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ABSTRACT
We are witnessing a trend of users owning multiple data-generating
wearable and IoT devices that continuously capture sensor data
pertaining to a user’s activities and context. Federated Learning
is a potential technique to derive meaningful insights from this
sensor data in a privacy-preserving way without revealing the raw
sensor data to a central server. In this paper, we introduce a new
problem setting in this multi-device context called Federated Learn-
ing in Multi-Device Local Networks (FL-MDLN). We identify core
challenges for FL-MDLN in relation to its federation architecture,
and statistical and systems heterogeneity across multiple users and
multiple devices. Then, we introduce a new user-as-client (UAC)
federation architecture, and propose various device selection strate-
gies to counter statistical and systems heterogeneity in FL-MDLN.
Early empirical findings show that our proposed techniques im-
prove model test accuracy as well as battery power efficiency in FL.
Based on these findings, we elucidate open research questions and
future work in FL-MDLN.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computer systems organization
→ Sensor networks; • Computing methodologies→ Cooper-
ation and coordination.
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Figure 1: A user owning multiple data-generating devices in
a body area network.

1 INTRODUCTION
Federated Learning (FL) has emerged as a promising technique to
enable distributed training of machine learning models in networks
of remote devices, while keeping the personal data on the devices
private. Over the last few years, the research community has built
upon the core idea of FL and explored several challenges in FL, in-
cluding the design of novel system architectures such as hierarchical
federated learning [1, 17] and vertical federated learning [20, 27].
There also exists a significant body of work aimed at studying the
challenges of systems [15, 18, 26] and statistical [5, 6, 12, 15, 16]
heterogeneity across clients in FL.

In this paper, we present a novel problem setting called Feder-
ated Learning in Multi-Device Local Networks (FL-MDLN) which
touches on all the challenges discussed above. This problem set-
ting is inspired by the current trend of increasing number of sen-
sory devices that reside in local networks, offering intelligent, per-
sonalized services. For example, users these days own multiple
sensor-enabled, data-generating devices, e.g., smartphone, wear-
ables, smart speakers, and other IoT devices. Some studies (e.g.,
[21]) even estimate that by the year 2025, each person will own 9.3
connected devices on average. An example of this trend is shown in
Figure 1 – here, a user is wearing multiple accelerometer-enabled
devices in a body area networkwhich are simultaneously collecting
sensor data while the user is performing an activity (e.g., running).
IoT devices in smart home networks or smart camera networks
are other popular examples of multi-device local sensor networks.
In this paper, we focus on the example of personal-scale multi-
device body area networks to showcase the problem setting and
our approach.

Apart from the growing importance and practicality of this prob-
lem setting, it introduces the following core challenges for FL. The
first challenge relates to the federation architecture. In existing FL
approaches with 𝑁 remote users, each user 𝑖 is assumed to have
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one data-generating device, which acts as a client in FL. However,
in FL-MDLN, each user 𝑖 can own multiple (𝐾 ≥ 1) data-generating
devices. This raises a question whether FL systems should consider
all 𝑁 · 𝐾 devices as separate FL clients (device-as-client), or should
each user serve as a representative of its local devices in FL (user-as-
client). In §2, we explain why user-as-client is the better architecture
for the FL-MDLN problem, and explain the technical challenges for
FL in this architecture.

More specifically, we focus on the challenges of statistical and
systems heterogeneity in FL-MDLN. Unique to this problem setting
is the fact that there exists statistical heterogeneity not just across
client (or user) datasets, but also within a client’s local dataset.
This ‘local’ statistical heterogeneity is caused by the differences in
data distributions of the various devices owned by the user. For
example, motion sensors placed at different positions of the body
will capture the user’s motion differently, therebymaking the device
datasets non-iid. In this scenario of heterogeneous local datasets, a
FL system needs to decide which of the local devices from a user
will contribute to the federated learning in a round. We call this
problem Device Selection and elaborate on it in §3. We also explain
why it differs from prior Client Selection approaches in FL, and
propose various device selection strategies.

In addition to the statistical heterogeneity across devices, we also
need to consider the resource characteristics (e.g., computational
capabilities, battery power, network communication speeds) of each
device in the Device Selection decision. We take the example of
available battery power on each device as a selection metric and
illustrate howwe can design FL algorithms that balance both system
resources and statistical heterogeneity across devices.

Considering the novelty of this problem setting and the goal of
this workshop to identify new challenges in AI/ML for IoT, this
paper aims to do a thorough analysis of the FL-MDLN setting,
explain the technical challenges for federated learning involved
herein, and highlight several open research questions. Although
we present some early stage solutions, our goal in this paper is not
to arrive at the most sophisticated state-of-the-art solution to these
challenges. Instead, our proposed solutions are intended to throw
light on potential research directions in this space.

In the following two sections, we introduce the key research
challenges in the FL-MDLN problem setting.

2 CHALLENGE 1: FEDERATION
ARCHITECTURE

In conventional federated learning, the remote data-generating de-
vices are considered as FL clients and interact directly with the FL
server to perform distributed training. We call this architecture as
device-as-client (DAC) and depict it in Figure 2(a). In FL-MDLN,
however, the data-generating devices have a natural clustering,
in that multiple devices are owned by the same user and capture
the data-generating process simultaneously from different views.
For example, when a user is engaged in a jogging activity, various
accelerometer-enabled devices placed on their body will capture
this physical phenomenon simultaneously, but from different per-
spectives.

This natural affinity between the devices of a user raises an
important question: can we aggregate the data from all devices

(a) Device as Client (DAC)

(b) User as Client (UAC)

Figure 2: Two server-client architectures for FL-MDLN:
Device-as-Client and User-as-Client.

belonging to the same user, and treat each user as a FL client (i.e.,
user-as-client in Figure 2(b))? In this architecture, a user becomes
a representative for all its devices while participating in FL, in
contrast to DAC where each device is an independent FL client.

We hypothesize that the user-as-client (UAC) architecture is apt
for the FL-MDLN problem setting, both to achieve better accuracy
across clients as well as to reduce the system overhead in FL. Below
we provide arguments to support this hypothesis at a conceptual
level, and later in §2.1, we provide empirical results to further justify
this hypothesis.

Firstly, by grouping the devices from the same user, we can
leverage the synergy in the temporally-aligned device datasets to
learn better feature representations from the data. This form of
temporal alignment between devices has been exploited for repre-
sentation learning in other ML fields [22], but its exploration in FL
has been missing. Secondly, data captured on some devices could be
highly skewed towards a certain class, depending on the purpose
and utility of the device. For instance, if a user prefers to wear a
smartwatch while jogging, other devices such as a smartphone or
AR glasses will rarely have the opportunity to collect jogging data,
and the ‘Jogging’ class will be under-represented in their datasets.
In the DAC architecture, such extreme class imbalance and data
heterogeneity across devices can lead to accuracy loss as shown in
prior work [8]. Instead, the UAC architecture mitigates this issue
because the missing ‘knowledge’ on one device can be filled-in by
the data from other devices. For instance, we can train a genera-
tive data translation model such as Pix2Pix [13] using paired and
time-aligned samples from various devices, and use it to generate
missing data on some devices.

Finally, from the perspective of minimizing the system overhead
of FL, UAC allows for better management of system resources at
the user-level by having awareness of each device’s resource pro-
file. As an example, we can design personalized resource-balancing
algorithms at the user-level that decide which of the user devices
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will participate in a given round of federated training based on their
available system resources (e.g., battery power). This decision, for
example, could be based on each user’s device usage history and
battery charging patterns.

The UAC architecture resembles the hierarchical structure of
previously proposed vertical FL and hierarchical FL (Section 6)
but is more tailored for the FL-MDLN problem setting. Vertical FL
assumes situations in which features of the same data entity are
distributed across nodes, for example, multiple banks having one
user’s banking information and history. Hierarchical FL leverages
hierarchical structures involving intermediate servers for the pur-
pose of distributing the computing and communication load, rather
than exploiting the statistical similarity of devices owned by the
same entity. The UAC architecture considers the fact that devices
in the same user network are heterogeneous but have underlying
statistical similarity under the possession of the same user, or under
the same local network. Federated learning in the FL-MDLN also re-
quires system-level consideration on how to manage the federation
of constrained resources of mobile, wearable, and IoT devices.

So far, we have conceptually discussed the potential benefits of
the user-as-client architecture. In the next section, we present a
simple approach to implement this architecture and demonstrate
its performance gains over DAC.

2.1 Exploring Device Datasets’ Aggregation
Approach

To illustrate the performance of UAC, we first consider a simple
approach where we combine the datasets of all devices from the
same user to create an aggregated ‘user’ dataset. This dataset is
then used for federated training with the global server. This simple
approach may not be the most sophisticated way to implement the
user-as-client architecture, but it allows us to quantify the potential
benefits of UAC. Later, we also discuss the pros and cons of this
approach and discuss future research directions.
Dataset. For our experiments, we used the RealWorld dataset [25]
for human activity recognition (HAR). This dataset contains labeled
accelerometer and gyroscope traces recorded simultaneously on
7 sensor-enabled devices mounted at various body positions on a
user (forearm, thigh, head, upperarm, waist, chest, and shin). In
total, there are 15 users in the dataset, each owning 7 sensor-enabled
devices. During the data collection exercise, each user performed
8 activities: climbing stairs down and up, jumping, lying, standing,
sitting, running/jogging, and walking. Each activity was performed
for 10 minutes on average by each user, except for jumping, which
was done for ∼1.7 minutes on average. The sampling rate for all
the sensors was 50Hz.
Data Pre-Processing. The accelerometer and gyroscope traces
are segmented into time windows of 3 seconds, without any over-
lap. This window length was chosen empirically to align with the
duration of various human activities in the dataset. If a 3-second-
long trace includes an activity transition, timestamp noise, or data
points without labels, the trace gets discarded. The whole dataset is
normalized to be in the range of -1 and 1. Finally, we use stratified
splitting to divide the data from each device into two parts: training
set (75%) and test set (25%).

Figure 3: Accuracy comparison between UAC and DAC for
two model architectures.

Experiment Setup. In the DAC setup shown in Figure 2(a),
each device of each user participates as a client in the federated
learning process (7 * 15 = 105 clients in total). Instead, in the UAC
setup, each user – holding the aggregated data of all its devices –
participates as a client in the learning process (15 clients in total).
In this experiment, we do not perform any client selection and as
such, all clients participate in each round of training.

Our system is implemented in TensorFlow 2.0 and uses the
Flower framework [3] for federated learning. We use TF HParams
library to tune FL hyperparameters, and arrived at the following set
of hyperparameters: 20 FL rounds and 10 local epochs of training on
each client in each round.We tested on two neural network architec-
tures: DeepConvLSTM [23] and ResNetMLP [4]. DeepConvLSTM is
a deep neural networkwith convolutional and LSTM recurrent units
for human activity recognition in wearable devices. ResNetMLP
has a convolutional neural network based on the ResNet [11] archi-
tecture and a multilayer perceptron (MLP). The local training used
a learning rate of 0.001, batch size of 16, and the Adam optimizer.
After we train a global model using FL, it is evaluated on the held-
out test set from all devices. We report the average accuracy over
the devices in each experiment setting.

Results. Figure 3 summarizes our results. For both DeepConvL-
STM and ResNetMLP models, the performance of UAC exceeds that
of DAC by 15% and 18.9% respectively. There could be two reasons
for this performance gain: firstly, even though the total number
of data samples used for FL are the same in both settings, UAC
has more local samples on each client by virtue of its architecture
design. This could lead to faster and better convergence of the local
loss on each client and in turn, leads to higher accuracy for the
global model. Secondly, in the UAC architecture, the local datasets
are statistically heterogeneous, as they contain data from multiple
devices, each with a different data distribution. We expect that local
learning on these statistically heterogeneous (device) datasets is ad-
vantageous for learning more generalizable feature representations,
which in turn improves the generalizability of the global model.

Open Questions. Our early results illustrate the benefit of the
user-as-client federation architecture. However, there still remain a
number of open research challenges:
• We assumed that data from all devices of a user can be aggregated
before federated training for the purpose of showing the optimal
benefit of considering heterogeneous data of the same user in
training a model. However, this is a huge assumption that it
is possible to aggregate data from all devices for a single user.
This presents a clear practical drawback considering high data
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Figure 4: Model accuracy comparison across different device
selection strategies.

communication cost and privacy concern over sharing raw data
across different devices and vendors. This pragmatic constraint
suggests that as opposed to data sharing, we may need to apply
collaborative training approaches even among local devices to
learn useful features or a local model from their data. How do
we design FL systems wherein the training occurs both across
users and between the local devices of a user is an open research
problem.

• Selecting all 𝐾 available devices from all 𝑁 users for federated
training in each round will be expensive from a system resource
perspective, particularly in terms of overall energy consumption
of FL. It is imperative that we design effective device-selection
strategies that choose only a subset of devices from each user in a
given round of FL. Moreover, it will be important to explore how
such device-selection strategies can co-exist with other client
sampling strategies, which in the case of UAC, will be used to
sample a subset of users for training in each round.

• The proposed approach assumes that all devices of a user are
available for federated training. This could be impractical as
often devices are unavailable (e.g., out of battery) or have limited
resources (e.g., they are already running expensive computations
or they have low battery power). Such device-level factors need
to be taken into account while designing the FL algorithm.

3 CHALLENGE 2: DEVICE SELECTION
In this section, we dig deeper into the open question of device
selection, which is unique to the FL-MDLN problem setting. It is
worth clarifying that Device Selection has a subtle difference from
the problem of FL Client Selection studied in prior works [5, 15].
In Client Selection, the goal is to decide which of the 𝑐 out of 𝑁
clients (or users) will be selected for training in a given round of FL.
Instead, Device Selection kicks in after a client is selected, and the
goal here is to decide which of the 𝑘 out of 𝐾 devices at each client
will contribute to federated training in a round. As we discussed
earlier, the choice of devices used for training in each round of FL
can have direct implications for error convergence as well as the
system overhead of FL.

3.1 Strategies for Device Selection
We first explore three strategies for device selection that vary the
statistical homogeneity of the devices selected across clients. The
first strategy called Homogeneous Devices selects the same devices
(e.g., a smartphone) on each client in a given round. This ensures

that the device dataset(s) chosen on each client have a high sta-
tistical homogeneity across them. The second strategy called Ran-
dom Devices selects 𝑘 (1 ≤ 𝑘 ≤ 𝐾) random device(s) on each client
in each round and encourages the device datasets across clients
to have statistical heterogeneity among them. The third strategy
called Dominant-Random Devices also chooses 𝑘 random devices on
each client, however instead of uniform random sampling from all
available devices, it samples from the 𝑝-largest device datasets (i.e.,
dominant devices) with a higher probability and from the remaining
𝐾 − 𝑝 datasets with a smaller probability.

Results. We evaluate the three device selection strategies with
the UAC architecture using the RealWorldHAR dataset. ForDominant-
Random Devices, we set 𝑝 = 3 and selected thigh, forearm, and head
as the dominant devices, each representing a smartphone, smart-
watch, and head-mounted device, respectively, in practical scenar-
ios. For training, we use the same DeepConvLSTM and ResNetMLP
models with the same FL hyperparameters in §2.1. After we train a
global model using FL, it is evaluated on the held-out test set of all
devices.

Our results are presented in Figure 4 and show that heteroge-
neous device selection (Random Devices) makes the model more
generalizable and accurate across devices, as compared to the Ho-
mogeneous Devices and Dominant-Random Devices strategies. Com-
paring the heterogeneous and homogeneous selection strategies,
we observe an accuracy difference of 13.9% and 13.6% for DeepCon-
vLSTM and ResNetMLP models respectively. The key takeaway
from this result is that we need not choose the same type of device
(e.g., a smartphone) on each client. Instead, statistical heterogeneity
between devices selected on each client is beneficial for generaliz-
ability of the global model.

Open Questions. A number of open questions still remain: are
there better strategies than random sampling to achieve hetero-
geneous device selection? How do we account for the resource
availability on each device (e.g., available battery power) in the
device selection algorithm?

4 FEDMD: A DEVICE SELECTION STRATEGY
TO ACCOUNT FOR STATISTICAL AND
SYSTEMS HETEROGENEITY IN FL-MDLN

In this section, we present a new device selection strategy called
FedMD, which addresses some of the open questions identified in
the previous section. More specifically, FedMD is designed to be
resource-aware, i.e., it takes into account the heterogeneities in
system resources available on each device to make the device selec-
tion decision. At the same time, FedMD also considers the impact
of statistical heterogeneities across device datasets – as opposed
to randomly selecting devices on each client, FedMD samples the
devices based on their local loss on the current global model. A
resource-aware device selection approach should prioritize devices
which have higher system resources to perform on-device train-
ing. For our use-case, we consider the available battery level as the
metric on which devices are selected. In other words, we want to
prioritize the selection of those devices which have a battery level
higher than a certain threshold. On the other hand, we also want
the global model to perform accurately for all the devices. As such,
a data-aware selection approach should prioritize devices, such that
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Figure 5: Model accuracy comparison using FedMD with
UAC and DAC architectures

training on them will improve the global model’s accuracy on the
test set.

With the goal of fulfilling both the resource-aware and data-
aware device selection goals, we present a simple device selection
scheme called Federated-Multi Device (FedMD). FedMD first picks
a candidate set of devices for each user, by looking at their current
battery level and checking if their battery level is above a threshold 𝑡 .
This step filters out those devices which do not have enough system
resources to participate in FL. Next, the current global model is sent
to all the devices in the candidate set to compute their local losses.
Finally, for the user-as-client architecture, FedMD selects 𝑘 devices
with the highest local loss from the candidate set of each user. This
technique is partially motivated by the empirical finding in prior FL
works [5, 14] which show that sampling clients with higher local
losses results in faster convergence of the global model.

In effect, FedMD does a two-stage filtering for devices: first it
performs resource-aware selection of candidate devices (using their
current battery levels), and thereafter it leverages the statistical
characteristics of the candidate devices (using their local loss as
a proxy) to finalize the choice of devices in each round of FL. It
is worth noting that the use of battery levels and local loss in
FedMD as proxies for systems and statistical heterogeneity is just
one example. Future extension of FedMD can substitute them with
other metrics such as update latency and recency of selection.

Experiment Setup.We evaluate FedMD on the RealWorld HAR
dataset with the UAC architecture. For comparison, we also evaluate
how FedMD performs in a DAC architecture. For this architecture,
the scheme selects 𝑘 · 𝑁 devices with the highest loss out of the
entire device set with battery levels higher than the threshold 𝑡 .

To emulate battery drain during the federated training process,
we make some simplifying assumptions. After each round, devices
that participated in the training round are assumed to experience
2% battery drain, while non-participant devices are assumed to
have 0.5% battery drain (due to other processes running on the
device). These battery drain values were obtained after an offline
profiling of the training process on anNvidia JetsonNano embedded
device – in practice however, the battery drain numbers will be
dynamic and highly dependent on the processes running on the
device. All devices are initialized with random battery levels in
order to simulate varying resource availability on each device. In
the experiment, we use 𝑘 = 1, 2, 3 and 𝑡 = 60%.

Results.We analyze the impact of device selection on statistical
and system performance through accuracy and battery consump-
tion results. First, we note that FedMD shows higher accuracy in

(a) DeepConvLSTM model (b) ResNetMLP model

Figure 6: CDF of the percentage of battery drain in devices
that participated in the training process of (a) DeepConvL-
STM and (b) ResNetMLP

comparison to the random sampling strategy Random Devices (§3.1)
in all conditions. On average, FedMD improves the global model
accuracy by 3%.

Next, we observe from Figure 5 that the on average, FedMD in a
UAC architecture outperforms DAC by ∼2%. It is notable that the ac-
curacy gap between UAC and DAC here is smaller than in Figure 3.
This result can be explained by the difference in size and hetero-
geneity of the local datasets in the two settings. While Figure 3 uses
an aggregated dataset from all seven devices, here we use the data
only from the selected 𝑘 devices. This result also resonates with
our finding in §3.1 about the benefit of having greater statistical
heterogeneity between devices in local training. We believe one
potential way to address this low accuracy when using a subset
of devices is to use local collaborative training and model person-
alization during FL. We elaborate on these research directions in
§5.

Another important goal in FL-MDLN setting is minimizing the
battery drain due to local training on resource-constrained mobile
and wearable devices. We compare the battery drain using FedMD
in the UAC and DAC settings. We focus our analysis on a practical
setting where an end-user or mobile OS developers may impose a
target limit on the battery drain they can tolerate due to FL. Figure 6
shows a CDF plot for the amount of battery drain due to FL. The
x-axis is the target amount of battery drain, and the y-axis shows
the percentage of devices whose amount of battery drain (from
randomly initialized battery level) is below each 𝑥 .

We observe that applying FedMD in the UAC architecture re-
sults in more percentage of devices remaining above the battery
drain limit than DAC. For instance, after training FedMD in UAC,
5.9% more devices have below 20% battery drain than DAC (k=1,
model=DeepConvLSTM). This indicates that the UAC has a lower
system overhead than DAC, while still achieving higher accuracy.

Our findings are early-stage in nature. While we observe im-
provements in both accuracy and system overhead due to FedMD,
the performance gains could certainly be improved in this novel
problem setting of FL-MDLN. In the next section, we introduce
several research directions that we are currently investigating.

5 DISCUSSION
Our empirical results in Sections 2-4 hint at the potential benefits
of the UAC architecture and the FedMD device selection strategy
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in the FL-MDLN problem setting. In reflection of the early results,
we discuss several directions for future work.

Device Selection Meets Client Selection. We explored vari-
ous device selection strategies, however we did not perform any
client (i.e., user) selection in each round. Client selection algorithms
has been extensively explored in FL literature [5, 19], however the
design of algorithms that jointly do client and device selection re-
mains an unexplored problem. More specifically, client selection
algorithms will need to consider that each client no longer has
a single dataset, but a number of non-iid datasets collected from
different devices.

Personalization in FL. We focused on the performance of the
global model in the UAC architecture. However, prior works have
shown that a global model does not always generalize well to clients
with smaller datasets and whose data distribution varies from the
global distribution. To address this lack of generalizability, person-
alization and local optimization techniques have been studied in
FL [2, 16]. We hypothesize that the UAC architecture could benefit
from personalization and local optimization. As described in Sec-
tion 2, we can exploit the temporal alignment in the local datasets
of different devices to learn robust local models as shown in prior
work in self-supervised learning [22].

Local Collaborative Training. In §2.1, we showed that by ag-
gregating the raw data from all devices and treating them as one
common dataset yielded high performance in UAC. However, this
may not be practical for two reasons: a) communication cost of
sharing raw data between wireless devices is high, and b) device
vendors may not be willing to share raw data with other devices.
This pragmatic constraint suggests that as opposed to data shar-
ing, we may need to design collaborative training techniques even
among local devices to learn useful features or a local model from
their data. One possible design to support local collaborative train-
ing is to run a two-depth federated learning that consists of global
FL and local FL. The traditional way of collaborative learning in
global FL can be transferred to the local setting as well. One device
of a user, possibly one with the most computing resources, can act
as a dummy “FL server” within the local setting. It can coordinate
local FL among the devices to learn a local model. The weights of
this local model are then sent for aggregation to the global server
to train the global model.

6 RELATEDWORK
Federated training across multiple heterogeneous clients requires
handling statistical and system heterogeneities. One approach to
improve accuracy of heterogeneous client training is to adapt the
local models to client characteristics through personalization [6, 12,
16]. Another approach is to leverage this heterogeneity to build a
more fair and robust global model through federated clustering [7,
9, 10, 24]. Client selection strategies further optimize statistical and
system utilities based on clients’ data and resource information [5,
15, 19]. As we explained in §3, the goals of client selection differ
from the Device Selection problem in FL-MDLN, which necessitates
further research.

Similar to UAC, new federation architectures have been proposed
for various federation goals. Hierarchical FL places intermediate

edge servers [1, 17] between clients and the central server to of-
fload partial model aggregation and communication with the goal
of reducing communication latency and accelerating the training
process. Vertical FL jointly trains a model when data features of
the same dataset are split into multiple parties, e.g., a patient’s data
in different hospitals [20, 27]. UAC differs from these approaches
because it is intended to address both statistical and systems het-
erogeneity in a multi-device setup.

7 CONCLUSIONS
We presented technical challenges for FL in an emerging problem
setting called FL-MDLN. In particular, we proposed solutions that
included a new federation architecture and various device selection
strategies. Our investigation, although in early stages, has thrown
light on the numerous challenges and open questions related to
statistical and systems heterogeneity in FL-MDLN. We hope to
discuss them with the other attendees and experts of AIML in IoT
systems at the workshop.
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