
A Document based Framework for Smart Object Systems

Fahim Kawsar, Tatsuo Nakajima
Waseda University, Japan

{fahim,tatsuo}@dcl.info.waseda.ac.jp

Jong Hyuk Park
Kyungnam University, Korea
parkjonghyuk1@hotmail.com

Young-Sik Jeong
Wonkwang University, Korea

ysjeong@wonkwang.ac.kr

Abstract

We present an architectural framework that provides the
foundation for building smart object systems and uses a
document centric approach utilizing a profile based arte-
fact framework and a task based application framework.
Our artefact framework represents an instrumented phys-
ical smart objects as a collection of service profiles and ex-
presses these services in generic documents. Applications
for smart objects are expressed as a collection of functional
tasks (independent of the implementation) in a correspond-
ing document. A runtime component provides the founda-
tion for mapping these tasks to the corresponding service
provider smart objects. This mapping is spontaneous and
thus enables gradual addition of services. Primary advan-
tages of our approach are twofold- firstly, it allows develop-
ers to write applications in a generic way regardless of the
constraints of the target environment. Secondly, it allows
extension of functionalities of smart objects and applica-
tions very easily. We describe an implemented prototype of
FedNet, and show examples of its use in a real life scenario
to illustrate its feasibility.

1. Introduction
One of the consequences of pervasive technologies (e.g.,

miniaturization of the computer technologies and prolif-
eration of wireless internet, short-range radio connectiv-
ity, etc.) is the integration of processors and tiny sensors
into everyday objects. This revolutionized our perception
of computing. We are in an era, where we communi-
cate directly with our belongings, e.g., watches, umbrella,
clothes, furniture or shoes and they can also intercommuni-
cate. These everyday objects are designed to provide sup-
plementary services beyond the primary purpose, an initia-
tive that has been denoted as Smart Object1 computing. It

1In this paper, smart objects and augmented artefacts carry similar
meaning and will be used interchangeably.

has drawn significant attention from the research commu-
nity, primarily because of its promising potential in various
industries e.g., supply chain management, medicine, envi-
ronment monitoring, entertainment, smart spaces, etc.

In this paper, we look at the system issues for these smart
objects. In particular we discuss two issues 1) a suitable
artefact framework for representing smart objects and 2)
a middleware that enables the rapid development of smart
object systems. Primarily, we will look at the appropriate
abstraction that we can use in smart object systems to pro-
vide a framework that enable rapid development of portable
and extensible smart objects systems. The basic idea of
our framework is to use documents to externalize an ap-
plication’s requirements in a generic way without consider-
ing smart object management issues. Similarly, smart ob-
jects’ services are externalized by structured documents. A
runtime infrastructure provides a semantic association be-
tween the applications and smart objects using structural
type matching of these documents. Because of such loose
coupling, applications and smart objects can be built and
extended orthogonally.

2. Motivation and Design Issues
Smart object systems usually involve sensor instru-

mented everyday objects, mobile devices, displays, etc. to
provide some user-centric proactive services. Our frame-
work provides support for building this class of applica-
tion in a simplistic way by utilizing a document centric ap-
proach. Our design has been influenced by two success-
ful approaches existing currently. First one is the internet
which is an excellent example of document based system.
The internet is a collection of millions of anonymously au-
thored digital documents that are encoded in a pre defined
semantics that enable heterogenous platforms to exchange
these documents. The fundamental issue here is the pre
negotiation of the semantics. The most widely used pro-
tocol for internet, i.e., HTTP is basically acts as the en-



Figure 1. (a) Basic workflow of our approach (b) The internal architecture of FedNet

velope for this documents and provides the negotiation se-
mantics to both the sender and recipient (i.e., servers and
client browsers and vice versa) through it headers for a flaw-
less communication. Henceforth, structured document is
the primary resource and HTTP (headers) acts as the con-
necting glue in the internet infrastructure. In our approach,
we consider applications are the consumers and smart ob-
jects are the resources. Thus if both are expressed and
amended with pre negotiated semantics using documents
like HTTP headers, we can easily provide a runtime asso-
ciation. The second influencing approach is the commonly
used shell scripting to connect arbitrary programs using the
UNIX pipe facility [6] where file handles (i.e., stdin, std-
out, stderr) are used to differentiate and route data. From
an abstract view point we can observe that this capability
of semantic mapping by pipe facility is basically the nego-
tiation of input/output structure. Thus, a structured docu-
ment with pre negotiated semantics can perform the similar
piping between application and smart objects. Henceforth,
documents can glue an application with smart objects given
the fact that they have pre negotiation through some abstract
notions. Thus our primary challenge in document based ap-
proach is to provide appropriate abstraction underneath the
documents that can be utilized to build smart object sys-
tems. With these viewpoints we have designed our frame-
work adopting following design guidelines:

1. Providing appropriate wrapper framework and abstrac-
tion with structured documents to build smart objects
without concerning the target application requirement.

2. Providing appropriate abstraction with structured doc-
uments for application developers using which they
can externalize application’s requirements and utilize
smart objects without concerning interfaces and the

management of smart objects.

3. Utilizing a runtime intermediator that handles smart
object management (Bootstrapping, Discovery, Uti-
lization) and provides mapping between application
and smart object services based on structural type
matching thus separating the concerns of the applica-
tion and the middleware.

4. Providing service extension support for both the appli-
cation and the smart object using primary abstractions.

These design principles enable developers to write ap-
plications and to build smart objects in a generic way re-
gardless of the constraints of the target environment. The
runtime infrastructure provides the pairwise mapping using
structural typing thus externalizing smart object manage-
ment and addressing heterogeneity issues away from the
applications allowing developers to focus on the applica-
tion functionalities only. This results in simple and rapid
development of smart object systems.

3. System Architecture
Our middleware consists of an Artefact Framework, an

Application Development Model and a Runtime Intermedi-
ary Infrastructure called FedNet. The basic workflow of our
middleware is shown in Figure 1 (a). Artefact framework
represents a smart object by encapsulating its augmented
functionalities (e.g., proactivity of the table lamp) in one or
multiple service profiles atop a runtime and allows additions
of profiles incrementally. Applications in our approach are
represented as a collection of implementation independent
functional tasks. These tasks are atomic actions that repre-
sent the smart objects’ services. An infrastructure compo-
nent FedNet, manages these applications and artefacts and



Figure 2. Architecture of Artefact Framework

maps the task specifications of the applications to the under-
lying artefacts’ services by matching respective documents
(that express the applications and the artefacts). Primarily
these two abstractions Profile and Task are used in our sys-
tem and realized by corresponding documents. Addition-
ally end user tool can be built atop our middleware inde-
pendently to deploy, configure and manage the applications
and the artefacts.

3.1 Artefact Framework

Artefact framework provides a layered architecture as
shown in Figure 2 where basic smart object functionalities
are combined in a generic core component that act as the
runtime. Additional augmented features can be added as
plug-ins into the core. Each augmented feature is called a
Profile in our approach. These profiles are artefact inde-
pendent and represent a generic service implementing ser-
vice specific protocols., For example: sensing room tem-
perature could be one profile, and multiple artefacts (e.g., a
window, an air-conditioner, etc.) can be augmented with a
thermometer for supporting this profile. A profile handles
the service specific heterogeneity by hiding the implemen-
tation detail and can be plugged into the runtime core of our
artefact framework, allowing any profile to be a part of a
suitable artefacts. The runtime core of a smart object hosts
an array of its profiles and provides the basic communica-
tion facilities (e.g., service advertisement, pushing/pulling
profile services to/from respective applications). A smart
object and its service profiles are externalized using struc-
tured documents expressed in XML as shown in Figure 3.
This document specifies the profile detail, i.e., input/output
data type, methods, parameters, etc.

3.2 Task Centric Application Model

Any application is composed of several functional tasks,
i.e., atomic actions. In smart object systems, these atomic
actions may be: “turn the air-conditioner on”, “sense the
proximity of an object” etc. In our application model, an

Figure 3. Artefact Description File for a Mirror
with Proximity Profile

Figure 4. Task Description File (partly) for a
smart display application

applications atomic actions are externalized as Tasks in a
corresponding Task Description File expressed in XML as
shown in Figure 4. This document explicitly specifies the
service requirements of this application and each task in the
document specifies the respective profiles of the smart ob-
jects it needs to accomplish its goal. The next feature of our
application model is the interface definition. We consider
defining strict interfaces for applications limits the portabil-
ity and adoption of applications. Since any application only
needs to manipulate data to interact with underlying smart
objects, a compatible and consistent message is enough to
enable applications interaction with smart objects. Conse-
quently, we have addressed this concern by allowing Fed-
Net, the intermediary component of our middleware to act
as the gateway of smart objects services and accessing those
services from application in a RESTful manner using sim-
ple HTTP get and post with XML messages. Thus appli-
cations do not need to adhere any middleware specific in-
terfaces to interact with the smart objects yet can leverage
their services via FedNet.

3.3 FedNet Runtime Infrastructure

In our approach both the applications and artefacts are
infrastructure independent and expressed in high level de-



scriptive documents (i.e., task and profile specifications).
FedNet provides the runtime association among them by
utilizing only the documents of these applications and arte-
facts. It can contact the the artefact core using the semantics
described in the artefact documents for mapping application
tasks, similarly application can contact FedNet in a REST-
ful manner. FedNet itself is packaged in a generic binary
and composed of four components, Figure 1(b) shows the
interaction among four components.

1. Application Repository hosts all the applications that
run on FedNet. During an application’s deployment,
the binary executable and the Task Description File
(TDF) are submitted to this repository. FedNet Core
generates the an access point for the application and
updates the respective TDF by dynamically injecting
the identity of the corresponding access point as shown
in Figure 4.

2. Artefact Repository manages all the artefacts running
in FedNet environment. During artefacts’ deployment,
the executable binary implementing the artefact frame-
work and the Artefact Description File (ADF) are sub-
mitted to this repository. When a profile is added to
an artefact, the profile information is dynamically in-
jected into ADF as shown in Figure 3 and the respec-
tive profile is attached to the artefact.

3. FedNet Core provides the foundation for the runtime
federation. When an application is deployed the task
specification is extracted from the application reposi-
tory by the FedNet Core. It analyzes the task list by
querying the artefact repository and generates an ap-
propriate template of the federation and attaches it into
a generic access point component for that application.
When an application is launched, the access point is
instantiated and the respective template is filled by the
actual artefact available in the environment right at that
moment thus forming a spontaneous federation.

4. Access Point represents the physical environment
needed by an application. Since each application’s
artefact requirement is different and each application
might not be running all the time, FedNet assigns
a unique access point for each application; meaning
multiple federations of artefacts can co-exist in the en-
vironment. Simultaneously, each artefact can partici-
pate in multiple federations. When an application is
launched, the access point sends the federated arte-
facts data semantics to the application. This allows an
application to know the semantics of movable data in
advance. From then on, the application delegates all
its requests to the access point which in turn forwards
them to the specific artefact. The artefacts’ responses
to these requests by providing their profile outputs ei-
ther by pushing the environment state (actuation) or

Figure 5. Location Modalities of Artefact
Framework

pulling the environment states (sensing) back to the ac-
cess point that are fed to the application.

3.4 Distributed Management
In the earlier part of this section we have provided the

explanation of the functional roles of the primary compo-
nents of our infrastructure. From physical implementation
point of view all these components could be distributed, i.e.,
instrumented artefacts can run in their own nodes, applica-
tions can run on the artefact nodes, or in a separate node in-
tegrating multiple artefact nodes, and FedNet can run in its
own node to manage all other nodes.The artefact framework
essentially is the digital identity of an artefact. So an obvi-
ous issue is the location of this digital part. We have two
choices as shown in Figure 5: a) At-the-Edge (On-Board)
b) At-the-Infrastructure (Off-Board). At-the-Edge means
the artefact itself has a processing unit that hosts its digital
representation where as the At-the-Infrastructure means a
proxy, running in a separate location represents the artefacts
and communicates with the artefact to retrieve sensor data
or to actuate artefact’s function using some communication
protocol, e.g., Bluetooth, IEEE 802.11x, etc. Both choices
have pros and cons. While at-the-edge approach provides
pre-configurable and self sustainable artefacts, it is prone
to limited capability. On the other hand, although at-the-
infrastructure approach requires manual configuration and
maintenance, the primary advantage is the rapid prototyping
support. In our current implementation we have adopted At-
the-Infrastructure approach and each artefacts digital repre-
sentation, i.e., artefact framework’s binary core and profile
plug-ins are deployed in a node that communicates with the
physical artefact thr-ough some communication channel to
retrieve the actual profile service via the hardware attached
into the artefact. The same is true for the applications, i.e.,
the applications running on a single artefact can reside in
the same node that represents the artefact and the applica-
tion that integrates multiple artefact can reside on the any of
those artefacts node. It is the FedNet components that or-
ganize these nodes in a distributed manner and manages the



spontaneous federation. The FedNet components (i.e., Ap-
plication Repository, Artefact Repository and FedNet Core)
can reside in one or multiple nodes and manage the under-
lying artefacts and applications.

4. An Application Scenario
We have built several smart object systems using our

middleware. In this section we are presenting one of those
systems.

We constructed a smart mirror by augmenting a regular
laptop with acrylic magic mirror. Initially this mirror has
a display profile. We wrote an application for this mirror
where the application can show some personalized infor-
mation (e.g. weather, stock quote, movie listing etc.) into
the mirror display. However, this application can proac-
tively show information only when someone is in-fornt of
the mirror. But for such proactivity it requires a proximity
profile. To enable this application feature, later we have
added a proximity profile to this mirror by attaching an
Infra-red sensor. This improved the applications interac-
tivity. Afterwards we built a completely separate applica-
tion for the mirror where user’s dental hygiene is reported
in a persuasive way utilizing the metaphor of a clean and
dirty aquarium. We replaced the previous application run-
ning on the mirror with the new one. This new application
requires a smart toothbrush that can detect its state-of-use.
We constructed the smart toothbrush by attaching a wire-
less accelerometer sensor and deployed it in our environ-
ment with corresponding profile. Thus the mirror shows an
aquarium reflecting users brushing practice whenever the
user brushed his teeth in front of the mirror. All the smart
objects and applications were deployed and configured us-
ing our end user deployment tool running atop FedNet. We
have also performed an informal user study for evaluating
the usability of our approach form end users point of view
that we have reported at other forum [5].

Both the applications were built independently and de-
ployed with corresponding documents expressing the tasks,
similarly the two smart objects e.g., the toothbrush and the
mirror were built independently and deployed with corre-
sponding documents. FedNet provided the runtime associ-
ation among them thus freeing application from smart ob-
ject management. Furthermore, this scenario highlighted
the service extension feature of our middleware. We have
added new profiles to an existing smart mirror allowing an
existing application to leverage new functionalities. Impor-
tantly, the application did not have to take into account the
heterogeneity issues introduced by the addition of an Infra-
red sensor as it was handled by the proximity profile imple-
mentation.

5. Discussion
There are primarily two abstractions that we have uti-

lized in our middleware. From the smart objects’ perspec-

tive it is the notion of profile that handles the service im-
plementation detail and protocol issues. Since profiles are
independently built following a plugin architecture, a smart
object service can be extended anytime by adding new sen-
sors or actuators and attaching corresponding profile into
the smart objects core. Also, if a specific service needs to
be updated only the corresponding profile need to be re-
placed, not the entire smart object or the applications uti-
lizing them. Furthermore, a profile may provide services in
various granularities thus supporting multiple applications
requiring services at different scale (i.e., some applications
may ignore some service features). The second abstraction
is from applications’ perspective, i.e., tasks that simply ex-
ternalize an applications requirements, so any application
can be expressed with this abstraction. Not necessarily all
tasks of an application can be supported by an existing en-
vironments, however with the incremental addition of new
smart objects in the environment or porting application to
another environment with richer smart objects might en-
able the full functional features of an application. In ad-
dition an applications functionalities can be updated inde-
pendently (application binary and the document) without
concerning the impact of such update in the middleware or
smart objects. In our approach, such flexibilities are pro-
vided elegantly by only expressing applications’ task spec-
ifications in documents and ignoring smart object manage-
ment issues at the application level. FedNet provides the
appropriate mapping of these documents with smart objects
documents expressing their services. This disassociation of
applications from the smart objects they reference is identi-
cal to the Model-View-Controller (MVC) architecture from
Smalltalk. In the MVC architecture, data (the model) is
separated from the presentation of the data (the view) and
events that manipulate the data (the controller). Similarly,
documents in our middleware act as the glue that associates
smart objects services to applications that manipulate the
services. Such separation of concern (i.e., both the applica-
tions are artefacts are independent of FedNet and come as
ready-to-run binary), and data centric approach also enable
us to provide additional services orthogonally in our sys-
tem. For example, we have implemented several end user
tools atop FedNet that enable end users to deploy, configure
and manage the applications and smart objects running in
the FedNet environment.

6. Related Work
To date several methods have been proposed to address

system support for ubicomp applications. One approach is
interface and protocol standardization as attempted by Jini2

and UPnP3 respectively. Jini describes devices using inter-
face description and language APIs allowing applications to

2Jini - http://www.sun.com/software/jini
3Universal Plug and Play - http://www.upnp.org



utilize those interfaces where as UPnP attempts to standard-
ize protocols to allow devices to intercommunicate seam-
lessly. These infrastructures provides well defined inter-
faces for application developers, however it is hard to build
application integrating appliances that do not follows their
specific protocols. Furthermore, these systems provide lit-
tle support for extending applications or appliance services.
For example, it is hard to add features in an existing artefact
and using that feature immediately in the application with
these infrastructures. Patch Panel [1] is a programming tool
that provides a generic set of mechanisms for translating in-
coming events to outgoing events using EventHeap [4] com-
munication platform. It allows new applications to lever-
age the services of existing components. Our overall ap-
proach is close to Patch Panel as we seek to support incre-
mental integration. However, we exploit a distributed state
model with an artefact framework that enable incremental
addition of features to both artefacts and applications. In
SpeakEasy [3] mobile codes (typed data streams and ser-
vices) are exchanged among heterogeneous devices to cre-
ate an interoperable environment. SpeakEasy does not con-
sider the incremental extension of artefact services or end
user deployment as its primary focus is on service com-
position. InterPlay [7] is a home A/V device composition
middleware and uses pseudo sentences to capture user in-
tent, which is converted into a higher level description of
user tasks. These tasks are mapped to underlying devices
that are expressed using device description. Although our
approach is very close to InterPlay as we employ similar
mapping of tasks to device services, our challenge is to pro-
vide generic abstractions and to support incremental exten-
sion and deployment of both artefacts and applications. Our
artefact framework is a major leap from InterPlay which
signifies our contribution. A range of middlewares for per-
vasive systems [2, 8, 9] specify their application develop-
ment processes strictly. These middlewares usually provide
end-to-end support for the application developer, i.e., in-
strumented artefacts are encapsulated into wrappers and an
array of APIs is provided to the applications to manipulate
them. The problem of this approach is that the applications
and the instrumented artefacts become virtually incompat-
ible in other environments. We have adopted a document
centric approach allowing development of infrastructure in-
dependent applications and artefacts and the runtime asso-
ciation between them is provided by FedNet.

7. Conclusion

In this paper we have presented a document based ap-
proach to build smart object systems. Applications’ re-
quirements and smart objects’ services are externalized us-
ing structured documents utilizing Task and Profile abstrac-
tions respectively. A runtime framework FedNet provides
the dynamic association by structural type matching. The

contributions of our approach are two-fold: firstly, it allows
developers to write applications in a generic way regardless
of the constraints of the target environment utilizing the ab-
stractions that are realized through documents Secondly, it
allows extension of functionalities of smart objects and ap-
plications very easily. We have described an implemented
prototype of our approach with an application scenario that
highlight the power and flexibility of our framework. We
consider our approach is very useful for the ubiquitous com-
puting domain, particularly one that involves smart objects.

References

[1] R. Ballagas, A. Szybalski, and A. Fox. Patch panel:
Enabling control-flow interoperability in ubicomp en-
vironments. In PerCom 2004, 2004.

[2] A. K. Dey, G. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid proto-
typing of context-aware applications. Human Computer
Interaction, 16(2-4):97–166, 2001.

[3] W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and
S. Izadi. Challenge: recombinant computing and the
speakeasy approach. In th ACM MobiCom, 2002.

[4] B. Johanson, A. Fox, and T. Winograd. The interactive
workspaces project: experiences with ubiquitous com-
puting rooms. IEEE Pervasive Computing, 1-2, 2002.

[5] F. Kawsar, K. Fujinami, and T. Nakajima. Deploy
spontaneously: Supporting end-users in building and
enhancing a smart home. In The Tenth International
Conference on Ubiquitous Computing (Ubicomp 2008),
2008.

[6] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the 4.3
BSD UNIX Operating System. Addison-Wesley, Read-
ing, MA, 1989.

[7] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song,
P. Kumar, P. Nguyen, and K. H. Yi. Interplay: A mid-
dleware for seamless device integration and task or-
chestration in a networked home. In IEEE PerCom
2006.

[8] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. Gaia: A middleware
infrastructure to enable active spaces. IEEE Pervasive
Computing, pages 74–83, 2002.

[9] J. P. Sousa and D. Garlan. Aura: an architectural frame-
work for user mobility in ubiquitous computing envi-
ronments. In 3rd Working IEEE/IFIP Conference on
Software Architecture, 2002.


