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ABSTRACT
We present the design, development, and evaluation of a person-
alised, privacy-aware and multi-modal wearable-only system to
model interruptibility. Our system runs as a background service of
a wearable OS and operates on two key techniques: i) online learn-
ing to recognise interruptible situation at a personal scale and ii)
runtime inference of opportune moments for an interruption. �e
former is realised by a set of fast and e�cient algorithms to auto-
matically discover and learn interruptible situations as a function of
meaningful places, and physical and conversational activities with
active user engagement. �e la�er is substantiated with a multi-
phased context sensing mechanics to identify moments which are
then utilised to delivery noti�cations and interactive contents at
the right moment. Early experimental evaluation of our system
shows a sharp 46% increase in the response rate of noti�cations in
wearable se�ings at the expense of negligible 6.3% resource cost.
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1 INTRODUCTION
�e era of wearables has arrived. As more and more established
forms (e.g., a timepiece, a ring, a pendant) get a digital makeover,
they are reshaping our everyday experiences with new, useful, excit-
ing and sometimes entertaining services. �ese forms typically have
a unique set of characteristics, i.e., they are aesthetically appealing,
ergonomically comfortable, socially acceptable, and develop an inti-
mate relationship with their owners. Besides the critical functional
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values, these aspects determine the success and sustainability of
wearable devices. While some of these aspects are more to do with
design and ergonomics, interruptibility plays a critical role in main-
taining sociality and intimacy of a wearable device. Indeed, for
wearables to have a broader impact, the next generation wearables
must expand their understanding of their users to determine the
opportune moments of interaction, e.g., pushing the noti�cation to
a user at the right moment.

Understanding human interruptibility has a profound implica-
tion on computational user experience in a mobile se�ing. Natu-
rally, many studies have explored this challenging topic and more
recently in the context of mobile noti�cation management [5, 8,
10, 11, 13, 14]. We aim to further augment this rich body of lit-
erature by presenting a multi-modal wearable sensing system to
model interruptibility, however in a wearable-only se�ing. We �rst
systematically explore di�erent design challenges in building an
interruptibility management solution for a wearable device, namely
- personalisation, privacy awareness, user engagement, intelligi-
bility, e�ciency and continuous learning. Guided by these design
considerations, we then present an end-to-end system that runs as
a background service of a wearable OS and applies an online learn-
ing technique to recognise interruptible situations which are then
utilised for contextual interruptions. To this end, the contribution
of this paper is twofold.

• We present techniques to track the spatiotemporal activ-
ity trajectory of a user to model their interruptibility as
a function of conversational and physical activity at dif-
ferent semantic spatial zones. �ese learned interruptible
situations are then used to discover opportune moments
to interrupt the user. We describe these techniques in an
accessible and reproducible form.

• We present end-to-end wearable-only implementation of
these techniques with benchmarks that show the e�cacy
of the proposed system including results from a real de-
ployment case study.

Early experimental evaluation of our system demonstrates a
sharp 46% increase in the response rate of interactive contents in
a crowd-sourcing application at the expense of negligible 6.3% re-
source cost. Taken together this and the rest of the insights, our
work contributes in accelerating the e�ort of designing interruptibility-
aware applications.

2 DESIGN DECISIONS
Managing interruptibility on wearable in a mobile se�ing demands
careful design consideration as it has multi-faceted implications on
user experience. Taking a user-centred view, we have considered



the following design aspects while architecting our solution; the
�rst two act as our guiding principles, whereas the last two are the
operational principles.

Personalisation and Privacy Awareness: Given the intimacy
of a wearable with its user, it is naturally expected that the wearable
should have a sound understanding of the activity and lifestyle
of its user to o�er personalised services. �is requires collecting,
processing, and interpreting data from embedded sensors. However,
this personalisation and the underpinning interpretation should
not come at the expense of user privacy. So, the solution needs to be
stand-alone without requiring any external network connectivity
or remote processing. We have designed our solution with this
view, i.e., all sensor data acquisition, processing, and interpretation
are performed locally on the wearable to develop a personalised
and privacy-aware view of users behaviour which is then used to
manage interruptibility.

User Engagement and Intelligible: Many past studies have
shown that an intelligent system without informed feedback and
user engagement yield poor user experience [3, 6]. Building on
these lessons, in our solution we actively engage the users in de�n-
ing the behaviour of the system, e.g., qualifying a location with an
interruptibility label and identifying moments of interruptibility.
�e composite e�ect of this active engagement is that the users are
fully informed of the operational behaviour of our solution. For
example interrupting with a noti�cation in the a�ernoon at a popular
area while walking, while delaying the interruption in another case
wherein the same location, in that same a�ernoon when a user is
walking and talking with someone

Fast and E�cient: Given the requirement of end-to-end exe-
cution of our solution locally and the constraint of low compute
and energy resources of wearable devices, it is essential to design
the system with ultra e�ciency applying system optimisations at
multiple phases. To this end, we have developed a set of simple and
fast algorithms for discovering meaningful locations, identifying
contextual situations, learning user preferences, and applying all
these at runtime for interrupting the user at the right time for best
user experience - while all are running locally without any network
or remote processing.

Online and Continuous Learning: �e last operating princi-
ple we applied in our solution is - continuously learn user behaviour
and update the interruptibility model to accommodate changing
user context. As we will discuss in the next section, we automat-
ically discover meaningful locations and contextual activities in
those locations based on a user’s spatiotemporal activity trajecto-
ries. We frequently, i.e., every-time the wearable is charging, revisit
these trajectories to update our rule-base that is then quali�ed by
the user as needed. �is continuous learning enables our solution
to re�ect a user’s behaviour on the operational behaviour of the
system in an intelligible way.

In the next section, we discuss how these design decisions are
manifested in our system for managing interruptibility.

3 SYSTEM DESCRIPTION
�e principal objective of our solution is to identify opportune
moments for an interruption in a mobile se�ing. We achieve this
by modelling spatiotemporal situations of a user, qualifying them

with interruptibility labels and then using this behavioural under-
standing to drive opportunistic interactions. To this end, we have
designed a system comprising following critical components as
illustrated in Fig. 1.

Figure 1: On-Wearable Interruptibility Management System

3.1 Multi-Modal Sensing and Context Models
A user’s spatiotemporal activity trajectory is the primary input to
our system. To construct this trajectory, we leverage three sensing
modalities - motion, audio and GPS.

Modelling Motion: Motion sensing is constituted by onboard
accelerometer and gyroscope to detect physical activity. We are in-
terested in three-movement states: [stationary,walking, on-transport]
and these are modelled by processing the raw accelerometer and
gyroscope samples from the wearable. We use 5-second window
frame with 95% overlap and then extract a set of time domain (mean,
median, percentile, and RMS), and frequency domain (spectral en-
ergy, information entropy) features borrowing guideline from [4].
We pass these features to a k-nearest neighbours (K-NN)1 classi�er
to extract physical activity label. We use 1000Hz sampling rate for
the sensors, however, produce activity labels at a granularity of 30
seconds.

Modelling Audio: Audio is a versatile sensing modality and
has been used for various complex tasks in recent literature, e.g.,
speech recognition, keyword spo�ing, acoustic scene detection,
emotion and stress detection etc. We are interested in a simple task
recognition, i.e., if there is a conversation going on or not. Our
system listens to the onboard microphone for 3 seconds in every
30 seconds (please see later on how this listening is scheduled for
optimising energy footprint) and extracts 13 MFCC features from
a 16-bit-PCM audio data following a sliding window approach (25
ms-long window and overlap of 10 ms). MFCC features are then
passed to a couple of classi�ers - each one composed of a CNN
1We have tried a variety of other shallow and deep classi�ers (e.g., linear SVM, RBF
SVM, decision tree, random forest, multi-layer perceptron, AdaBoost, etc.), and selected
the one that yielded the best performance both concerning accuracy and resource
footprint.



followed by a So�Max layer - for detecting the presence of human
conversation in audio signals.

Modelling GPS: Location is known as the most powerful con-
text for describing the human context. In our solution, we track
only outdoor location by sampling GPS once every 30 sec. We
apply reverse geocoding to extract high-level location out of raw
longitude and latitude using a reference �le achieved in our system
Note that, we do not incorporate any indoor location sensing in our
system, neither do we associate further semantics using an external
database (e.g., Foursquare). We consider these aspects as the future
avenue of this work.

Collectively, these three sensor modalities produce continuous
spatiotemporal activity trajectory of a user as a tuple {time, location,
physical activity, conversation activity} every 30 seconds which is
then used by the rest of the systems to determine opportune mo-
ments for an interruption.

3.2 Situation Recogniser
�e primary objective of this component is to discover meaningful
spatial zones for a user by mining spatiotemporal activity trajecto-
ries. Once a set of zones are discovered they are quali�ed by active
user engagement for interruptibility, and from then on physical
and conversational activities are tracked on zones that are marked
as interruptible for mining user-de�ned rules.

Figure 2: Operating Model of the Situation Recogniser

Spatiotemporal clustering is an active area of research, and there
are many techniques proposed in the literature, e.g., k-means, con-
strained k-means, DBSCAN, ST-DBSCAN, spectral clustering, dy-
namic graph cu�ing, etc. to name a few. We can apply many of
these techniques to discover meaningful locations. However, given
the low resource budget under which we are operating here, we
have developed a multi-phased algorithm adapting DBSCAN. We
are only interested in identifying meaningful spatial zones for a
user and to accomplish this we have devised a popularity metric
for a location which is computed as follows.
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Here Pi is the popularity of a location i , |S | is the total number
of locations in the trace within a given time window, and ais is the
number of times location i has been visited and d(ai ) is the total
duration of the dwell time in that location i and dmax (a) is the
maximum duration across all locations. w is a weight parameter,
and we set it to 0.6 to give higher weight to the dwell time duration.
A higher P value indicates the stronger popularity of a location,
and a lower value indicates the reverse.

Once we calculate the popularity of all locations, we �lter out
those that are below the threshold for popularity score. �en these
locations are passed to DBSCAN with haversine distance metric,
epsilon = 100m and min-points = 1 to construct clusters of meaning-
ful locations. Once this is computed, we ranked them by computing
the aggregated popularity of all cluster members and determine the
centroid of the cluster as the representative of the zone. A�er that,
when a user is within the 100m radius of a zone’s centroid, we ask
a question to the user through noti�cations to qualify whether s/he
can be interrupted in that area. A zone is marked accordingly with
user feedback, and if a zone is interruptible, then physical and con-
versational activities are tracked as long as the user is within 100m
radius of the centroid of that zone for extracting interruptibility
rules. �e whole process is illustrated in Figure 2.

3.3 Interruptibility Learner
�e objective of this component is to determine a set of contextual
situations in which a user can be interrupted. In the earlier section,
we discussed the discovery of interruptible spatial zones. For learn-
ing interruptibility in those zones, we need to identify further the
right moments tailored to a user temporal activity trajectory. To
this end, we divide a day in four periods: [morning: 06:00 - 11:59,
a�ernoon: 12:00 - 17:59, evening: 18:00 - 23:59, night: 00:00 - 05:59],
and create 24 unique situational contexts where each context is
described with a combination of one of 4 periods (i.e., morning,
a�ernoon, evening, night), one of two conversational activity labels
(i.e., conversation, noise), and one of the three physical activity labels
(i.e., stationary, walking, on-transport). �e objective of the learner
is to a�ach an interruptibility label against each of these contexts.

�ere are multiple ways to achieve this objective. Given the sim-
pli�cation of the learning task, we can apply supervised learning
techniques with a pre-trained model that can be adapted a�er the
cold-start period. Recent literature has also shownmore straightfor-
ward associative rule mining with commendable success in learning
user preferences [9]. We have decided to adopt the la�er consid-
ering the low-resource footprint, and the a�ractive intelligibility
property of associative rule miner. However, in contrast to [9],
where content is used in open-ended context tuples to learn user
preference, we seek to determine howmany spatiotemporal activity
conditions are interruptible from a �xed set of 24 contexts for each
interruptible zone in a content-agnostic way.



To this end, we have used apriori algorithm [2] to learn the
context in an automated way. During the cold-start period for
each zone, we programmatically interrupt the user for each con-
text condition. �e response (i.e., acknowledge and decline) to the
interruption is then feed into the learning engine to automatically
determine the interruptibility label for underlying condition based
on support - how frequently this interruptible context appears in a
user trace and con�dence - how o�en the context is positively marked
for interruptibility. As we will describe later, we repeat this process
together with interruptible zone detection to continuously learn
changing user contexts. �e outcome of this module is a set of set-
tings de�ned by speci�c spatiotemporal physical and conversational
activities combinations during which the user is interruptible.

Figure 3: Multi-phased Opportune Moment Detector

3.4 Opportune Moment Detector
�is component compares current user situation with the learned
behavioural pa�erns to discover opportune moments to interrupt
the user. However given the low-resource budget of a wearable
device, this component works in a multi-phased way switching be-
tween three di�erent operational modes (as illustrated in Figure 3).

• Coasting Mode: In this mode, only coarse-grained location
is detected to conserve ba�ery power whenever the user
is detected outside of any geofenced region of previously
identi�ed meaningful interruptible zones.

• Sensing Mode: In this mode, a user is detected to have
reached a geo-fenced region of a meaningful interrupt-
ible zone and sensors are activated to record spatiotempo-
ral physical and conversational activities which are then
matched against the mined ruleset from the interruptibility
learner.

• Interactive Mode: In this mode, a mined rule is found to
match the current trajectory causing the moments to be
marked for interruption as necessary. �is last mode is
also used to interrupt a user to obtain positive or nega-
tive feedback on the matched context to mine the rules as
explained earlier.

�e component exposes these identi�ed moments to the inter-
ruptibility manger for relevant actions.

3.5 Interruptibility Manager
�is module utilises the opportune moments to negotiate with
native OS in delivering content at the right moment. �is compo-
nent has a set of alternatives to process an interactive content or
noti�cation once intercepted. It can

(1) It can push immediately to a user without considering
user’s context (the status quo).

(2) it can cancel the content without showing to users (ex-
pected to yield negative user experience).

(3) it can delay the content for a speci�c amount of time; if the
opportunity is not identi�ed within a prede�ned period
then push.

(4) it can delay it until the right context is detected, and once
the opportune moment is detected the content is pushed
to the user.

�e �rst two options are not ideal for the case in context, and
the third option is e�ectively equivalent to option one although
it might yield energy conservation [1]. As such, we have selected
option four as the guiding principle of this component. However,
as we have discussed earlier, the Opportune Moment Detector com-
ponent works in a multi-phased way in together with the situation
recogniser and the interruptibility learner to determine the delivery
of content. �is is illustrated in Figure4 Essentially, when a user
is in coasting mode, all content is ignored as de�ned by the user.
In the sensing mode, a message is only delivered to the user at an
opportune moment. Otherwise the content is delayed. If the user
switches to coasting mode, e.g., s/he moves to a non-interruptible
zone the content is cancelled.

Figure 4: Operational Strategy of Interruptibility Manager

3.6 Online Learning and System Optimisations
One of our design goals is to learn user behaviour continuously with
a regular update to the learning model. In this spirit, the situation
recogniser re-computes the interruptible zones on a con�gurable
time basis (e.g., every week, every two weeks, etc.) when the wear-
able is charging. We apply a similar principle to the interruptibility



learner. Collectively, this strategy helps us to keep the model fresh
and re�ective of a user’s behavioural pa�ern.

We have applied several optimisations on the continuous acqui-
sition and processing of sensor data. GPS is only sampled once
every 30 seconds, and audio is recorded for 3 seconds in every 30
seconds. �e system uses geo-fencing to separate the zones where
the device should start sensing from those where it should remain
in low-power coasting mode. A threshold at the location of the
fence prevents the device to switch between coasting and sensing
mode continuously. Also, we have architect our context model
applying bleeding-edge acceleration techniques, e.g., compression,
GPU-o�oading, and processor parallelisation. �e details of this
techniques are out of the scope of this work.

3.7 Implementation
�ese system components are implemented as a set of Android
Services on top of Android Wear (now Wear OS) v1.5, targeting
Android Platform 22, potentially working on almost every Wear
OS device in circulation. In our case, we have used LG Urbane 2
watch. �ese services communicate with each other and with the
Android Noti�cation Manager via Android Intents and deliver the
information contextually.

4 EVALUATION
�ere are several evaluation aspects of the system presented, e.g.,
performance and e�ciency of the context models, situation recog-
niser, interruptibility learner, moment detector, etc. Given the scope
of this paper, we will only re�ect on a subset of the evaluations.
Future documentation of this work will include a more detailed
assessment. In the following, we primarily look at the execution
performance and resource footprint of a subset of components of
our system. For the benchmark, we have used LG Urbane 2 watch
running Wear OS v1.5. LG Urbane 2 watch features a SnapDragon
400 chip (�ad-core 1.2 GHz Cortex A7 and GPU Adreno 305) with
768 MB RAM and 4GB Flash storage and is equipped with 570 mAh
ba�ery.

Figure 5: Execution Performance and Resource Footprint of Di�erent Con-
text Models

We begin by looking at the (a) execution time and (b) resource
footprint of di�erent context models. As illustrated in Figure ref-
�g:model, all three models execute e�ciently with audio models
running CNN yields the highest. Corresponding energy consump-
tion is relatively low. With this footprint, the system’s overall
ba�ery consumption in the worst case is 36mA per hour under the
assumptions that 120 inferences are performed continuously, e.g.,
in the sensing mode. �is corresponds to 6.3% ba�ery life for our
host device, i.e., LG Urbane 2 watch.

Figure 6: (a) Execution Time and (b) Memory Footprint of the Situation
Recogniser

Next, we look at the execution time and memory footprint of
the situation recogniser. As illustrated in Figure 6 even with 16K
entries execution time is 77.9 seconds with only 9.5MB memory
cost which we consider very fast and e�cient for a wearable host.
Similarly, Figure 7 depicts the performance of the interruptibility
learner and shows that for 100K rules can be learned under 10
minutes. In practice, we consider this situation will never happen
given the constrained set of contexts that we aim to learn. Please
note that we do not show the energy footprint of these processes
as these components run only when the device is charging.

Figure 7: (a) Execution Time and (b) Memory Footprint of the Interrupt-
ibility Learner

Figure 8: Crowd-sourcing App for Usability Assessment

While we envision the primary use of our solution is in wear-
able noti�cation management, we have evaluated this system in
a crowd-sourcing solution with a mobile workforce of a national
postal service. Six postal workers wore the watch embedded with
our solution for ten days to collect spatiotemporal data (e.g., clean-
liness of a street, the safety of a neighbourhood, etc. see Figure 8)
opportunistically in addition to their primary task of delivering
le�ers and parcels. In the �rst eight days, we trained the systems to
discover situations and learn personalised rules while the workers



Figure 9: (a) Response Rate and (b) Response Time of Crowd-
sourced app users

gather data with random interruption and in the last two days,
we applied our opportune moment detector and interruptibility
manager. Figure 9[a] shows the number of queries presented to
each worker and number of queries responded by them in the last
two days. While the response rate per worker varies between 63%
and 79%, the overall rate is 70%. �is is in sharp contrast to the
�rst eight days during which only 24% queries were responded.
Figure 9[b] on the other hand shows the cumulative distribution
function of response time showing the average response time to
queries is 53 seconds.

5 RELATEDWORK
Many studies have explored the subject of interruptibility in the
literature [10]. More recently, several works have studied inter-
ruptibility in mobile se�ings. �ese works have concentrated on
either identifying opportune moments to present the noti�cations
or presenting relevant noti�cations to users. Mehrotra et al. uses a
set of classi�ers on the content of the noti�cations [11], whereas
InterruptMe uses classi�ers on user context data [14] to learn such
moments. Okoshi et al. argue that the breakpoints in users’ lives
present opportune moments to interrupt them. �ey detect these
breakpoints using their physical activities and their engagements
with the devices [12]. User engagement with the noti�cations also
depends on the modality of the noti�cation [7]. While it is well-
known that parameters driven from smart device usage and its
embedded sensors can yield information regarding the user con-
text, it has shown that they can be used to indicate user engagement,
hence suggesting opportune moments for noti�cation delivery [8].
On relevant noti�cation delivery, PrefMiner learns user preferences
for receiving noti�cations by extracting association rules that are
based on both the noti�cation content and user context [9]. Once
these are mined, PrefMiner �lters out unwanted noti�cations for
users. �e e�ect of push noti�cations on the energy consumption
of mobile devices have been studied in [1] and it has been shown
that network-centric heuristics to delay the delivery of the noti�ca-
tion can reduce energy consumption by 15%. Building on this rich
body of literature, we present a wearable-only, personalised and
privacy aware interruptibility management solution with a set of
light-weight and e�cient algorithms. To best of our knowledge,
this is the �rst system that aims to o�er a content-agnostic generic
system service for contextual interruptibility management.

6 CONCLUDING REMARKS
In this paper, we have described a wearable-only multi-modal sys-
tem to model interruptibility. We discussed in detail a set of design
principles - personalisation, privacy awareness, intelligibility, ef-
�ciency, continuous learning - that guided our development. We
then described di�erent system components that learn to recognise
interruptible situation at a personal scale with active user engage-
ment, and then leverage that learning to deliver contents at the
right moment of opportunities. We presented the detail of a set
of algorithms that drive these operational behaviours and demon-
strated that with a negligible resource cost of 6.3%, our solution
could increase user’s response rate by 46%. We expect techniques
discussed, and insights reported in this work will accelerate the
e�ort of designing interruptibility-aware applications especially in
the wearable landscape.
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