
 1

An Efficient Dynamic Scheduling Algorithm
In Distributed System

Fahim Kawsar, Md. Shahriar Saikat, Dr. M. A. Mottalib.

Department of Computer Science and Information Technology
Islamic University of Technology

ABSTARCT

This paper presents an algorithm for scheduling applications in large-scale, multi-user distributed
systems. The approach is primarily targeted at systems that are composed of general-purpose
workstation networks. Scheduling decisions are driven by the desire to minimize turnaround time
while maintaining fairness among competing applications and minimizing communication overhead.
The algorithm handles the task of resource management by dividing the nodes of the system into
mutually overlapping subsets. Thus a node gets the system state information by querying only a few
nodes subsequently can take scheduling decision.

Keywords: Scheduling, distributed systems, mutually overlapping subsets, process migration.

1. INTRODUCTION

Over the last decade distributed computing
systems have attracted a great deal of attention.
This is due, in part, to the technological
advances in the design of sophisticated
software and communication interfaces, the
availability of low-cost processors and the
rapid decline in hardware costs. The
motivations for building distributed computing
systems are many. Resource sharing, parallel
processing, system availability and
communication are four major reasons. By
distributing a computation among various sites,
processes are allowed to run concurrently and
to share resources, but still work
independently of each other.

Distributed systems are characterized by
resource multiplicity and system transparency
[1]. Every distributed system consists of a
number of resources interconnected by a
network. Besides providing communication
facilities, it facilitates resource sharing by

migrating a local process and executing it at a
remote node of the network. A process may be
migrated because the local node does not have
the required resources or the local node has to
be shut down. A process may also be executed
remotely if the expected turnaround time
needs to be better. From a user’s point of view
the set of available resource in a distributed
system acts like a single virtual system. Hence
when a user submits a process for execution, it
becomes the responsibility of the resource
manager of the distributed operating system to
control the assignment of resources to
processes and to route processes to suitable
nodes of the system according to these
assignments. A resource can be logical, such as
a shared file, or physical such as CPU. While
the problem of scheduling parallel applications
on distributed computing systems is already
well-explored, most existing approaches focus
on dedicated, centralized or distributed
environments. From a scheduling perspective,
first approach addresses a single point of failure
whereas the later one increases
communication overhead to a great extent [2].

 2

The idea presented in this paper typically sits
between these two approaches. The entire
system is divided into number of subsets equal
to the number of nodes and each subset is
assigned to every node of the system. A node
queries only the nodes of its set to collect most
of the nodes state information and thus take
scheduling decision.

The motivation towards the development of
this paper was to derive a semi distributed
scheduling approach that exploits the
dynamicity and stability requirements of a
good scheduling technique. In addition our
proposed method also satisfies the quick
decision making capability and provides a
balanced system performance with respect to
scheduling overhead. Another aspect to
consider in an algorithm is the amount of
information that is maintained by each node in
the system and how it is used. The state
information about the total system can be used
to reduce the message traffic in the network
and to recover from failures. The performance
of the algorithm presented here will be
evaluated using the total number of messages
required for a node to take scheduling decision
as a criterion. Message traffic should be
minimized in order to decrease the overhead
in the communications network.

The remainder of the paper is organized as
follows. Section 2 compares our work with
existing research in distributed scheduling.
Section 3 outlines the model on which our
scheduling algorithm is based. The scheduling
algorithm is presented in Section 4. Finally,
Section 5 concludes the paper.

2. RELATED WORKS

Two approaches have been used for managing
resources in a distributed computing system. In
a static approach, information about the
average behavior if the system is used, ignoring
the current state of the system where as the
attraction of the dynamic approaches is that
they do respond to the systems state and so are

able to provide better performance. This paper
only addresses the dynamic approach.
Dynamic Scheduling algorithm may be
centralized or distributed,

In a centralized approach, one of the nodes
functions as a central coordinator. The central
coordinator is fully responsible for scheduling
having all the information of the system. In a
distributed approach, the decision making for
scheduling is distributed across the entire
system consisting of several nodes. Each node
having the information of the entire system is
responsible for its own decision.

A centralized algorithm is characterized by
these properties.

 Only the central node makes a
decision

 Sometimes, central control may
Migrate from node to node.

 All necessary information is held
at the central node.

The main problem with this approach is the
reliability issue that is a single point of failure

 A fully distributed algorithm has these
properties.

 All nodes have an equal amount
of information.

 All nodes make a decision based
solely on local information.

 All nodes bear equal responsibility for
a final decision.

 All nodes expend equal effort in
effecting a final decision.

 Usually, failure of a node does
not cause system collapse.

Many algorithms are distributed, but few
satisfy all of these properties.

Most existing dynamic homogeneous
scheduling approaches target load balancing as
the main motivation for dynamic reassignment
and differ according to their accuracy and the

 3

amount of processor load information they
exchange [3]. Zhou’s algorithm [4] balances
load by periodically requiring each processor
to inform other processors of load changes.
Willebeek-LeMair and Reeve [5] presented
four scheduling policies that dynamically
balance load without using global information,
instead considering load only on neighboring
processors.

Both the approaches centralized or distributed
require frequent message exchanging between
the nodes for collecting the system information
for making scheduling decision. For a fully
distributed system with N nodes for making a
scheduling decision a node has to exchange
approximately 2(N-1) messages if we assume
that information transfer policy is exchange
messages when state changes [6] messages. The
algorithm presented here requires far less
message exchanging before making a
scheduling decision. Our proposed algorithm
requires only 2(k-1) messages to decide
whether to execute a process locally or
remotely where K=√N (approx).

3. FRAMEWORK MODEL

The idea presented in this paper is basically
based on the concept of mutually overlapping
subsets [Maekawa 1985] [7]. For N–number,
we create N different subsets of size K (K=√N
approx) such that each subset overlaps every
other subset. Each of the subsets is assigned to
different numbers.

[That is, for each number i, we define a subset
Si such that

Si ∩ Sj ≠ Ø

For any combination of i and j, 1 ≤ i, j ≤ N.]

Here is an example of mutually overlapping
subsets of the integers 1 to 13:

 Fig 1: Maekawa’s Algorithm

4. PROPOSED ALGORITHM

The effectiveness of an algorithm depends on
the suitability of the model as well as the
validity of the assumptions made about the
distributed environment. The algorithm
presented here is based on the following
assumptions and conditions for the distributed
environment:

i. All nodes in the system are assigned unique
identification numbers from 1 to N.
ii. All the nodes in the system are fully
connected.
iii. The method used as the Load Estimation
policy would be the measure of CPU
utilization of the nodes [8]. Central Processing

N=13
N= {1,2,3,4,5,6,7,8,9,10,11,12,13 }
N=K (K-1) + 1 So K=4.
First 4 numbers are = {1, 2, 3, 4}
The remaining numbers { 5, 6, 7, 8, 9, 10,
11, 12, 13}
The matrix along with the single number

2 2 2

 1 5 6 7

 1 8 9 10

 1 11 12 13

jump-1 Diagonal Jump-2 Diagonal

 5, 9, 13 5, 10, 12

 6, 10, 11 6, 8, 13

 7, 8, 12 7, 9, 11

The Subsets are:

S1 = {1, 2, 3, 4} S2= {2, 5, 8, 11}
S3 = {3, 7, 8, 12} S4= {4, 7, 9, 11}
S4 = {1, 5, 6, 7} S6= {2, 6, 9, 12}
S7 = {2, 7, 10, 13} S8= {1, 8, 9, 10}
S9 = {3, 5, 9, 13} S10= {3, 6, 10, 11}
S11 = {1, 11, 12, 13} S12= {4, 5, 10, 12}
 S13= {4, 6, 8, 13}

 4

Unit (CPU) utilization is defined as the
number of CPU cycles actually executed per
unit time.
iv. Process transfer policy which determines
whether to execute a process locally or
remotely is implemented by the double
threshold policy [Alonso and Cova 1988] [8]
v. The node send its state information to other
nodes only when it’s state switches from
normal load region to either over load or under
load region. [8]

When reviewing an algorithm, attention
should be paid to the assumptions made about
the communications network. This is very
important because nodes communicate only by
exchanging messages with each other. The
following aspects about the reliability of the
underlying communications network should
be considered [8].

• Message delivery guaranteed.
• Message-order preservation.
• Message transfer delays are finite, but

unpredictable.
• The topology of the network is

known.

The framework model stated in the proceeding
section forms the basis of our scheduling
technique. We divide an N node system into N
different mutually overlapping subsets. Each
subset is assigned to different a node that is
considered as its request set. Before making a
scheduling decision a node query only the
member nodes of its request set. It is
understandable from the discussion of the
mutually overlapping subsets that if a node
query its request set members then that node
will be able to get most of the nodes state
information Because the nodes of its request
have the last known state information of their
request set nodes which are not included in
inquirer request set. Let’s see an example.

Considering a system with 13 nodes, from the
figure 1 we see that the request sets of the
node 1,2,3 & 4 are

S1 = {1, 2, 3, 4} S2= {2, 5, 8, 11}
S3 = {3, 7, 8, 12} S4= {4, 7, 9, 11}

RN: Rest of the Network (Transparent)

Fig 2: Nodes Connectivity

So the node 1 will exchange its state change
messages only with node 2, 3 and 4 and from
this nodes it can also acquire the state
information of nodes numbered 5, 7, 8, 9, 11,
and 12 and can update its system state table. So
whenever node 1 is overloaded it can migrate
its local processes to execute remotely to one of
the nodes of 2, 3, 4, 5, 7, 8, 9, 11, 12 whose last
known state is under loaded [6, 8]. So node 1
does not need to communicate explicitly with
all the nodes for making a migrating decision
and based on the collected state information it
can quickly makes its scheduling decision. The
algorithm reacts towards the addition or
removal of a node from the system in the
following manner:

When a new node is added to the network, it
must—

• Interrogate some active node to get a list of
participating nodes.
• Assign itself a unique node number.
• Have its node number placed on all other
nodes’ list of participating

When a node leaves the network, it must
notify all other nodes of its intention. In the

 5

meantime, it cannot participate in any
communication.

4.1 PERFORMANCE GAIN

The performance gain of our algorithm is
significant from overhead perspective. For a
traditional N node distributed system each
node need to exchange 2(N-1) messages for
updating system management table thus
making a scheduling decision. The attractive
potentiality of this newly proposed technique
is that we need to exchange only 2(K-1)
messages where K=√N (approx). This reduces
network traffic to a great extent. It also makes
quick scheduling decision about the
assignment of processes. It also provides
greater reliability then centralized approach or
distributed approach. As node crash does not
result in the down of the entire system. Rather
the node misses only partial information for
making scheduling decision. For example in
the example given, if node 2 crashes then only
node 5’s information is missing Based on the
state information gathered by node 1 from the
nodes of it’s request set it can take scheduling
decision quickly enough that is whether to
run a process locally or remotely. The
algorithm provides the scheduling decision
influencing information quite fairly. The
algorithm has a high scalability factor because
the inquirer receives fairly small number of
messages considering the total node number
for making a decision.

5. CONCLUSION

The motivation towards the development of
this paper was to develop a dynamic
distributed scheduling technique that reduces
the communication overhead involved in
decision-making. It is visible that from number
of message exchanging perspective our
proposed algorithm provides a significant
performance. The limitation of this algorithm
is that some nodes information is missing, as
they do not include in any of the sets. For
example in the case of 13 node system each
node misses 3 nodes information a while

making a decision. But as the number of nodes
increases in a system the information of the
missing nodes is insignificant, for example for a
system with 7 nodes 1 nodes information is
missing, a system with 31 nodes 7 nodes
information is missing. However from the
definition of the distributed scheduling
technique it is desirable that each node should
have only a partial view of the entire system,
which minimizes our limitation. One way to
completely eliminate this problem may be to
communicate explicitly with the missing
nodes. For example a system with 31 nodes
will miss 7 nodes information. If we explicitly
communicate with these nodes then the
required messages will be 2(6-1)+2*7=24 where
as in traditional systems the required message
is 2(31-1) = 60.As the node number increases
the amount of message requirement also
decreases. It is noticeable here is that this
version still provides far better performance
than the previous one. As the performance of
a distributed system is heavily influenced by
the scheduling mechanism, the algorithm
presented in this paper may lead to a balanced
system performance as scheduling decision is
performed quite fairly with less
communication overhead.

6. REFERENCES

[1] J. XU AND K. HWANG. Dynamic load
balancing for parallel program execution on a
message passing multi computer. Proceedings
of the Second IEEE Symposium on Parallel and
Distributed Processing pp. 402–406, 1990.
[2] ANDREW S. TANENBAUM, “Distributed
Operating Systems”, Prentice Hall, 1995
[3] MAEKAWA, M.; OLDEHOEFT, A.E.; and
OLDEHOEFT, R.R., "Operating Systems,
Advanced Concepts," Benjamin-Cummings,
1987.
[4] S. ZHOU. A trace driven simulation study
of dynamic load balancing. IEEE Trans.
Software Engineering 14(9): 1327–1341, Sep.
1988.
[5] J. M. SMITH. A survey of process migration
mechanisms. ACM Operating Systems Review
22(3):28–40, Jul. 1988.

 6

[6] SILBERSCHATZ, A. and PETERSON, J.L.,
"Operating System Concepts," Addison-
Wesley, Alternate edition, 1988.
[7] MAEKAWA, M., "A sqrt(n) algorithm for
mutual exclusion in decentralized systems,"

ACM Transactions on Computer Systems, vol
3, no. 2, May 1985, pp. 145-159
[8] PRADEEP K SINHA”, Distribute Operating
Systems, Concepts and Design”, IEEE Press,
1998

