
“IUT Job Cracker” 
Design and Implementation of a Dynamic Job Scheduler for Distributed Computation 

 
*Fahim Kawsar, **Md. Shahriar Saikat, ***Shariful Hasan Shaikot 

Department of Computer Science 
*Islamic University of Technology, ***Asian University 

**Grameen Software Limited 
fahim@dhaka.net, arif9844@yahoo.com , shaikotweb@yahoo.com 

 
 

 ABSTRACT: 
 
This paper presents the design and implementation of a dynamic scheduler for scheduling applications in 
large-scale, multi-user distributed systems. The approach is primarily targeted at systems that are composed 
of general-purpose workstation networks. Scheduling decisions are driven by the desire to minimize 
turnaround time while maintaining fairness among competing applications and minimizing communication 
overhead. The model handles the task of resource management by dividing the nodes of the system into 
mutually overlapping subsets. Thus a node gets the system state information by querying only a few nodes. 
Based on this information the node decides to execute the submitted task locally or remotely conforming 
optimum resource utilization. 
 
Keywords: Scheduling, distributed systems, Remote Method Invocation, 
 

1. INTRODUCTION: 
 
Every distributed system consists of a number of 
resources interconnected by a network. Besides 
providing communication facilities, it facilitates 
resource sharing by migrating a local process and 
executing it at a remote node of the network. A 
process may be migrated because the local node 
does not have the required resources or the local 
node has to be shut down.  A process may also 
be executed remotely if the expected turnaround 
time needs to be better [1]. From a user’s point 
of view the set of available resource in a 
distributed system acts like a single virtual 
system. Hence when a user submits a process for 
execution, it becomes the responsibility of the 
resource manager of the distributed operating 
system to control the assignment of resources to 
processes and to route processes to suitable 
nodes of the system according to these 
assignments. A resource can be logical, such as a 
shared file, or physical such as CPU. While the 
problem of scheduling parallel applications on 
distributed computing systems is already well-
explored, most existing approaches focus on 
dedicated, centralized or distributed 
environments. From a scheduling perspective, 
first approach addresses a single point of failure 

whereas the later one increases communication 
overhead to a great extent [2].  
 
The scheduling model present in this paper 
typically sits between these two approaches. The 
entire system is divided into number of subsets 
equal to the number of nodes and each subset is 
assigned to every node of the system. A node 
queries only the nodes of its set to collect most 
of the nodes state information. When a task is 
submitted to a node it uses this information to 
take scheduling decision and then executes the 
task locally or remotely accordingly. Our model 
is a semi distributed scheduler that exploits the 
dynamicity and stability requirements of a good 
scheduling technique. In addition our method 
also satisfies the quick decision making 
capability and provides a balanced system 
performance with respect to scheduling overhead 
  
The remainder of the paper is organized as 
follows. Section 2 outlines the framework on 
which our artifact is based. Section 3 & 4 
discusses about the design and implementation 
of the scheduler. Section 5 discusses about the 
performance and future work. Finally, Section 6 
concludes the chapter. We name our artifact as 
IUT JOB CRACKER (IJC). We will use the 
term IJC as our protocol in rest of the paper. 



2. FRAMEWORK MODEL 
 
The underlying framework proposed by Kawsar 
at el [3] on which our artifact is based can be 
summarized as: 
 
For N–number, we create N different subsets of 
size K (K=√N approx) such that each subset 
overlaps every other subset. Each of the subsets 
is assigned to different numbers. 
 
[That is, for each number i, we define a subset Si 
such that Si ∩ Sj ≠ Ø ; For any combination of i 
and j, 1 ≤ i, j ≤ N.] 
We divide an N node system into N different 
mutually overlapping subsets. Each subset is 
assigned to a different node that is considered as 
its request set. For selecting a destination node a 
node query only the member nodes of its request 
set. If a node query its request set members then 
that node will be able to get most of the nodes 
state information because the nodes of its request 
have the last known state information of their 
request set nodes which are not included in 
inquirer request set. Let’s see an example. 

 
 

RN: Rest of the Network (Transparent) 
Fig 1: Nodes Connectivity 

 
Considering a system with 13 nodes, we find that 
the request sets of the node 1, 2, 3 & 4 are 
 

S1 = {1, 2, 3, 4}    S2= {2, 5, 8, 11} 
S3 = {3, 7, 8, 12}   S4= {4, 7, 9, 11} 

  
So the node 1 will exchange its state change 
messages only with node 2, 3 and 4 and from 
these nodes it can also acquire the state 
information of nodes numbered 5, 7, 8, 9, 11, 
and 12  and can update its system state table. So 
whenever node 1 is overloaded  and a new job is 
submitted for execution it can migrate its 
processes to execute remotely to one of the 

nodes of 2, 3, 4, 5, 7, 8, 9, 11, 12 whose last 
known state is under loaded [4, 8]. So node 1 
does not need to communicate explicitly with all 
the nodes for making a migrating decision and 
based on the collected state information it can 
quickly makes its scheduling decision. The 
framework reacts towards the addition or 
removal of a node from the system in the 
following manner: 
 
When a new node is added to the network, it 
must— 
 

 Interrogate some active node to get a list of 
participating nodes. 

 Assign itself a unique node number. 
 Have its node number placed on all other 

nodes’ list of participating 
 

When a node leaves the network, it must notify 
all other nodes of its intention. In the meantime, 
it cannot participate in any communication.  

   
3. DESIGN 
 
In this section we describe the design of our 
developed artifact for dynamic scheduling. Our 
design is not limited to Linux, but we will take 
Linux as an example to explain our design 
concepts.  
 
3.1 GOALS 
 
Our goal is to design and implement a light-
weight general-purpose transparent dynamic 
scheduling package for existing operating 
systems. Our design goals include:  
 

 Built with existing operating systems: We 
want the system to work on general-purpose 
operating systems. We did not want to write 
a new operating system, but wanted to 
leverage investments already made in 
existing systems. We chose Linux as our 
platform because it is rapidly growing, 
totally free, and has source code available.  

 Transparent to user applications: We want 
our package to be general-purpose and 
completely transparent. 

 No kernel modification: By implementing 
our protocol, we achieved virtually the same 
level of transparency as kernel patches but 
avoided changing the kernel itself. This 
makes it much easier to use.  

 Good performance: We do not want to 
degrade the performance of existing 



systems. Especially, we do not want our 
design to add any run-time overhead to the 
system.  

 
 
3.2 ASSUMPTIONS 
 
The basic assumptions of our design are: 
 
1. Assume a homogeneous environment. All 

machines should have the same architecture, 
OS installed.  

2. Assume the process can continue to access 
the same files on all machines. The files are 
on a global file system (such as NFS) 

3. Our main concern is dynamic scheduling 
implementing process migration not crash 
recovery/rollback.  

4. While Linux is not a requirement, our focus 
is on Linux environments and applications 
and we will use Linux semantics in this 
paper.  

5. We have used Remote Method Invocation 
(RMI) approach for servicing the requested 
job. So only java object can be serviced. 

   
3.3 BASIC APPROACH: 
 
IJC does dynamic scheduling by the basic idea 
given in the section 2. For remote execution of 
the processes we have used REMOTE 
METHOD INVOCATION (RMI).  The overall 
approach can be summarized as: 
 

 Install and load “Request Set Generator” on 
all machines that generate the request set of 
the respective machines. 

 Implement the global file system (NFS). 
This can be done during booting time or 
later on explicitly when IJC is called. 

 Install and load” Load Calculators” on all 
machines. These modules run in kernel 
space but do not require kernel modification. 
These modules calculate the system load 
require for decision making. 

 Hosts communicate via virtual network 
address translation.  

 Each of the machines is configured as both 
request client and request server. Each of the 
machines starts listening to a particular port 
for request.  

 Request a process or a group of processes to 
be executed by invoking the graphical 
interface of IJC.  

 IJC decides whether to execute the requested 
process remotely or locally by viewing the 
system environment status. 

 IJC then perform RMI to execute the 
process employing stub processes. 

 After execution of the requested job at the 
remote or local node the results are sent 
back to the home node and displayed 
graphically to the user. 

   
3.4 USER INTERFACE 
 
IJC: the user should be able to specify which 
process(s) to execute and the necessary 
parameter to the respective processes. Figure 2 
shows the graphical interface of the IJC. 
 
Job Report: The user should be displayed the 
result of the requested task. IJC does so by 
displaying the job report of each of the task in a 
separate dialog box. The template of Job Report 
dialog box is shown in Figure 3. 
 

 
 

Figure 2: Graphical Interface of IJC 
 

 
 

Figure 3: Job Report Dialog Box of IJC 
 



4. IMPLEMENTATION 
 
In this section we describe our implementation 
of IJC as a user program on Linux 2.4.x/i386. 
The basic picture of the entire process is, 
needless to say, composed of two phases: 
selection of node and execution of the process at 
selected node. We first give an overview of the 
implementation, and then describe the key 
components. 
 
Basically to reveal the entire implementation 
phase we need to begin from the underlying 
algorithmic approach towards distributed 
scheduling. While installing a new machine to 
the system we provide a module that creates the 
request set of that machine with respect to the 
entire system and updates the necessary file. 
Each of the machines is then automatically 
configured to start a script and to implement 
NFS while rebooting. This script performs the 
recording of system load periodically and 
invokes modules that gather the system wide 
load picture which facilitates appropriate 
decision making for node selection to execute a 
process. The main components of the scheduler 
are: 
   
1. REQUEST SET GENERATOR: 
 
Source File: Set.cpp. 
Binary File: makeset. 
Consequence: Creates a file named homeset.dat 
in /home directory and updates /etc/exports and 
/etc/fsatb 
 
This is the module that actually performs the 
request set creation for each of the node. This 
module implements the algorithm presented in 
section 2 .This binary module causes a new file 
creation  in the /home directory names 
homeset.dat which contains the symbolic names 
of the hosts in the request set. An example of 
homeset.dat file for 3 node system is : 
 
host1/home/homeset.dat 
host1 
host2 
 
host2/home/homeset.dat 
host2 
host3 
 
host3/home/homeset.dat 
host1 
host3 

 
This module also updates the /etc/exports file 
which causes the /home directory of the 
respective node to be exported to the nodes of 
the homeset.dat file. An example of the 
/etc/exports file of nodes may be for 3 node 
system: 
 
host1/etc/exports 
/home    host2(rw) 
 
host2/etc/exports 
/home    host3(rw) 
 
host3/etc/exports 
/home    host1(rw) 
 
This module also updates the /etc/fstab file 
which causes the /home directory of the 
respective nodes of the homeset.dat  file  to be 
mounted in the respective node at booup. An 
example of the /etc/fstab file entry for this of 
host1 node may be for 3 node system: 
 
host1/etc/fstab entry 
host2:/home     /mnt/host2 nfs  defaults  0  0 
 
host2/etc/fstab entry 
host3:/home   /mnt/host3 nfs   defaults0  0 
 
host3/etc/fstab entry 
host1:/home   /mnt/host1  nfs   defaults 0  0 
 
2. LOAD CALCULATOR: 
 
Source File: viewusage.cpp, calrs.cpp, 
calglobal.cpp 
Binary File: viewusage, calrs, calglobal 
Script File: usage 
Consequence: Two file localenvinfo.dat and 
globalenvinfo.dat are created at the /home 
directory of the respective nodes. Two temporary 
file lookup and cpu_use are created at /home and 
/bin directory respectively. 
 
The script file name usage is run in background 
whenever the system  is up. This scripts 
periodically measures the cpu use (load) of the 
node and writes it in raw format at cpu_use file. 
The viewusage module parse this file 
accordingly and extracts the current load and 
writes this information at /home/lookup file. The 
script then calls calrs  module which reads the 
local lookup file and the remote lookup files of 
the nodes that are in it’s request set and write 
each of the nodes load along with their name in 



/home/localenvinfo.dat file. The usage script 
then causes the calglobal  module to be called. 
This module reads the local lookup file and the 
remote localenvinfo.dat file of all nodes that are 
in it’s request set and writes all these information 
at globalenvinfo.dat file in it’s /home directory. 
Thus each of the nodes gathers the picture of the 
global system load. 
 
Example of cpu_use file is: 
 
6:04pm up 21 min,  2 users,  load average: 0.79, 
0.27, 0.21 
 
Example of lookup file is: 
0.79 
 
Example of localenvinfo.dat file is 
host1         0.87 
host2        0.67 
 
Example of globalenvinfo.dat file is 
host1         0.87 
host2        0.67 
host3       0.45 
 
3. The IJC Interface: 
 
At this point each of the machine has the system 
wide load information. Now when IJC is invoked 
a script file  is run at background which causes 
all the java file to compiled and makes the client 
and server process ready for listening to 
particular port for request. Typically we register 
the RMI service in a particular port and run all 
the server stubs at the background.  
 
Now when the job is submitted through the 
graphical interface of IJC, IJC internally reads 
the globalenvinfo.dat file and decides whether to 
execute the request locally or remotely. We may 
use a threshold value here to select the best node 
for processing. If all the machines in the system 
are lightly loaded including the home node then 
it is better to execute the process locally to avoid 
communication overhead. If it decides to execute 
the process remotely then it causes the server 
stub of that node to be called and execute 
thereby. Java RMI handles the entire process 
migration mechanism. For each of the request 
the IJC creates a user level thread thus 
simultaneously several task can be given to the 
node. After execution of the task either remotely 
or locally the result is transmitted to the IJC 
interface which is displayed through job report 
dialog box. 

5. PERFORMANCE ANALYSIS AND FUTURE WORK 
 
The performance of the model is significant from 
overhead perspective. For a traditional N node 
distributed system each node need to exchange 
(N-1) messages (Information Exchange Policy) 
[4] for updating system management table thus 
making a scheduling decision. The mot attractive 
feature of this model is that we need to exchange 
only (K-1) messages where K=√N (approx) to 
gather system wide information. This reduces 
network traffic to a great extent. It also provides 
greater reliability then centralized approach or 
distributed approach. As node crash does not 
result in the down of the entire system. Rather 
the node misses only partial information for 
making scheduling decision. The model provides 
the scheduling decision influencing information 
quite fairly. We have tested our model with two 
very popular and frequently used tasks namely 
prime number generation and Fibonacci number 
generation. We have found that the scheduler 
always selects the best node (with lowest load) 
for execution of the processes and displays the 
result with minimum turn around time. 
 
Currently our model is capable of handling only 
specific java objects as because of its inherent 
dependency on RMI. However the idea can be 
extended to support any kind of objects. For 
example we may use CORBA (Common Object 
Request Broker Architecture) to facilitate 
support for any kind of processes. We are 
currently working on incorporating CORBA in 
our architecture. Hopefully we will be able to 
facilitate services for all processes in near future. 
   
6. CONCLUSION: 
 
The paper discussed about the design of a 
dynamic scheduler that reduces the 
communication overhead involved in decision 
making for resource management. It is visible 
that from number of message exchanging 
perspective our designed model provides a 
significant performance. As the performance of a 
distributed system is heavily influenced by the 
scheduling mechanism, the model presented in 
this paper may lead to a balanced system 
performance as scheduling decision is performed 
quite fairly with less communication overhead.  
 
REFERENCES: 
 
[1] J. XU AND K. HWANG. Dynamic load 
balancing for parallel program execution on a 



message passing multi computer. Proceedings of 
the Second IEEE Symposium on Parallel and 
Distributed Processing pp. 402–406, 1990. 
[2] ANDREW S. TANENBAUM, “Distributed 
Operating Systems”, Prentice Hall, 1995 
[3] Fahim Kawsar, Shariful Hasan, Shahriar 
Saikat, “An Efficient Dynamic Scheduling 
Algorithm in Distributed System”, Proceedings 
of ICCIT-2002  
[4] S. ZHOU. A trace driven simulation study of 
dynamic load balancing. IEEE Trans. Software 
Engineering 14(9): 1327–1341, Sep. 1988. 
[5] J. M. SMITH. A survey of process migration 
mechanisms. ACM Operating Systems Review 
22(3):28–40, Jul. 1988. 
[6] SILBERSCHATZ, A. and PETERSON, J.L., 
"Operating System Concepts," Addison-Wesley, 
Alternate edition, 1988. 
[7] MAEKAWA, M., "A sqrt(n) algorithm for 
mutual exclusion in decentralized systems," 
ACM Transactions on Computer Systems, vol 3, 
no. 2, May 1985, pp. 145-159 
[8] PRADEEP K SINHA”, Distributed 
Operating Systems, Concepts and Design”, IEEE 
Press, 1998 
 


