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Abstract—Deep learning has enabled personal and IoT devices
to rethink microphones as a multi-purpose sensor for understand-
ing conversation and the surrounding environment. This resulted
in a proliferation of Voice Controllable Systems (VCS) around
us. The increasing popularity of such systems is also prone to at-
tracting miscreants, who often want to take advantage of the VCS
without the knowledge of the user. Consequently, understanding
the robustness of VCS, especially under adversarial attacks, has
become an important research topic. Although there exists some
previous work on audio adversarial attacks, their scopes are
limited to embedding the attacks onto pre-recorded music clips,
which when played through speakers cause VCS to misbehave.
As an attack-audio needs to be played, the occurrence of this
type of attacks can be suspected by a human listener. In this
paper, we focus on audio-based Denial-of-Service (DoS) attack,
which is unexplored in the literature. Contrary to previous work,
we show that adversarial audio attacks in real-time and over-
the-air are possible, while a user interacts with VCS. We show
that the attacks are effective regardless of the user’s command
and interaction timings. In this paper, we present a first-of-its-
kind imperceptible and always-on universal audio perturbation
technique that enables such DoS attack to be successful. We
thoroughly evaluate the performance of the attacking scheme
across (i) two learning tasks, (ii) two model architectures and (iii)
three datasets. We demonstrate that the attack can introduce as
high as 78% error rate in audio recognition tasks.

Index Terms—Speech recognition, Voice controllable system,
Adversarial attack, Universal adversarial perturbation

I. INTRODUCTION

Deep learning-based classifiers are becoming ubiquitous
around us and an increasing number of applications are using
some form of deep learning for accurate context inference,
e.g., recognizing speech and understanding images. Based on
their success, more and more smart devices are becoming
equipped with microphones and voice controllable systems
(VCS), such as Siri, Alexa, and Google Home, which allow
users to control appliances solely using their voice. These
audio input based intelligent systems can in principle leverage
not only the users’ voices but also their surrounding audio
context such as ambient scene detection to provide informed
contextual services. It is expected that these systems powered
by the conjunction of audio input and deep learning technolo-
gies will continue to proliferate and augment our daily lives.

* The work was conducted when this author was in Nokia Bell Labs.

Since these systems are triggered by audio inputs, one major
concern is that they may be especially vulnerable to unwanted
sound inputs generated nearby the system microphone, which
could be intended to force the system to activate and trigger an
unwanted action. Examples of such unwanted actions include
purchase an item online without user’s consent, or command a
vehicle to accelerate or decelerate unexpectedly with potential
life-threatening consequences.

Adversarial attacks in the audio domain focus on the worst
form of such vulnerabilities, namely on audio attacks which
are almost imperceptible, and therefore may successfully
compromise VCS without its user realizing it until it is too
late. The principle of adversarial attacks is to fool the model
by finding and injecting a small, imperceptible perturbation
onto a correctly classified normal input so that the model
incorrectly classifies the perturbed input even though humans
cannot perceive any significant difference between the original
and the corrupted input.

Although impressive, state-of-the-art adversarial attacks on
deep audio models [1], [2], [6]–[9], [12], [23] have a restrictive
form that first (i) selects a pre-recorded benign audio clip
that will be used as an attack carrier in a future attack, and
then (ii) computes and injects an adversarial perturbation to
the original clip prior to the attack to create another audio
file which sounds similar to the average human but which
is designed to fool a VCS into activating and producing an
unwanted action. Once this is done, an attack can then be
carried out by downloading and playing the pre-computed
attack near a VCS. Within this setting however, previous
work is mostly limited to creating and studying such attacks
without actually playing them over-the-air in so called offline
analysis [2], [7]–[9], [12], [23]. Recent studies have shown that
those attacks could be realized via uninterpretable audio [1],
[6] or a song [26]. However, such attacks are limited in that
they produce audible sounds (with only the attack components
being almost imperceptible), namely unintelligible audio or a
song, and can therefore be noticed by the user and guarded
against by having the user turn off every audible sound source
in the vicinity of the VCS.

In this paper we open a new audio adversarial attack
scenario space, namely Denial-of-Service (DoS) attacks on



VCS, which complements the aforementioned work. Unlike
existing attacks, our attack is aimed to instead compromise
the users’ voice directly without needing any additional no-
ticeable audio having to be played in order to carry out the
attack, where imperceptible audio adversarial perturbations get
superimposed in real-time and over-the-air with the user’s
unconstrained interaction with the VCS. Furthermore, our
attack method is aimed at working regardless of the user’s
voice content and the specific time the user decides to interact
with the VCS.

To build such DoS attacks, there are two important chal-
lenges to resolve, which were not considered in previous work:
(i) An attacker has no knowledge about what will be spoken
from the target user (i.e., the victim). Given this, to be useful
in practice, an attack should be applicable to most inputs
from the user. (ii) An attacker has no knowledge about when
the voice will be spoken by the user. Unlike previous work
which embeds adversarial attacks onto pre-recorded audio
clips, given that in this paper the adversarial perturbation and
the legitimate audio are emitted by two separate entities, there
is no guarantee that the adversarial perturbation played by
an attacker’s device and the victim’s voice will arrive in a
synchronized fashion at the victim’s device (i.e., a VCS). We
therefore study the timing and lack of synchronization of these
two signals in real-time over-the-air and find that it directly
affects the performance of the audio task. With these two
challenges in mind our goal is to design an audio adversarial
attack that is applicable to any input from the user, at any
time.

We propose AudiDoS, a DoS attack for audio deep models
that meets the aforementioned objectives. Our key insight is
that there exist such a “universal” adversarial perturbation for
audio inputs that compromises most of users’ speech, so that
it would make a deep audio model misclassify most of the
users’ input. More specifically, AudiDoS trains a universal
adversarial perturbation in a way that it maximizes the mis-
classification rate when combined with the possible inputs,
while limiting the magnitude of the perturbation to minimize
the perceptibility of the attack. The attacker plays this small
perturbation continuously near the target deep audio model,
which causes the model to incorrectly classify inputs which
it would normally classify correctly. In essence, AudiDoS
is applicable to any deep audio model without knowing the
content (what will be spoken) and the time (when it will be
spoken) ahead of the time.

We summarize our main contributions as follows:
• This is the first study that identifies the content and

delivery time independence problems that need to be
overcome to achieve an effective DoS attack in the
audio domain, and that designs a realistic DoS attack for
audio models through universal perturbations that work
irrespective of what is spoken or when it is spoken.

• Our evaluation across two learning tasks (keyword spot-
ting and speech-to-text problems), two different models
(e.g., SoundNet [5] and DeepSpeech2 [3]) and three
different datasets (e.g., Speech Commands [24], Lib-

riSpeech [16] and TED-LIUM [19]) in both offline anal-
ysis and in-the-wild experiment shows AudiDoS is more
effective than the random noise baseline with the same
magnitude of the attack.

• Our results indicate that it is possible to create intelligent
attacks which greatly outperform baseline attacks based
on random perturbations with the same magnitude, i.e.,
perceptibility level. For instance, when we target Sound-
Net trained with Speech Commands dataset, the error rate
of the model with our attack is 78% error rate in the real-
world experiment (the baseline is 48%).

We believe this work opens avenues for the development of
more sophisticated audio adversarial attacks and this, in turn,
furthers the development of more robust deep audio models
to such threats.

II. BACKGROUND

To describe the main challenges when developing audio
adversarial attacks that are effective in real-world settings, in
this section we explain adversarial examples and the increas-
ing levels of complexity that arise in developing adversarial
attacks: first for software audio adversarial attacks, and then
for the setting of this paper namely real-world audio attacks.
We also formalize the concepts of: white-box versus black-box
attacks and input dependent versus input independent attacks.

A. Adversarial Examples

Consider a multi-class classification problem, where the
goal is to learn a mapping between an input x ∈ Rp (e.g.,
an audio clip) and a label y ∈ {0, . . . ,m − 1} (e.g., whether
an audio contains the word ‘cat’). For the modeling purpose
we use a neural network f(x;θ) ∈ Rm where θ ∈ Rn denotes
a vector of parameters and

0 < [f(x;θ)]i < 1,

m−1∑
i=0

[f(x;θ)]i = 1,

with the interpretation that the neural network will correctly
capture the probability of the various labels matching the given
input, i.e., [f(x;θ)]i ≈ P(y = i|x,θ), and one takes as a
neural network label the one corresponding to the maximum
probability, i.e., ŷ(x;θ) := argmaxi{[f(x;θ)]i}. Having
trained the neural network, i.e., settled into a particular choice
for the parameters θ∗, given an input/label example (x, y)
which is correctly classified by the trained neural network, i.e.,
ŷ(x;θ∗) = y. One calls an adversarial perturbation [22] any
ε ∈ Rp, dependent or independent of the particular input/label
pair, for which:
• most humans cannot perceive any significant difference

between the original input x and the corrupted input x+ε,
but

• the neural network changes its output so that it incorrectly
classifies the perceptually indistinguishable input, i.e.,
ŷ(x+ ε;θ∗) 6= y.

In this setting, x + ε is referred to as an adversarial
example. When we adopt adversarial examples to attack a
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Fig. 1. An illustration of audio adversarial attack.

system based on neural networks, we call them adversarial
attacks. An illustrative example of an adversarial attack for
audio is depicted in Fig. 1, where an adversarial example is
fed into the trained neural network to fool it. We magnify
the adversarial perturbation for illustration purposes, but note
that it would otherwise be imperceptible to humans, i.e., they
would not ‘hear’ any dissimilarity between the original and
corrupted audio.

Adversarial perturbations are desired to be as small as
possible in some norm as a means to minimize perceptibility
of the adversarial examples. In order to create an adversarial
example, one may solve for the minimization problem

ε(x) := argmin
ε
‖ε‖ s.t. ŷ(x+ ε;θ∗) 6= ŷ(x;θ∗). (1)

As for the norm ‖ · ‖ in (1), one can choose any sub-
differentiable norm, but most works use the ‖ · ‖∞ norm (`-
infinity norm) for constraining adversarial perturbations [7],
[13], [14]. Approximate solutions to the aforementioned and
other minimization problems for adversarial perturbations can
be obtained in various ways. A well-known approach is via
the fast gradient sign method [10] and more generally via
projected gradient descent [4].

B. White-Box vs. Black-Box Attacks
& Input Dependent vs. Input Independent Attacks

In the aforementioned attack and in similar minimization
problems, if the attacker has the complete knowledge about the
model architecture and parameters, i.e., knows f(x;θ∗) when
performing the minimization, then it is a white-box attack.
Otherwise, it is a black-box attack [1], [17], [23].

As an important observation for the remainder of this paper,
it is crucial to note that in (1) each attack is tailored to one
specific input, so that different inputs would lead to different
attacks, i.e., these attacks are input dependent. However, this is
not necessary and input-independent attacks can be generated
in a way that they are applicable to most possible inputs.
We will mainly discuss attacks which are input independent
throughout the remainder of the paper.

C. Limitations of Existing Audio Adversarial Attacks

Recent studies have began to show the possibilities of
applying adversarial attacks to audio inputs [7], [8], [12],
[23]. While these studies have revealed some of the threats
that adversarial attacks pose to VCS, most of such work has
conducted only offline evaluation, i.e., it simulated adversarial
attacks in a single machine without playing the adversar-
ial examples over-the-air. In real-world environments where
many distorting factors exist, such as reflection, attenuation,
absorption of audio signal, analog-to-digital and digital-to-
analog conversions, and noise sources, the performance of the
proposed attacks remains broadly untested.

Always-on perturbation

Attacker

Device
(Classifier)

User

(3)“Right”

(2)“Seven”

(1)“House”
(1)“Visual”

(2)“One”

(3)“Left”

Fig. 2. Illustration of the threat model.

Several studies have realized those attacks by compromising
a pre-downloaded benign audio and generating uninterpretable
audio [1], [6] or a song [26]. However, when those attacks
are played and successfully carried out over-the-air, they are
limited in the sense that they produce audible sounds (with
only the attack components being almost imperceptible), and
can therefore be noticed by the user and guarded against by
having the user turning off every audible sound source in the
vicinity of the VCS.

III. THREAT MODEL

We propose a new audio adversarial attack scenario, namely
real-world audio DoS attack. Unlike the aforementioned ex-
isting audio adversarial attacks, we aim to compromise the
users’ voice directly without needing any additional noticeable
audio having to be played in order to carry out the attack.
Furthermore, given the small magnitude of the proposed at-
tacks, the DoS audio adversarial attacks are almost completely
inaudible which therefore makes it difficult to identify their
source, compared to the previous work that generates audible
sounds.

We propose white-box DoS attacks for VCS in practical
settings aimed at unconstrained audio from users. We focus
and overcome the following two important challenges that are
crucial to realize the DoS attack on audio.
Input independence: An attacker has no knowledge in ad-
vance about what sound will be uttered by the legitimate user.
Previous work generates an adversarial perturbation based on
a specific input from a static dataset to generate an adversarial
example [1], [2], [6]–[9], [12], [23], which is not possible in a
practical DoS attack scenario. For an effective DoS to fool the
classifier in a VCS, the attacker should generate an adversarial
perturbation that is applicable to any possible inputs from the
user.
Time independence: An attacker has no a priori knowledge
about when the audio command will be spoken by the user.
As hinted in the previous section, synchronization between
the adversarial perturbation and the user input directly affects
the fooling rate of the attack. Since most existing work trains
adversarial examples for a specific input, they assume that
the adversarial perturbation is perfectly synchronized with the
particular input. For a reliable DoS, adversarial perturbations
should work without needing to be perfectly synchronized with
the specific input.

Fig. 2 demonstrates our threat model. There is a user
(victim) who speaks with her voice, illustrated as “house”,
“seven”, and “right”. There is a device (classifier) which
recognizes user’s spoken language. The attacker, a device with
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Fig. 3. Illustration of the fooling algorithm, where perturbation is crafted to
alter the response of each layer from informative features to uninformative
similarly activated features.

a speaker (e.g., smartphone), continuously generates input- and
time-independent adversarial perturbations, which are detailed
in the next section. The played adversarial perturbations from
the attacker are then combined with the user’s spoken words
naturally over-the-air. Note that the attacker has no prior
knowledge about what and when the user speaks and there is
no guarantee that the adversarial perturbations and the user’s
spoken audio will arrive ideally synchronized at the device.
The combined audio signals nevertheless become adversarial
examples, which fool the device and incorrectly classify the
inputs as “visual”, “one”, and “left”.

IV. METHODOLOGY

In this section we describe methods for generating input-
and time-independent perturbations for effective audio DoS
attacks. Our key starting point is that there might exist
a universal adversarial perturbation for audio inputs that
compromises most of users’ speech commands. We build
on the concept of universal adversarial attacks designed for
images [15]. However, unlike images, audios are sensitive to
the signal propagation distortion and synchronization between
the benign audio and the adversarial perturbation. We present
training algorithms for adversarial perturbations to be tolerant
to interaction timing. Our proposed solution overcomes the
input- and time-independence challenges that are unique for
practical audio DoS adversarial attacks. Together with the
development of DoS attack, we also present how we can define
and measure the imperceptibility of the attacks.

A. Attack Algorithms

Two main requirements of AudiDoS are: (i) universal audio
adversarial perturbation generation, and (ii) overcoming time-
synchronization. Our main objective is to find a perturbation
that works for most inputs and their possible shifts, i.e.,
there exists an input independent perturbation ε such that
ŷ(x + ε;θ∗) 6= ŷ(x;θ∗) for most inputs x. To create such a
universal perturbation, we leverage the Fast Feature Fool (FFF)
algorithm [15] from the vision domain, which we modify and
augment to solve the aforementioned problems unique to the
audio domain via the proposed AudiDoS system. The FFF

algorithm generates a universal adversarial perturbation by
falsely firing activations in the neural network. The intuition of
the algorithm lies in compromising one of the basic principles
of neural networks namely that the activations of each neuron
act as informative features for next layer. For example, Fig. 3
illustrates that when a benign audio input “right” is presented,
a specific subset of neurons are activated, which provides
useful information for the decision of the classifier. However, if
we artificially activate all the other neurons, then the classifier
performs poorly as it looses important feature extraction prop-
erty. The FFF algorithm generates an adversarial perturbation
ε that is designed for this purpose in the vision domain; A
universal adversarial perturbation ε is obtained by minimizing
the following loss function given x as a normal input:

L(ε) = − log

 K∏
k=1

lk(x+ ε)

 s.t. ‖ε‖∞ ≤ E , (2)

where K is the number of layers to be falsely activated, and
lk(x+ ε) is the mean absolute value of the k-th layer output.

However, the original FFF-algorithm produces perturbations
that requires perfect synchronization with the benign audio,
which limits its practicality in real-world situations. To over-
come this problem, we propose two novel training method-
ological extensions for the audio domain. First, we randomly
rotate the perturbation while training, which is a modification
aimed at preventing the learned perturbation from being overly
synced with the training audio inputs. Second, we halve the
amplitude of the perturbation periodically throughout training,
which is an enhancement aimed to promote a thorough search
of the best perturbation in the neighbourhood defined by
‖ε‖∞ ≤ E , rather than allowing the algorithm to quickly
navigate the shortest path from the center to the boundary
of the ‖ε‖∞-ball without sufficient exploration.

B. Perceptibility Measure

As adversarial attacks are based on the premise that they
should be imperceptible to human ears, it is important to
select an appropriate value of the perturbation constraint E .
For example, a higher value of E would be effective to fool
the classifier with a noticeability of the attack, while a lower
value would end up being a useless attack. In order to quantify
the trade-off between the effectiveness and the perceptibility,
we use the decibel (dB) to quantify the relative loudness
of adversarial perturbations to normal audio inputs [7]. The
decibel of an audio sample a is represented as:

dB(a) = max
i

20 · log10(ai). (3)

To measure the relative loudness of the perturbation ε to the
normal x, we subtract the dB of x from the dB of ε, i.e.,

dBx(ε) = dB(ε)− dB(x). (4)

Since human ears interpret sound in dB scale, a low dBx(ε)
can be interpreted as a low perceptibility audio perturbation.



TABLE I
SYNCED ERROR RATES (ER) AND PERCEPTIBILITY (DB) OF AUDIDOS

ACCORDING TO DIFFERENT CONSTRAINTS E IN THE SPEECH COMMANDS
DATASET.

E Synced ER dB
0.5 0.968 1.02
0.2 0.970 -6.94
0.1 0.968 -12.96
0.05 0.951 -18.98
0.02 0.893 -26.94
0.01 0.777 -32.96
0.005 0.514 -38.98
0.001 0.182 -52.96
Benign 0.034 —

V. EVALUATION PART I: OFFLINE ANALYSIS

We begin by an offline analysis, where we measure the
effectiveness of AudiDoS when performing attacks on neural
networks that are trained for the audio keyword detection
task. Next, we also present performance result of AudiDoS
on Automatic Speech Recognition (ASR) tasks.

A. Keyword Spotting Experiment

In the following we describe the details of our offline
experiments. For training the neural networks and computing
the perturbations, we used the PyTorch [18] framework.

1) Dataset: We use Speech Commands [24] dataset as
the default dataset unless otherwise mentioned. The dataset
contains 105,829 1-second long utterance of 35 common
English words from a large number of users, recorded with
16 KHz sampling rate. The vocabulary in this dataset spans
digits, and words useful in IoT applications, e.g., on, off, start,
stop. The dataset is balanced in terms of the number of samples
for each class and includes example of natural background
noise.

2) Model: We adopted 5-layered convolutional neural net-
works (CNN) used in SoundNet [5] and modified for our task.
The model is composed of five convolutional layers with three
max-pooling layers. Each convolutional layer is followed by
a batch normalization and a ReLU activation layers. After
five convolutions layers, it has two fully-connected layers for
classification. We trained this model with the aforementioned
Speech Commands dataset. This model gets 1-second of
audio input and outputs the classified word among 35 words
described above. The trained model shows 0.034 ER on the
test set, i.e., the percentage of incorrect prediction, without
any attacks.

3) Perturbation: The adversarial perturbation generated by
AudiDoS is a vector with 16K samples, i.e., the same size
as the input for the neural networks. We used 10K randomly
selected training examples from the Speech Commands dataset
for generating the perturbation. While training, we falsely
activated each activation and max pooling layer of the model.

B. Keyword Spotting Results

In this subsection we report the error rate (ER) of the model,
when inputs are combined with the adversarial perturbations

TABLE II
SYNCED AND UNSYNCED ERROR RATES (ER) OF RANDOM AND AUDIDOS

IN THE SPEECH COMMANDS DATASET.
Method E Synced ER Unsynced ER dB
Random 0.02 0.307 — -26.94
Random 0.01 0.242 — -32.96
AudiDoS 0.02 0.873 0.780 -26.94
AudiDoS 0.01 0.753 0.632 -32.96
Benign — 0.034 — —

generated with varying E . To quantify the effect of synchro-
nization and lack of synchronization between the attacker’s
sound and the victim’s utterance, we report both synced
and unsynced ERs. Synced ER refers to the setting when
the perturbations are (respectively, are not for unsynched) in
perfect synchronization with victim’s utterance.

1) Impact of Constraint E: When training an adversarial
perturbation, the limit of the magnitude of the perturbation
(i.e., the constraint E) directly affects both the success and
the perceptibility of the attack. To investigate the precise
impact of E in the audio domain, we evaluate the ER of
AudiDoS with different values of E . Table I summarizes the
ER for different constraints E , as well as the reference benign
case corresponding to the original performance of the model
without any attack. We calculated the ERs with 12k test
examples from the Speech Commands dataset. As shown in
Table I, the ERs drop gradually as the constraint E decreases
from 0.5 to 0.001. In particular, constraints higher or equal to
0.05 achieve more than 0.95 ERs, while the lowest constraint
0.001 yields lower than 0.2 ER. In addition, Table I also
reports on the perceptibility of the attacks using Equation 4,
with which we calculated the dB levels of the attacks relative
to the entire training dataset from Speech Commands and
reported the averaged dB. In this regard, except for E = 0.5,
all measured dBs are negative, which means the attacks are
smaller than the normal unperturbed audio keywords. As a
point of reference, -30 dB is similar to the dB difference
between normal speech and ambient noise in a quite room [7].
Thus Table I informs us that to achieve a practical attack in
terms of ER and perceptibility, we should focus on values of
E of 0.01 or 0.02.

2) Unsynced Attack: Although the previous results yield
important insights into the performance of AudiDoS, in a real-
world scenario an attacker continuously plays an adversarial
perturbation through the air and has no control as to when
the user will interact with his/her device, which means that
synchronization between the target input and the adversarial
perturbation cannot be guaranteed. To quantify the effect of
this phenomenon on the effectiveness of real-world attacks,
Table II compares the ER of attacks with random (baseline)
and AudiDoS, not only for synced but also for unsynced
attacks. We tested each method with 12K test examples from
the Speech Command dataset. To simulate the effect of an
unsynced perturbation on an audio input, we right-rotated the
perturbations to generate ten different perturbation versions.
For example, ε0 is generated by right-rotating ε by 100 ms
(i.e., one tenth of the input duration). Next, ε1 is generated
by rotating ε0 by 100 ms and so on. Finally, we evaluated the



TABLE III
THE CER AND WER OF RANDOM AND AUDIDOS USING LIBRISPEECH

DATASET AND DEEPSPEECH2 MODEL.
Method Norm CER CER* WER WER* dB
Random 0.02 0.583 — 0.932 — -28.00
Random 0.01 0.490 — 0.859 — -34.02
AudiDoS 0.02 0.805 0.756 0.999 0.991 -28.00
AudiDoS 0.01 0.762 0.703 0.994 0.978 -34.00
Benign — 0.079 — 0.236 — —

*unsynced result.

ER of ε0, ε1, . . . , ε9 and averaged the results into the unsynced
ER column in Table II.

From Table II we observe that the results of AudiDoS vary
between synced and unsynced attacks (random has no impact).
In particular, the fact that unsynced ERs for AudiDoS are
lower than synced ERs shows that the synchronization or lack
thereof should be considered when designing attacks for audio
applications. Although there is some degradation from synced
to unsynced results, AudiDoS shows higher ERs than random
ones. Furthermore, it can be observed from Table II that as
the norm of the perturbation E increases, the ER increases in
all the cases; in particular, while random gives the lowest ER
of 0.2-0.3, AudiDoS show ERs as high as 0.8.

C. Automatic Speech Recognition (ASR) Experiment

Moving away from the keyword spotting task, in this section
we consider a more general task of ASR to further validating
effectiveness of AudiDoS. ASR is more challenging task and
contrary to prevision scenario, inputs to the neural networks
can be of variable length and the output can potentially be any
arbitrary text supporting an open vocabulary.

1) Datasets: For ASR experiments, we consider Lib-
riSpeech [16] and the TED-LIUM [19] datasets. We use these
datasets containing unconstrained speech to understand the
effectiveness of our attacks in more general settings. In detail,
LibriSpeech is a public automatic speech recognition corpus,
which contains 1,000 hours of speech data derived from 14,500
English audio books sampled at 16 KHz. TED-LIUM is an
English-language TED talks corpus with transcriptions, which
is extracted from 1,495 TED talks which are 207 hours in total
under 16 KHz sampling rate. The corpus contains over 2.6 M
words.

2) Models: The model we used in this experiment is
the state-of-the-art speech-to-text model DeepSpeech2 [3].
DeepSpeech2 uses connectionist temporal classification (CTC)
loss, which enables to process unsegmented sequence data
directly [11]. We trained two DeepSpeech2 models with Lib-
riSpeech and TED-LIUM dataset respectively. The structure
of the models are the same. Specifically, the models start with
two convolutional layers, followed by five gated recurrent unit
(GRU) layers and ends up with one fully-connected layer. The
model uses batch normalization for each layer.

3) Perturbations: DeepSpeech2 model gets variable length
of audio and breaks it down into 20 ms-sized chunks. Ac-
cordingly, the trained adversarial perturbation for this model
is 320 dimensional vector. While training, we falsely activated

TABLE IV
THE CER AND WER OF RANDOM AND AUDIDOS USING TED-LIUM

DATASET AND DEEPSPEECH2 MODEL.
Method Norm CER CER* WER WER* dB
Random 0.02 0.577 — 0.929 — -30.61
Random 0.01 0.607 — 0.931 — -36.64
AudiDoS 0.02 0.701 0.717 0.985 0.983 -30.61
AudiDoS 0.01 0.752 0.662 0.992 0.971 -36.64
Benign — 0.115 — 0.378 — —

*unsynced result.

Device
(Classifier)

Speaker
Attacker

,
Fig. 4. Real-world experiment setup.

the two activation layers after the first two convolutional layers
of the model.

4) Results: Table III shows the results for the DeepSpeech2
model trained with the LibriSpeech dataset and Table IV shows
the results for the DeepSpeech2 model trained with the TED-
LIUM dataset. The tables show that AudiDoS is generally
better than random perturbations for both datasets. Specifically
in Table III, AudiDoS achieves more than 0.2 CER degradation
compared to random. We found that if the benign performance
of model is not good (e.g., benign WER is 0.378 in Table IV),
we can achieve high error rate with small perturbation or
even with random noise. The performance gain using other
methods becomes noticeable when the benign performance is
good (e.g., benign CER is 0.079 in Table III). We conjecture
that if the audio model performance itself is not enough, then
it would be more susceptible to adversarial attack or even
random noise, and we believe this is something to consider
when building a speech-to-text model that works in the wild.

VI. EVALUATION PART II: REAL-WORLD EXPERIMENT

In this section we complement our study by evaluating our
attacks in a real-world environment. In particular, we investi-
gate the performance of AudiDoS in the wild and uncover
the challenges associated with real-world audio adversarial
attacks.

A. Experimental Setting

Fig. 4 shows the setup for the real-world experiment.
For this experiment, we used SoundNet model and Speech
Commands dataset. To account for different speech utterances
and noise levels, we automated the user’s interaction with
the device running the classifier by playing speech commands
through i) a Nexus 5X smartphone and ii) an Anker Sound-
Core2 portable speaker. The sound emitted by these devices
thus represents the user’s speech which is being broadcasted
over the air to be picked up by the microphone of the device
running the classifier. These two devices, i.e., the users are
about 30 cm away from the device running the classifier. The
classifier is running on a LG Gram laptop, connected to an
external microphone. Finally, we placed a Samsung Galaxy
A8 next to the classifier as the attack device. Throughout the
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Fig. 5. Error rate of the classifier with attacks (E = 0.01).
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Fig. 6. Error rate of the classifier with attacks (E = 0.02).

experiment, the devices were placed on top of a desk in an
office room. We played 100 audios from Speech Command test
set at the speakers representing the user’s speech. Meanwhile,
we played 1 second of the attack sound repeatedly through the
attacker’s device. Accordingly the test audios and the attack
sound were not synchronized when arriving at the classifier
device. We measured ERs of the classifier by comparing
classified outputs and ground-truth labels of each sample
across various attack methods.

B. Results

Fig. 5 shows the ERs when the constraint (E) is equal to
0.01. On the x-axis benign refers to a non-attack scenario,
random refers to using random noise as perturbations and
AudiDoS refers to the attacks generated by our proposed
method. We use offline as a baseline, where the evaluation
is done on a single machine without playing the user’s speech
and the attack sound over the air and thus the audio inputs
that ‘reach’ the classifier are artificially synchronized. We first
observe that even without any attack, the ER of the classifier
in-the-wild increases from 0.03 to 0.37 (Nexus 5X) and from
0.03 to 0.2 (SoundCore2), which is mainly caused by the
poor speaker and microphone quality, distortion, multi-path
and noise. With a higher constraint of 0.02, the ERs drop
consistently as shown in Fig. 6. It is worthwhile to observe
that the ERs with attacks (Random and AudiDoS) in Fig. 5–6
are in line with the result in Table II.

In all cases, AudiDoS is consistently shown to be a more
effective attack compared to Random noise. However, Au-
diDoS underperforms compared to the Offline evaluation.
We believe this is caused by distortions in the audio in-
the-wild, the same reason which caused the classifier error
to increase between Offline and in-the-wild settings in the
Benign scenario. A recent study [26] overcomes this problem
by injecting random noise while training the perturbation; a
technique that is orthogonal to AudiDoS, and can therefore
be incorporated alongside AudiDoS. In summary, AudiDoS’s
performance remains valid in the wild and is more effective
than random attacks, with ERs as high as 78%.

VII. RELATED WORK

In this section, we review prior work on attacking voice-
controllable systems (VCS) from the domain of audio adver-
sarial attacks, and universal adversarial perturbation.

A. Audio Adversarial Attacks

Recent studies show the existence of adversarial attack on
audio models such as speech recognition [8], [9] and speaker
verification model [12]. Carlini et al. [7] applied adversarial
perturbation for targeted attack on speech-to-text model to
trigger commands of attacker’s interest. Other studies [2], [23]
demonstrate the possibility of adversarial examples for black-
box audio systems. However, their evaluation is limited to
offline analysis where the adversarial examples did not play
through the air and thus had no issues such as distortion, noise,
and synchronization between the adversarial perturbations and
the target audio.

Several studies demonstrate the possibility of the attacks
in the wild. The hidden voice commands [1], [6] work gen-
erates obfuscated voice commands (i.e., noises that humans
cannot interpret but VCS do) for launching commands of the
attacker’s interest. However, the obfuscated commands used
in this work are directly played over the air and thus makes it
noticeable to users. CommanderSong [26] embeds adversarial
perturbations on common songs to trigger attacker-intended
commands. Yakura et al. [25] design malicious voice com-
mands generated by adversarial examples and evaluated them
over the air. While these studies play malicious commands
directly over the air, AudiDoS aims to compromise benign
inputs from users (DoS attack), thus making it more stealthy
in nature. That said, the fundamental techniques proposed in
the previous works to account for audio distortion when the
adversarial samples are played over the air could be combined
with AudiDoS to make a more robust attacking system.

B. Inaudible Voice Commands

A series of works have shown that it is possible to give
almost inaudible malicious commands to these systems by
generating nefarious ultra sounds embedded with legitimate
voice commands that humans cannot very easily recognize
but microphones can [20], [21], [27]. These works leverage
the non-linearity of microphones so that the generated high-
frequency (over around 30kHz) ultra sounds could be captured
as lower frequency (below around 18kHz) sounds at the
microphone. The limitation of these works is that they require
specialized speakers that are able to generate ultra sound. Mod-
ern devices such as iPhone 6 Plus [26] have already patched
the non-linearity problem with their microphones, making the
aforementioned attacks invalid. Our work is independent of
the hardware peculiarities and instead focuses on generating
adversarial perturbations in the software to target the inherent
vulnerabilities of deep audio models, and is thus applicable
to recent smartphones even if they mitigate the non-linearity
effect such as iPhone 6S [26].



VIII. DISCUSSION

In this section we discuss future directions for this line of
research and limitations of this work.

A. Defense

Our paper is limited to designing attacks on audio deep
models albeit in a universal way. Defending against these
attacks remains an open problem that we leave this task
for future work. However, we now discuss a few potential
attack-prevention techniques that can be employed. Firstly, the
classifier model can monitor the prediction probabilities for
the current input and if there is a spurious high probability
despite the small decibel of the input, then it could be flagged
as a potential attack. Another approach could be to detect the
presence of a continuous signal with a small amplitude, since
the current version of out attack system plays an adversarial
perturbation continuously.

B. Perceptibility

An attack is meaningful when it is stealthy enough to be
imperceptible to users. Although we quantify the loudness of
the perturbations on the dB scale, we acknowledge that it is
not sufficient to measure the true perceptibility by humans.
During our attack experiments, we observed that the adversar-
ial perturbations result in an audible noise, which albeit very
low in amplitude and completely unintelligible, could still be
sensed by humans if they are very close to the attack device
and are trained to know what to hear for. However, as the
distance between a human and the attack device increases, the
ability to sense the attack goes down. As a future research,
we plan to study whether the adversarial perturbations could
be generated in the inaudible frequency range, i.e., over 20
KHz.

IX. CONCLUSION

In this paper, we propose AudiDoS, a system for denial
of service attack targeted to VCS employing deep neural
networks. The proposed system works at real-time and while
humans are interacting with VCS. To the best of our knowl-
edge, this is the first study to adopt the universal adversarial
perturbation concept for the DoS attack on audio deep models.
Our evaluation shows that with a small distortion it is possible
to increase the error rate of a classifier significantly high.
Our real-world experiments demonstrate that such an attack
is indeed feasible in the wild with error rates as high as 78%.
That said, there remain a number of open challenges pertaining
to real-world adversarial attacks as well as for designing
defense mechanisms against them. Apart from widening the
space on real-time DoS attacks on deep audio models over
the air, we believe our findings further illustrate the possible
threats of adversarial attacks on audio deep models and call
for future research to thwart such attacks.
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