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Abstract. A comprehensive understanding of fatigue and its impact
on performance is a prerequisite for fatigue management systems in the
real world. However, fatigue is a multidimensional construct that is of-
ten poorly defined, and most prior work does not take into consideration
how different types of fatigue collectively influence performance. The
physiological markers associated with different types of fatigue are also
underexplored, hindering the development of fatigue management tech-
nologies that can leverage mobile and wearable sensors to predict fatigue.
In this work, we present FatigueSet, a multi-modal dataset including sen-
sor data from four wearable devices that are collected while participants
are engaged in physically and mentally demanding tasks. We describe the
study design that enables us to investigate the effect of physical activity
on mental fatigue under various situations. FatigueSet facilitates further
research towards a deeper understanding of fatigue and the development
of diverse fatigue-aware applications.
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1 Introduction

Fatigue is a complex psychophysiological condition that is characterized by expe-
riential feelings of tiredness or sleepiness, suboptimal performance, and a broad
range of physiological changes [33]. Fatigue has a detrimental effect on physical
and mental performance, leading to reduced decision making and planning abil-
ities, reduced alertness and vigilance, loss of memory, increased risk-taking and
errors in judgment, and increased sick time, incident rates, and medical costs [5].
Therefore, fatigue management systems have received much attention for man-
aging potential risks from fatigue in organizations and for promoting individual
wellbeing [38, 6, 15]. In common, they aim to detect individuals’ fatigue in time
and intervene to mitigate any resulting lapses in performance.

There have been extensive efforts to study the causes and temporal dynamics
of fatigue in the domain of physiology, medicine, and neuroscience [43, 39, 42].
However, since these attempts have been mostly made with medical devices in a
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clinical setting, it is difficult to adopt the findings from these studies into ubiqui-
tous computing for healthcare and wellbeing. While there have been attempts to
computationally model fatigue using physiological signals from wearable sensors
in the mobile computing domain [15, 26], they have mostly been limited to the
consideration of a single type of fatigue. However, different types of fatigue have
been shown to influence each other in significant ways [41, 27, 20].

Motivated by these observations, we present FatigueSet3, a multi-modal dataset
for modeling the interplay between physical and mental fatigue and its impact
on cognitive performance. As a first step for computationally modeling this in-
terplay, in this paper, we collect and introduce a dataset for exploring the impact
of physical activity on mental fatigue and associated cognitive performance; we
leave the impact of mental fatigue on physical fatigue to be explored in future
work. We recruit 12 participants and collect multi-modal sensor data while in-
ducing different levels of neuromuscular burden as well as cognitive load, and
observing their physiological responses and performance on cognitive tasks. To
enable a comprehensive study, we include a variety of physiological sensors – elec-
troencephalography (EEG), photoplethysmography (PPG), electrocardiography
(ECG), electrodermal activity (EDA), skin temperature sensor, accelerometer,
and gyroscope – on four different wearable devices (an earable prototype based
on Nokia eSense [2], Empatica E4 wrist band [1], Muse S EEG headband [3], and
Zephyr BioHarness 3.0 ECG chestband [4]). We hope this dataset will expedite
studies towards a deeper understanding of fatigue in the research community as
well as facilitate the development of diverse fatigue-relevant applications.

2 Background and Related Work

2.1 Defining Fatigue

Fatigue is a multifaceted construct that lacks a single clear definition. Prior work
has attempted to define fatigue in terms of at least three sets of characteristics
– experiential, behavioral, and physiological [33].

Experiential definitions of fatigue emphasize feelings of tiredness, exhaustion,
and lack of energy, along with low levels of motivation and a disinclination to
continue a task. Fatigue as an experiential construct is measured in terms of
individuals’ self-reported feelings, often on one of many standardized fatigue
measurement scales (see [11] for a review). Targeting an experiential measure
of fatigue can be a valid treatment goal for clinically fatigued individuals and
is also a desirable outcome for fatigue management technologies for the general
population. However, there may be a gap between an individual’s perception of
tiredness and exhaustion and the external consequences resulting from it.

Behavioral definitions of fatigue focus on these consequences, emphasizing
decline in performance as a fundamental indication of fatigue. Prior work has
conceptualized fatigue as decrements measured either on a primary task or a
probe task. Performance measures on primary tasks are those that are recorded

3 https://www.esense.io/datasets/fatigueset
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as participants engage in the fatiguing task of interest. For instance, fatigue-
related effects of time on task have been measured in terms of reaction times or
lapses on the psychomotor vigilance test (PVT) [42]. On the other hand, probe
tasks are interspersed with the primary task and used to obtain momentary
performance levels at different points in time. A probe task such as the PVT or
the Mackworth Clock Test can be administered several times between trials of
a different fatiguing task, or at regular intervals throughout a workday [23].

Prior work has also operationalized fatigue in terms of the neurophysiological
changes that occur either to cause it, or as a response to a fatigued condition.
This provides an opportunity to objectively measure fatigue in terms of its phys-
iological markers, which is necessary for fatigue management systems based on
wearable or environmental sensors. The exact physiological responses depend on
the type of fatigue under consideration, and will be discussed Section 2.3.

2.2 Operationalizing Fatigue for Fatigue Management Technologies

From the above discussion, it is clear that attempts to define fatigue solely in
terms of either experiential, behavioral, or physiological variables present an in-
complete view. Prior research has also shown dissociation between fatigue mea-
surements across two or more dimensions (no change in physiological responses
even as individuals report higher levels of fatigue, or dissociation between expe-
riential and performance measures, for example) [33]. This has led to increased
interest in a dynamic, multidimensional definition of the concept of fatigue.

We adopt the taxonomy proposed by Kluger et al. [19] to define this con-
cept in terms of two complementary constructs – fatigue and fatigability. For
the remainder of this paper, we use the term “fatigue” to refer to the subjective
sensations and perceptions of tiredness and exhaustion. We use the term “fati-
gability” to refer to objective changes in performance resulting from fatigue and
the underlying mechanisms driving it.

Based on the adopted taxonomy, fatigue and fatigability are often co-occurring
and are accompanied by associated neurophysiological responses. An ideal fa-
tigue management system should target both these constructs separately as well
as consider how they influence each other. Also, physiological measures should be
closely monitored and their relationship with both fatigue and fatigability must
be individually assessed. FatigueSet is an attempt in this direction, measuring
both fatigue and fatigability along with physiological sensor data.

2.3 Types of Fatigue

Prior work has identified two primary types of fatigue based on its causes, phys-
iological markers, and symptomatology: physical and mental fatigue. Neuromus-
cular or physical fatigue is fatigue induced by physical exercise, which leads to
a decline in muscle power or exerted force [43]. Physical fatigue is associated
with changes in EMG activity in the muscles [14]. Other potential indicators
of physical fatigue include biomarkers related to the metabolism of adenosine
triphosphate, oxidation, or inflammation in the body [43].
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Mental fatigue is in turn experienced during and after prolonged periods
of demanding cognitive activity. Mental fatigue is characterized by feelings of
tiredness, lack of concentration, and performance decline on cognitive tasks [40].
It is associated with increased EEG alpha and theta wave activity in all regions
of the cortex, and an increase in beta activity in frontal sites as individuals
attempt to maintain vigilance under fatigue [9].

While a majority of prior studies have focused exclusively on either phys-
ical or mental fatigue, there is evidence that the two processes influence each
other. Studies investigating physical fatigability following mental fatigue have
found that mental fatigue or time on task led to less adequate preparation for
new tasks and more errors [24]. Mental fatigue significantly reduced time to
physical fatigue during a cycling task, though physiological responses to exercise
remained unchanged. It was also associated with higher subjective perception of
effort [27]. On the other hand, studies have observed both a decline and improve-
ment in different cognitive functions after different physical exercises. The type
of physical activity and the level of physical fatigue (low-to-medium activity vs
maximal exertion), duration of activity, type of mental fatigability investigated,
and initial levels of physical fitness are all thought to be deciding factors [20].
A variety of theories have been proposed to explain this relationship, but prior
works lack consensus on how this effect is manifested on various cognitive tasks.
In this work, we study this relationship with a focus on two tasks that require
different levels of attentional and processing resources.

2.4 Datasets for Fatigue Detection

While a few datasets for fatigue modeling are currently available, most of these
are inadequate for deeply understanding the interplay between physical and men-
tal fatigue and between fatigue and fatigability. Luo et al. presented a dataset for
the assessment of fatigue using wearable sensors [25]. While they collected longi-
tudinal sensor data from 27 subjects with various sensors, they lack fatigability
measures which are essential to understand changes in performance resulting
from fatigue and its underlying mechanisms. Other fatigue-related datasets are
extremely domain-specific, e.g., Gjoreski et al. presented datasets [13] to infer
cognitive loads on mobile games and physiological tasks on a PC using wearable
sensors. Elshafei et al. presented a dataset [12] for modeling bicep fatigue during
gym activities. Our dataset focuses on task-independent, lower-level cognitive
performance and how it is influenced by physical and cognitive activity.

3 Methodology

3.1 Study Design

Twelve participants (9 male, 3 female) between the ages of 21 and 40 (mean age:
30.75 years, SD: 5.78 years) completed the present study. One participant had
mild asthma and another had seasonal asthma, while none of the others had any
current or past health conditions. All participants completed an informed consent
before the study and were compensated with a £30 gift card upon completion.
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Fig. 1: Study protocol

The study consisted of three sessions conducted on three different days, with
a gap of up to 19 days between sessions. Figure 1 shows the protocol for each
session. All sessions for a participant were conducted at roughly the same time of
the day whenever possible in order to control for circadian effects. Before the first
session, participants were asked to fill a preliminary demographic questionnaire.
We assessed participants’ personality on the short Big Five Inventory (BFI-10)
scale [34] and their chronotype (early bird or late owl-ness) using the Munich
Chronotype Questionnaire (MCTQ; [35]). Participants also reported the impact
of fatigue on their daily functioning using the Fatigue Severity Scale (FSS; [21])
and their general fitness levels on the International Fitness Scale (IFIS; [30]).

Participants began each session by reporting their current sleepiness levels on
the Stanford Sleepiness Scale (SSS; [37]) and their baseline vigor and affect on
the Global Vigour and Affect Scale (GVAS; [28]). The SSS gives a score between
1 to 7, with 1 corresponding to minimal sleepiness and 7 to highest sleepiness.
The GVAS requires participants to rate various aspects of vigor, mood, and
affect on visual analogue scales (VAS), which are then converted to separate
scores for vigor and affect. Our implementation of the GVAS used a 10-point
rating instead of a VAS for easier administration and scoring.

Participants were then fitted with four wearable devices to monitor physi-
ological signals, each of which are described in Section 3.5. They were seated
at rest in a comfortable position for three minutes while baseline physiological
data was recorded (S1). Following the baseline recording period S1, participants
completed a survey to measure physical and mental fatigue and completed two
cognitive tasks to measure baseline cognitive performance for mental fatigabil-
ity at later stages in the experiment (henceforth referred to as M1). This was
followed by a 3-minute physical activity session (S2), where participants were
assigned to one of three conditions (low, medium, or high intensity activity) on
a given day. Our study followed a within-subjects design, with all participants
completing one session corresponding to each condition. The order in which
these conditions are performed was counterbalanced across participants using a
balanced Latin Square design.

The period of physical activity in each session was followed by a second mea-
surement of mental fatigue and cognitive performance, M2, as shown in Figure 1.
Subsequently, participants completed a mental fatigue-inducing task that lasted
approximately 15 minutes (S3), followed by a third fatigue and fatigability mea-
surement (M3). In total, each session lasted up to 30 minutes, and physiological
data was recorded for this entire duration. The following subsections provide
more details about each part of the study session.
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3.2 Physical Activity Protocol

Based on prior research that theorizes an inverted-U relationship between physi-
cal activity and cognitive performance [8], we were interested in investigating the
effect of low, medium and high intensity physical activity on the development of
mental fatigue. We use the metabolic equivalent of task (MET) as an objective
indicator of the intensity of physical activity. A MET is defined as the resting
metabolic rate, or the amount of oxygen consumed while sitting at rest [16]. The
amount of energy required to perform a given physical activity can be quantified
in terms of METs, e.g., work requiring twice the resting metabolism is said to
be 2 METs. Activities demanding 1-4 METs, 5-8 METs, and > 8 METS, are
considered light, medium, and high intensity activities, respectively.

We therefore selected walking at 5 km/hr (3.2 METs), jogging at 7 km/hr
(5.3 METs), and jogging at 9 km/hr (8.8 METs) as our low, medium, and high
intensity physical activities respectively [16]. During S2, participants were asked
to walk or run at the given speed on a treadmill without incline for three minutes.
Activity sessions were ended early if participants reported a rating equal to or
above 10, 14, and 16 on Borg’s Rating of Perceived Exertion (RPE) scale [7]
during low, medium, and high intensity conditions respectively [29] to avoid
overexertion and ensure the safety of the participants.

3.3 Inducing Mental Fatigue

Following the physical activity session S2, we used the well-validated dual let-
ter/number task switching paradigm [36] to induce cognitive fatigue in S3.
Switching between dual tasks has been shown to require additional cognitive
overhead and induce fatigue faster than a single cognitive task [31]. The let-
ter/number task was implemented using the PsychoPy framework [32] for ex-
periment design and was administered on a laptop while participants were seated.
During S3, participants were presented a 2×2 square grid on a grey background.
On each trial, a combination of two characters – a letter followed by a number
– appeared in one of the squares (see Figure 2). If the characters appear in one
of the top two squares, participants had to respond to the letter and ignore the
number. In this case, they were asked to press the ‘c’ key on their keyboard if
the letter was a consonant and the ‘m’ key if it was a vowel. On the other hand,
if the characters appeared in one of the bottom two squares, participants were
required to respond to the number and ignore the letter. Based on whether the
number was even or odd, participants had to respond by pressing ‘c’ or ‘m’ re-
spectively. The task consisted of 200 trials and lasted approximately 15 minutes,
which has been shown to be enough to induce mental fatigue [31]. Performance
on the dual task was not analyzed, since the objective was only to induce mental
fatigue by virtue of time on task.

3.4 Fatigue and Fatigability Measurements

To measure the impact of physical activity on mental fatigue and fatigability, we
obtained self-reported fatigue scores and performance on two distinct cognitive
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Fig. 2: Dual task to induce mental fatigue. Fig. 3: Fatigue visual analog scales.

Fig. 4: Choice reaction time task. Fig. 5: N-back task.

tasks three times during each session - before physical activity (M1), between
physical activity and mental fatigue induction (M2), and after the induction of
mental fatigue (M3).

Measurement of fatigue: Participants were asked to report their physical
and mental fatigue on two computerized VAS scales ranging from “Not at all
fatigued” to “Maximally fatigued” (see Figure 3). Prior work has validated the
use of simple VAS scales to measure fatigue, suggesting their utility over more
complex multi-dimensional scales [11]. Participants were instructed to rate their
levels of fatigue at this time by clicking or dragging the mouse along the scale,
and were provided the following definitions of physical and mental fatigue in an
attempt to ensure a similar understanding of the terms across participants:

Physical fatigue is characterized by feelings of physical exhaustion, lack of
energy, and a disinclination towards exerting physical force or effort. Mental
fatigue is characterized by feelings of mental tiredness, lack of concentration,
and low motivation to continue a task.

Physical and mental fatigue ratings were converted to integers between 0-100
based on the distance from the “Not at all fatigued” end of the scale.

Measurement of mental fatigability: Participants were asked to perform
two short cognitive tasks, and their performance was measured in terms of re-
action times and errors committed. The difference in performance as compared
to the baseline measurement M1 was used as an indicator of fatigability.

The first task was the Deary-Liewald Choice Reaction Time (CRT) task [10],
which requires participants to select and make the appropriate response to each
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of several stimuli. The CRT task has been used as an indicator of processing
speed, and reaction times have been shown to be affected by physical exer-
tion [22]. In our study, participants were presented with four white squares
stacked horizontally on a grey background (see Figure 4). The squares were
each mapped to a different key on the keyboard – ‘z’, ‘x’, ‘,’ (comma), and ‘.’
(period) respectively from left to right. During each trial, a black cross appeared
in one of the squares and participants had to press the corresponding key as
soon as possible after the appearance of the cross. The stimulus stayed on the
screen until a key was pressed. Once responded, the stimulus disappeared and
the next one appeared after a random inter-stimulus interval of 1 to 3 seconds.
Each performance measurement consisted of 36 trials of the CRT task, with the
stimulus appearing in each of the 4 boxes an equal number of times.

Fig. 6: Wearables for data collection: (a)
our earable prototype, (b) E4 wristband,
(c) Muse S headband, (d) BioHarness ECG
chest band.

Fig. 7: Earable prototype with
IMU and PPG in each earbud.

In addition to the CRT task, participants were also asked to complete a 2-
back task to assess their working memory [17]. In this task, a sequence of letters
appeared briefly at the center of the screen for 0.5 seconds, with a 2-second gap
between letters (see Figure 5). Participants were asked to respond with the ‘m’
key on their keyboard if the current letter was the same as the one that appeared
two letters before it. If not, they were asked to withhold their response and not
press any key. Each round of fatigability measurement consisted of 20 trials of the
2-back task, lasting approximately 50 seconds with target trials (which required
a response) occurring four times.

3.5 Physiological Measurements

A range of physiological signals were recorded throughout the experiment ses-
sions using four different wearable devices (see Figure 6): (i) our earable pro-
totype with inertial measurement units and photoplethysmographic sensors in
each earbud, developed based on Nokia eSense [2, 18], (ii) a Muse S EEG head-
band [3], (iii) a Zephyr BioHarness 3.0 chestband [4], and (iv) an Empatica E4
wristband [1]. Table 1 has a detailed description of the sensors on each device.
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Table 1: Sensor data collected from each wearable device.
Sensor Units/Range Sampling

Rate
Earable prototype
Accelerometer g {-2:+2} 100 Hz
Gyroscope °/s {-500:+500} 100 Hz
PPG - green, infrared, and red channels - 100 Hz
Muse S EEG headband
Accelerometer g {-2:+2} 52 Hz
Gyroscope °/s {-245:+245} 52 Hz
EEG raw waveform uV {0.0:1682.815} 256 Hz
EEG absolute band power (alpha, beta, delta,
gamma, theta bands)

Bels 10 Hz

Zephyr BioHarness 3.0 chest band
Accelerometer bits {0-4094} 100 Hz
Breathing sensor raw output bits {1:16777215} 25 Hz
Breathing rate breaths per minute {4:70} 1 Hz
Breath-to-breath interval ms -
ECG raw waveform bits {0:4095} 250 Hz
Heart rate beats per minute {25:240} 1 Hz
Heart rate variability ms {0:65534} 1 Hz
RR interval ms {0:32767} -
Posture degrees from vertical

{-180:180}
1 Hz

Empatica E4 wristband
Accelerometer g {-2:+2} 32 Hz
Blood volume pulse - 64Hz
Average heart rate 1 Hz
Inter-beat interval ms -
Electrodermal activity microsiemens 4 Hz
Skin temperature C 4 Hz

4 Preliminary Results

The collected dataset consisted of 36 sessions – twelve sessions each of low,
medium, and high physical activity – with a total duration of almost 13 hours of
physiological and behavioral recordings. The average duration of each recording
was 21.24 minutes (SD: 3.23 minutes). No significant difference in session length
was observed across the physical activity conditions (F = 1.57, p = 0.24).

4.1 Fatigue and Fatigability Measurements

(a) Physical fatigue
rating

(b) Mental fatigue
rating

(c) Response time on
CRT task

(d) Response time
on n-Back task

Fig. 8: Fatigue and fatigability measures at baseline (M1), after physical activity
(M2), and after cognitive task (M3).
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We first investigated the overall difference between fatigue and fatigability
measurements at different stages – at baseline (M0), after physical activity (M1),
and after cognitive task (M2) – pooling all experimental conditions together. As
shown in Figure 8a, physical fatigue ratings increased significantly following the
treadmill activity and decreased following the cognitive task. This is expected
since the cognitive task was completed while participants were seated, allowing
them to use this extended period of seating to recover from the physical activity
session. Mental fatigue ratings showed a small increase following physical activ-
ity, and a larger increase after the cognitive task (see Figure 8b). We failed to
observe a significant difference in response times measured at different points
during the experimental session for either the CRT or the n-back task (see Fig-
ures 8c and 8d). The above analysis shows that the study design was able to
successfully induce physical and mental fatigue, but significant mental fatigabil-
ity was not observed when not accounting for physical activity conditions.

We also found no significant correlation (p > 0.05) between fatigue scores and
response times on either the CRT or n-back tasks, indicating that participants’
perception of fatigue did not correspond to their objective cognitive performance.

4.2 Effect of Physical Activity on Fatigue and Fatigability

(a) Mental fatigue rating (b) CRT response time (c) n-Back response time

Fig. 9: Mental fatigue and fatigability after physical activity (M2 −M1).

Next, we explore the effect of the level of physical activity on mental fatigue
and fatigability. To this end, we first look into mental fatigue and fatigability
after participants completed physical activity on the treadmill by calculating
the difference between M2 and the baseline measurement M1 for each activity
condition. As shown in Figure 9a, there was a positive trend in mental fatigue
ratings across all conditions, but the increase in self-reported fatigue was sig-
nificantly higher during the “High” physical activity condition compared to the
“Medium” condition. In terms of fatigability, average response times on the CRT
task increased during “Low” and “High” intensity activity and decreased during
the “Medium” condition, but differences across conditions were not significant
(see Fig. 9b). For the n-back task, response times decreased during “Low” and
“Medium” conditions and increased slightly during “High” activity, though no
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significant differences were observed across conditions (see Fig. 9c). “Medium”-
level activity was associated with both the least increase in subjective fatigue and
slight improvements in performance on both cognitive tasks following physical
activity.

(a) Mental fatigue rating (b) CRT response time (c) n-Back response time

Fig. 10: Mental fatigue and fatigability after cognitive activity (M3 −M1).

We also investigated mental fatigue and fatigability following the subsequent
cognitive task (difference between M3 and M1). We found that all physical
activity conditions were associated with an increase in fatigue ratings after the
dual cognitive task, though the difference between conditions was not found
to be significant (Figure 10a). In terms of fatigability, “High” physical activity
exhibited a significant decline in CRT response times compared to the other
two conditions (see Figure 10b). No significant differences between conditions
were found on the more cognitively-demanding n-back task (Figure 10c), where
participants may have overcome performance declines by expending more effort.

5 Conclusion

In this work, we present FatigueSet, a multi-modal dataset for understanding
the impact of physical and cognitive activity on the development of mental fa-
tigue and fatigability. Based on a preliminary analysis of experimental data
recorded from twelve participants over 36 sessions, we show that cognitive per-
formance and fatigability are poorly associated with individuals’ perception of
fatigue. This demonstrates the need to independently consider experiential and
behavioral dimensions of fatigue while developing fatigue-aware applications.
Our analysis also reveals a difference in mental fatigue and fatigability across
different physical activity conditions, illustrating the importance of accounting
for the interplay between physical and mental fatigue. We hypothesize that these
goals can be achieved by taking into account physiological correlates of fatigue
and fatigability. Our publicly available dataset is an effort in this direction, and
contains EEG, ECG, PPG, EDA, skin temperature, accelerometer, and gyro-
scope data from four devices at different on-body locations to facilitate a deeper
understanding of mental fatigue and fatigability in daily life.
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