provided the run-
time association by structured type matching and consequent formation of the
Access Point to provide the foundation for inward and outward communica-
tions.

5.1.4 Summary of the Quantitative Fvaluation

In the above section, the runtime performances of the FedNet in the light of
a home entertainment smart object system were discussed. The performance
of FedNet can be considered satisfactory taking into account that the target
smart object system successfully operated without any significant delay or fail-
ure during the experimental period. However, this experiment was not meant
to evaluate the functional aspects of the framework, rather to quantify the
performance of movable components of the framework. From that perspective,
this quantification adds little value to the evaluation of the framework. The
next section will look at the qualitative aspect of the framework and will assess
the functional features of the framework by revisiting the design requirements.

6 Qualitative Evaluation of the Framework

In the earlier sections we have claimed that the proposed framework enables
i) building smart objects and applications independently, ii) shifting smart
object management issues away from the applications and iii) extending the
functional features of smart object systems over time. To validate these claims,
we have evaluated our approach following the guidelines of Edwards et al. [?]
by building effective prototypes that expose and evaluate the prime features
of a pervasive computing infrastructure. Over the years we have developed
several smart object systems that include multiple smart objects, profiles and
applications [?,?,7]. These applications are re-developed and extended follow-
ing the proposed approach during the course of this work. In this section,
we present proof-of-concept one of those smart object systems that is very
practical, and useful.

We constructed a smart mirror by augmenting a regular laptop with acrylic
magic mirror (Figure 10(a)). Initially this mirror has a display profile. We
wrote an application for this mirror where the application can show some
personalized information (e.g. weather, stock quote, movie listing etc.) into
the mirror display (Figure 10(c)) [?] utilizing its display profile. However, this
application can proactively show information only when someone is in-fornt of
the mirror. But for such proactivity it requires a proximity profile. To enable

22

B

(a) Mirror with Extensible Interface (b) Toothbrush

I

(c) End users using our system (d) Virtual Aquarium Application

Fig. 10: A Prototype Smart Object System

this application feature, later we have added a proximity profile to this mirror
by attaching an Infra-red sensor. This improved the applications interactivity.
Afterwards we built a completely separate application for the mirror where
user’s dental hygiene is reported in a persuasive way utilizing the metaphor
of a clean and dirty aquarium (Figure 10(d)) [?]. We replaced the previous
application running on the mirror with the new one. This new application
requires a smart toothbrush that can detect its state-of-use (Figure 10(Db)).
We constructed the smart toothbrush by attaching a wireless accelerometer
sensor and deployed it in our environment with corresponding profile. Thus
the mirror shows an aquarium reflecting users brushing practice whenever the
user brushes his teeth in front of the mirror.

Both the applications were built independently and deployed with corre-
sponding documents expressing the tasks, similarly the two smart objects e.g.,
the toothbrush and the mirror were built independently and deployed with cor-
responding documents. FedNet provided the runtime association among them
thus freeing application from smart object management. Furthermore, this
scenario highlighted the service extension feature of our approach. We have
added new profiles to an existing smart mirror allowing an existing application
to leverage new functionalities. Importantly, the application did not have to
take into account the heterogeneity issues introduced by the addition of an
Infra-red sensor as it was handled by the proximity profile implementation.
Similarly, the installation of the second application into the mirror enabled
the mirror to play different role by co-operating with the toothbrush, which
was seamlessly integrated into the setup.

7 Discussion and Conclusion

There are primarily two abstractions underneath the documents that we have
utilized in our framework. From the smart objects’ perspective it is the notion
of profile that handles the service implementation detail and protocol issues.

23

Since profiles are independently built following a plugin architecture, a smart
object service can be extended anytime by adding new sensors or actuators and
attaching corresponding profile into the smart objects core. Also, if a specific
service needs to be updated only the corresponding profile need to be replaced,
not the entire smart object or the applications utilizing them. Furthermore, a
profile may provide services in various granularities thus supporting multiple
applications requiring services at different scale (i.e., some applications may
ignore some service features). The profile notion has the potentially serious
implication that standard common vocabularies or ontologies will be needed
to support general interoperability of profiles and applications. However, by
profile abstraction, we are not trying to define the ontology for profiles. In-
stead we are providing a structure that designers can use to disseminate their
implemented ontology and glue it with rest of the infrastructure.

The second abstraction is from applications’ perspective, i.e., tasks that
simply externalize an applications requirements, so any application can be ex-
pressed with this abstraction. Not necessarily all tasks of an application can be
supported by an existing environments, however with the incremental addition
of new smart objects in the environment or porting application to another en-
vironment with richer smart objects might enable the full functional features
of an application. In addition an applications functionalities can be updated
independently (application binary and the document) without concerning the
impact of such update in the middleware or smart objects. In our approach,
such flexibilities are provided elegantly by only expressing applications’ task
specifications in documents and ignoring smart object management issues at
the application level. FedNet provides the appropriate mapping of these doc-
uments with smart objects documents expressing their services.

This disassociation of applications from the smart objects they reference
is identical to the Model-View-Controller (MVC) architecture from Smalltalk.
In the MVC architecture, data (the model) is separated from the presentation
of the data (the view) and events that manipulate the data (the controller).
Similarly, documents in our middleware act as the glue that associates smart
objects services to applications that manipulate the services. Such separation
of concern (i.e., both the applications are artefacts are independent of FedNet
and come as ready-to-run binary), and data centric approach also enable us
to provide additional services orthogonally in our system. For example, we
have implemented several end user tools atop FedNet that enable end users to
deploy, configure and manage the applications and smart objects running in
the FedNet environment.

In this paper we have presented a document based approach to build smart
object systems. Applications’ requirements and smart objects’ services are ex-
ternalized using structured documents utilizing Task and Profile abstractions
respectively. A runtime framework FedNet provides the dynamic association
by structural type matching. The contributions of our approach are two-fold:
firstly, it allows developers to write applications in a generic way regardless
of the constraints of the target environment utilizing the abstractions that
are realized through documents Secondly, it allows extension of functionalities

24

of smart objects and applications very easily. We have described an imple-
mented prototype of our approach with an application scenario that highlight
the power and flexibility of our framework. We consider our approach is very
useful for the ubiquitous computing domain, particularly one that involves
smart objects.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

R. Ballagas, F. Memon, R. Reiners, and J. Borchers. istuff mobile: Rapidly prototyp-
ing new mobile phone interfaces for ubiquitous computing. In Conference on Human
Factors in Computing Systems (CHI 2007), pages 1107-1116, 2007.

. R. Ballagas, M. Ringel, M. Stone, and J. Borchers. istuff: A physical user interface

toolkit for ubiquitous computing environments. In Conference on Human factors in
computing systems (CHI 20083), pages 537-544, 2003.

. R. Ballagas, A. Szybalski, and A. Fox. Patch panel: Enabling control-flow interoperabil-

ity in ubicomp environments. In 2nd IEEE Annual Conference on Pervasive Computing
and Communications (PerCom 2004), pages 241 252, 2004.

. J. E. Bardram. The java context awareness framework - a service infrastructure and

programming framework for context-aware applications. In The 8rd International Con-
ference on Pervasive Computing (Pervasive 2005), pages 98-115, 2005.

. L. Capra, W. Emmerich, and C. Mascolo. Exploiting reflection and metadata to build

mobile computing middleware. In Workshop on Middleware for Mobile Computing.
Co-located with Middleware 2001, Heidelberg, Germany, Nov. 2001.

. A. K. Dey, G. Abowd, and D. Salber. A conceptual framework and a toolkit for support-

ing the rapid prototyping of context-aware applications. Human-Computer Interaction,
16(2-4):97-166, 2001.

. W. K. Edwards, V. Bellotti, A. K. Dey, and M. W. Newman. Stuck in the middle: The

challenges of user-centered design and evaluation of infrastructure. In ACM Conference
on Human Factors in Computing Systems (CHI 2003), 2003.

. W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and S. Izadi. Challenge: Recombinant

computing and the speakeasy approach. In 8th Annual International Conference on
Mobile Computing and Networking (MobiCom 2002), 2002.

. F. Eliassen, A. Andersen, G. Blair, F. Costa, G. Coulson, V. G. O. Hansen, T. Kris-

tensen, T. Plagemann, H. Rafaelsen, K. Saikoski, and W. Yu. Next generation mid-
dleware: Requirements, architecture and prototypes. In 7th IEEE Workshop on Future
Trends in Distributed Computing Systems, 1999.

R. Englander. Developing Java Beans. O’Reilly and Associates, 1997.

R. T. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

K. Fujinami, F. Kawsar, and T. Nakajima. Awaremirror: A personalized display using
a mirror. In 3rd Third International Conference on Pervasive Computing (Pervasive
2005), pages 315-332, 2005.

S. Greenberg and C. Fitchett. Phidgets: Easy development of physical interfaces through
physical widgets. 14th Annual ACM Symposium on User Interface Software and Tech-
nology (UIST 2001), pages 209 — 218, 2001.

K. Hanaoka, A. Takagi, and T. Nakajima. A software infrastructure for wearable sensor
networks. In The 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2006), pages 27-35, 2006.

D. Iseminger. Com+ Developer’s Reference. Microsoft Press, 2000.

B. Johanson, A. Fox, and T. Winograd. The interactive workspaces project: experiences
with ubiquitous computing rooms. IEEE Pervasive Computing, 1(2):67 — 74, 2002.

F. Kawsar, K. Fujinami, and T. Nakajima. Augmenting everyday life with sentient arte-
facts. In 2005 joint conference on Smart objects and ambient intelligence: innovative
context-aware services: usages and technologies (sOc-EUSAI 2005), 2005.

25

19.

20.

21.

22.

23.

24.

25.

26.

27.

. F. Kawsar, K. Fujinami, and T. Nakajima. Experiences with building intelligent envi-

ronment through sentient artefacts. In 3rd IET International Conference on Intelligent
Environments (IE’07), 2007.

F. Kawsar and T. Nakajima. Persona: A portable tool for augmenting proactive appli-
cations with multi-modal personalization support. In 6th International Conference on
Mobile and Ubiquitous Multimedia (MUM 2007), 2007.

A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar, P. Nguyen, and K. H.
Yi. Interplay: A middleware for seamless device integration and task orchestration
in a networked home. In 4th Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom 2006), pages 307-316, 2006.

T. J. Mowbray and R. Zahavi. The Essential Corba: System Integration Using Dis-
tributed Objects. John Wiley and Sons, 1995.

T. Nakajima, V. Lehdonvirta, E. Tokunaga, and H. Kimura. Reflecting human behavior
to motivate desirable lifestyle. In The Conference on Designing Interactive Systems
(DIS 2008), pages 405-414, 2008.

J. Nakazawa, W. K. Edwards, U. Ramachandran, and H. Tokuda. A bridging framework
for universal interoperability in pervasive systems. In The 26th International Conference
on Distributed Computing Systems (IEEE ICDCS 2006), 2006.

D. Olsen, T. Nielsen, and D. Parslow. Join and capture: a model for nomadic interaction.
In 4th annual ACM symposium on User interface software and technology (UIST 2001),
pages 131-140, 2001.

M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrst-
edt. A middleware infrastructure for active spaces. IEEE Pervasive Computing, 1(4):74—
83, 2002.

J. P. Sousa and D. Garlan. Aura: an architectural framework for user mobility in ubig-
uitous computing environments. In 3rd Working IEEE/IFIP Conference on Software
Architecture, pages 29-43, 2002.

J. Waldo. The jini architecture for network-centric computing. Communication of the
ACM, 42(7):76-82, July, 1999.

Authors

Fahim Kawsar is a PostDoc in the Computing
Department of Lancaster University, UK. He received
his Ph.D. and M. Engg. at the Distributed Computing
Lab of Waseda University in 2009 and 2006 respec-
tively. His research interests evolve around ubiquitous
computing with specific interest in smart object sys-
tems, human-centric system infrastructures and tan-
gible interfaces. He has published in the areas of dis-

tributed middleware, smart objects, personalization, and physical interfaces.
He was a recipient of 2006-08 Microsoft Research (Asia) fellowship.

Tatsuo Nakajima is a professor in Department
of Computer Science and Engineering of Waseda Uni-
versity. His research topics are operating systems, dis-
tributed systems, real-time systems, ubiquitous com-
puting, and interaction design. Currently, he is is lead-
ing two projects: an operating system for future multi-
core based information appliances and persuasive tech-
nologies for motivating desirable lifestyle.

24

Jong Hyuk Park received his Ph.D. degree in the
Graduate School of Information Security from Korea
University, Korea. He is now a professor at the De-
partment of Computer Science and Engineering, Seoul
National University of Technology, Korea. He has pub-
lished about 100 research papers in international jour-
nals and conferences He has been serving as chairs, program committee, or
organizing committee chair for many international conferences and workshops.
He was editor-in-chief of the International Journal of Multimedia and Ubiqui-
tous Engineering (IJMUE), the managing editor of the International Journal of
Smart Home (IJSH). He is Associate Editor / Editor of 14 international jour-
nals including 8 journals indexed by SCI(E). In addition, he has been serving
as a Guest Editor for international journals by some publishers: Springer, El-
sevier, John Wiley, Oxford Univ. press, Hindawi, Emerald, Inderscience. His
research interests include security and digital forensics, ubiquitous and perva-
sive computing, context awareness, multimedia services, etc. He got the best
paper award in ISA-08 conference, April, 2008.

Sang-Soo Yeo received his bachelor’s, master’s
and Ph.D. degrees in Computer Science from Chung-
Ang University, Seoul, Korea. He previously taught
at Dankook University, Seoul, Korea. He has joined
Kyushu University in Japan as a visiting scholar at
the Graduate School of Information Science and Elec-
trical Engineering (ISEE). And then he came back to
Korea and he worked for BTWorks, Inc. as a General

: Manager and he was involved in Hannam University
as a visiting professor at the same period. Now he is a professor at Division of
Computer Engineering, Mokwon University, Korea. Dr. Yeo has been serving
as Chairs for a number of conferences and workshops; MUE 2007, IPC-07,
FBIT 2007, FGCN 2007, WPS 2008, SH’07, MUE 2008, ISA 2008, CSA 2008,
UMC 2008, BSBT 2008, FGCN 2008, ASEA 2008, SecTech 2008, and ICUT
2009. He is an associate editor of the International Journal of Multimedia and
Ubiquitous Engineering (IJIMUE) and he has been served as a Guest Editor
for the International Journal of Security and Its Applications (IJSIA), the In-
ternational Journal of Smart Home (IJSH), and the International Journal of
Autonomous and Adaptive Communications Systems (IJAACS). Dr. Yeo’s re-
search interests include Security, Ubiquitous Computing, Multimedia Service,
Embedded System, and Bioinformatics.

