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Abstract. This paper presents an exploration of the design of a memory model to 
support the management of persistent historical memories recorded by a smart 
work object. Analysis of a range of potential application categories and scenarios 
involving a smart work object is used to highlight the requirements and different 
characteristics of digital memories. The analysis is then used to identify a range of 
pertinent issues and trade-offs which are used to inform the design of a generic 
parameterized memory model. A case study involving a smart object prototype in 
a workplace application scenario is then presented. The case study then analyzes 
how the proposed memory model can be applied to memories collected by the 
prototype.  
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Introduction 

The storage and management of the digital memories of humans (images, videos, e-
mails, documents and so forth) is an ongoing research topic [1][2] and has been 
recognized as a ‘Grand Challenge’ for computer science [3]. This paper is concerned 
with the emerging area of digital memories produced by smart objects. Smart objects 
are everyday physical objects augmented with embedded technology that include 
sensing, processing, communication and persistent storage. The memories generated by 
a smart object are often related to sensing/context awareness and, through their analysis, 
enable a wide range of new and novel applications. For example, existing applications 
have involved health and safety monitoring [4] and the support of new business models 
[5] within the same domain.  

The focus of this paper is the design of a memory model to support persistent 
historical memories recorded by smart objects in the workplace. A memory model may 
have to manage the recording of a multitude of different memories to support different 
applications. For example, memories of its usage, its service history, its location etc. 
These memories may vary in level of detail, importance and granularity. A memory 
model must also take action when storage limits are reached. While some objects may 
remain indoors with plentiful network connectivity and access to backend 
infrastructure others, such as the smart tool discussed in this work, may spend long 
periods outdoors with no network connectivity or access to backend infrastructure. 
Therefore the memory model must take action when storage limits are reached and 
three main approaches, each with unique problems and trade-offs, are discussed in this 
work. While this work focuses on a memory model for smart work objects we also 
consider how our finding can be applied in a more generic smart object memory model.  



The following section discusses application scenarios that involve smart objects 
with persistent memories. Next requirements highlighted by the scenarios and 
characteristics of object memories are considered. The design of the memory model is 
then presented followed by a case study involving a prototype smart object together 
with analysis of the memories recorded in the context of the memory model. Finally 
related work and concluding remarks are presented.  

Smart Objects Applications  

A wide range of potential applications exist for the smart objects which maintain a 
persistent history of their memories. Memories include an object’s experiences (events 
or activities involving the object) and other important pieces of information. The focus 
in this work is smart work objects (specifically tools and associated equipment) and 
figure 1 shows four different categories of memories and associated applications.  

Figure 1. Categories of Experiences Recorded by a Smart Object. 

The category of ‘Life Cycle’ is related to the physical lifecycle of the object from 
design and manufacture through to disposal and recycling. Storing these memories 
enables possibilities such as identification of materials used in manufacture in order to 
inform recycling or re-use in the disposal process. Memories of an object’s origins may 
also be used to validate its authenticity. In the category of ‘User’ these memories are 
related to instructional information or legislation (user manuals, health and safety 
policy etc.) and memories of use of the object. For example, usage memories can be 
used to check associated risks to a user’s health [4]. The ‘Consumer’ category relates to 
issues affecting the value or desirability of the object such as a record of repair, 
maintenance or past owners. The ‘Organization’ category relates to memories such as 
object movement to enable analysis of business processes (and whether they need to be 
revised or redesigned etc). Additionally, new business models are enabled through the 
use of smart objects such as pay-per-use equipment rental [5].  

From this discussion two findings can be summarized: 
• Smart object memories are likely to emerge from a range of different sources.  
• Historical object memories enable a diverse range of novel applications. 



Smart Object Memory Model 

In this section the key properties of memories stored by smart objects are identified, 
followed by a discussion of the design of a smart object memory model.  

Smart Object Memories 

In order to effectively manage memories it is first necessary to understand their origin 
and characteristics in order to make appropriate decisions how they should be treated. 
On differentiation is between external sources where memories are imprinted and 
internal sources where memories are dynamically generated through interpretation of 
embedded sensor data (using predefined algorithms). For example: 

• Imprinted: Memories regarding design and manufacture. 
• Dynamically Generated: Memories regarding instances of use and misuse. 

It is probable that imprinted memories cannot be altered and must either be stored or 
deleted. However, in the case of dynamically generated memories it may be possible to 
change the parameters of the algorithm to produce fine-grained memories (high 
sampling interval, high precision etc) or course-grained memories (low sampling 
interval, low resolution etc). These extremes represent a trade-offs in terms of detail in 
data recorded vs. storage space utilization. The actual requirements placed on 
memories are, of course, application dependent. While a memory model may be 
required to support multiple applications it is likely the underlying requirements must 
be known in advance in order to define, then potentially adapt, these algorithms.  

The temporal importance of memories may be short-term or long-term relative to 
the lifetime of the object. For example, imprinted memories about object manufacture 
have long-term significance while memories of individual periods of use may only be 
required for calculating hire cost based on pay-per-use billing in the short term. This is 
an additional consideration in the design of a memory model. 

Managing Memories  

When recording memories to support multiple applications there is potential for 
commonalities and replication in the memories stored, this must be considered in order 
to make efficient use of storage. For example, when requiring memories of each 
instance of use and the use total, the summation of the former provides the latter. In 
this example the memory model could potentially optimize use of storage by only 
recording memories of use. This is a trade-off between pre-processing (processing 
required during recording of memories) and post-processing (processing required 
during retrieval of memories) within the memory model. In more detail, the saving in 
terms of storage is at the cost of additional processing required to retrieve memories at 
a later stage. Application requirements would have to be known prior to 
implementation of the memory model to enable this example. 

In an ideal situation memories would be transferred to a backend infrastructure for 
periodic archival. However, objects such as tools may be in use outdoors for long 
periods where the deployment of infrastructure is challenging. When no free storage is 
available and new memories need to be stored three possibilities exist: 

• Forgetting - Discarding new memories or overwriting existing ones.  
• Abstracting - Combing multiple memories or reducing level of detail.  
• Compressing – Compressing memories unlikely to be removed or changed.  



Each of these three possibilities offers a trade-off in terms of processing overhead 
vs. loss of data. Forgetting requires the least overhead and greatest loss and while 
compression does not incur loss there is significant processing and power overhead. 
This trade-off is particularly important in a resource constrained embedded system. 
While the application scenario controls the actual implementation of the model, it is 
likely that long-lived memories would not be forgotten or abstracted, but may be 
compressed as a matter of course. The selection of a compression algorithm is likely to 
involve another trade-off in terms of complexity (and associated processing overhead) 
vs. size reduction. While the application requirements and memory characteristics 
dictate the applicability of these three techniques in a given scenario, we would argue 
that the notions of forgetting, abstracting and compressing provide the foundation of a 
more generic memory model. The applicability of each techniques could potentially be 
represented as a set of three parameters for each type of memory. 

 
Figure 2. Smart Drill Prototype. 

Case Study: Smart Drill Prototype 

This work considers memories in the context of a heavy duty battery powered drill, the 
prototype implementation of which is shown in figure 2. The prototype contains an 
ARM7 processor, microSD card slot, 802.15.4 radio, Bluetooth radio and 2-axis 
accelerometer. The hardware and battery is contained in a small case (see Figure 2, 
insert). The prototype primarily records memories of its use in order to support a pay-
per-use equipment hire model [5]. Each memory requires 20 bytes of storage and 
includes an identifier of the user (8 bytes), a timestamp (8 bytes) and a use duration (4 
bytes). These are short-term memories and will be removed when the hire period ends 
and the drill is returned to the hire company.  

For the application of a pay-per-use model the most important memories are those 
that containing total usage time. Several solutions for abstracting these memories, such 
as replacing the individual records with a single use total or removing either the user 
identifier or timestamp (each freeing 40% of the currently occupied space). Other 
possibilities include changing the granularity of the memories from single instances of 
usage to encompass more information. For example, the individual memories could be 
replaced with single usage total for each user for a specified time period such as a day. 
Conversely, the memories could be combined in terms of the times of day they 
occurred, giving a usage total for each time period. The savings gained by latter two 
possibilities are dependent on the data and the exact algorithms used but potentially 



could be as high as 80%. Another solution would be to actually execute the pay-per-use 
billing model on the object, storing the total cost and removing the usage memories 
instantly. However, in this case it becomes challenging verify that the billing model has 
been executed correctly or change the model. 

Related Work 

Most of the existing works on attaching structured digital information to physical 
objects are limited to tag based approaches. For example, auto-ID[6] technologies like 
barcode [7], RFID [8][9], QRCode [10], etc. are successfully used in logistics, supply 
chain management, and healthcare applications. However, these tags are primarily used 
for object identification and unable to store more fine-grained dynamic contents due to 
their architectural limitations. Some researchers have investigated a more holistic 
approach of associating digital information by applying the notion of “Digital Object 
Memory”. Schneider and his colleagues designed memory models revolving around a 
variety of application scenarios (kitchen, shopping, etc.) and reasoned about the 
dimensions that influence the model e.g., on-board or off-board storage, software or 
hardware implementation [11]. On an application level, there are several works that 
have looked at capturing and sharing everyday experiences using a multitude of 
personal devices [1][2]. In fact, “Technology for Life Long Memories” has been 
identified as one of the grand challenges of computer science [3]. However, most of 
these works have taken an ad-hoc approach in terms of the memory organization. This 
work is concerned with systematizing this organization using a range of customizable 
parameters. 

Discussion  

This paper has categorized memories in several different ways based on their 
characteristics (imprinted, generated, long-lived, short-lived) in order to consider how 
each should be treated within a memory model. It is also possible to base 
categorizations within the memory model upon physical or logical areas of storage to 
which they are assigned. As storage limits were reached memories could then be 
moved between these areas forgetting, abstracting and compressing as appropriate.  

A key aspect of the memory model is the generation (interpretation) of memories 
from sensor data. Our goal is for a generic memory model that is device and 
application independent to allow, for example, the same pay-per-use billing model to 
be used on different devices in different scenarios. As sensing possibilities and 
capabilities change between different hardware implementations and scenarios 
‘pluggable’ sensor interpretation algorithms are required. With a generic model in place 
such a pay-per-use billing model would be primarily based on memories of usage 
duration but is flexible enough to include detailed memories of usage parameters 
(intensity, time of day, qualifications of user etc) if available. 

The possibility of utilizing compression on smart object memories is an area for 
future work and requires careful consideration in a resource-constrained embedded 
scenario. However, existing work has shown that compressing data has the potential to 
save energy in terms of reducing the overhead of transmitting that data [12] and this 
reduced overhead may also apply to storage. Additional areas for future work include 



support of external communication in the memory model to enable access to and 
imprinting of memories (addressing issues such as privacy, security and authentication). 
A key area is the mechanism for moving memories from a smart object onto a backend 
infrastructure. This includes issues such as verification that external memories have 
been transferred successfully (before removing them from the smart object) and how to 
maintain some form of ‘link’ to them. 

Concluding Remarks 

This paper has considered the design of a generic memory model for smart objects, 
everyday objects augmented with embedded technology, with a focus on supporting 
smart work objects in the construction domain. The model is intended to support 
memories with a range of different characteristics and requirements in order to cater for 
multiple diverse application scenarios involving a single object. Smart objects typically 
operate independently and potentially may spend large periods without network 
connectivity and backend infrastructure (especially in the work object scenario 
considered in this work). A key aspect in the design of the memory model is the action 
to take when storage space is running out. Three main techniques exist in this situation 
each with their own advantages, drawbacks and trade-offs. Additionally, the selection 
of an appropriate technique is related to individual memory characteristics and 
application scenarios. This can potentially be represented through a sets of parameters 
understood by the memory model. The goal in this paper was the design of a generic 
smart object memory model, rather than provide specific implementation details, and 
instigate discussion at the workshop. 
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