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Abstract—WiFi channel state information (CSI) has emerged as a plausible modality for sensing different human vital signs, i.e.
respiration and body motion, as a function of modulated wireless signals that travel between WiFi devices. Although a remarkable
proposition, most of the existing research in this space struggles to withstand robust performance beyond experimental conditions. To
this end, we take a careful look at the dynamics of WiFi signals under human respiration and body motions in the wild. We first
characterize the WiFi signal components—multipath and signal subspace—that are modulated by human respiration and body
motions. We extrapolate on a set of transformations, including first-order differentiation, max-min normalization and component
projections, that faithfully explains and quantifies the dynamics of respiration and body motions on WiFi signals. Grounded in this
characterization, we propose two methods: 1) a respiration tracking technique that models the peak dynamics observed in the
time-varying signal subspace and 2) a body-motion tracking technique built with a multi-dimensional clustering of evolving signal
subspace. Finally, we reflect on the manifestation of these techniques in a practical sleep monitoring application. Our systematic
evaluation with over 550 hours of data from 5 users covering both line-of-sight (LOS) and non-line-of-sight (NLOS) settings shows that
the proposed techniques can achieve comparable performance to purpose-built pulse-Doppler radar.

Index Terms—WiFi Sensing, Channel State Information, Sleep Monitoring, Real-World Evaluation
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1 INTRODUCTION

Respiration rate and body motions are critical indicators of
an individual’s general state of health. They carry meaning-
ful insights to assess different cardiovascular, neurological,
and psychiatric functions of the human body and play an es-
sential role in early diagnosis of various medical conditions,
including sleep apnea, asthma, nausea, and several others.
Most of the technologies that can monitor respiration and
body motions simultaneously are invasive and require the
subject to be connected to the measuring equipment, e.g.,
a respiratory inductance plethysmography belt or multiple
wearable sensors. While these instruments certainly offer
medical-grade insights, they are not suitable for long-term
usage due to their poor ergonomics that hinder long-term
assessment. Several other less obtrusive methods have been
proposed for tracking vital signs, for instance, Actigraphy
[1], [2], [3], [4], [5], [6], [7] and EEG [8] based techniques.
However, these methods still require body contact, which is
something people are often not comfortable with [9].

Naturally, contact-less vital signs monitoring technolo-
gies have attracted significant interest, which mainly in-
clude Audio [10], [11], [12], Video [13], [14], Bed sensors
(e.g. Ballistocardiography (BCG), pressure and/or motion
sensors based techniques) [15], [16], [17], [18], [19], [20] and
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RF sensing based techniques - e.g., mmWave, Frequency
Modulated Continuous Wave (FMCW) radar, Pulse-Doppler
radar, RFIDs and WiFi based techniques [21], [22], [23],
[24], [25], [26], [27], [28]. RF-based techniques are by far
some of the least intrusive methods, both in terms of pri-
vacy and convenience of use. Radar-based techniques can
monitor breathing and other movements reasonably well,
however, their operation often requires line-of-sight (LOS)
which leads to deployment complexity and significant di-
rectivity issues. In contrast, WiFi, and in particular channel
state information (CSI) signals of WiFi have emerged as an
attractive modality to track respiration and body motions
[29], [23], [22], [30], [31]. The fundamental principle of
these works is to model the variation of wireless signals
modulated by the respiration and motion of a human body.
These works have shown the remarkable ability to re-
purpose WiFi signals to track vital signs; however, unfortu-
nately, often under constrained and controlled settings with
strict assumptions. For example, the techniques proposed
in existing works have been designed based on controlled
experiments often performed on the same subject, where
they require the subject to lie down in between or very
close to both transmitter (Tx) and the receiver (Rx) to ensure
line-of-sight (LOS) scenarios. Their techniques rely on trial-
and-error based positioning of WiFi transceivers and signal
processing methods to track vital signs, which often leads
to high dependency on multiple, environment-dependent
parameters that are difficult to tune in real life. Such tech-
niques may be suitable for controlled short-duration lab ex-
periments. However, their suitability cannot be generalized
to different individuals, environments, positioning of WiFi
transceivers, LOS/NLOS situations, and to natural in-home
monitoring scenarios.

Building on the existing WiFi based vital signs monitor-
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(b) Body movement tracking (full night’s sleep)

Fig. 1: Example showing our system tracking breathing and body movements throughout full night’s sleep of subject.

ing works and recognizing their aforementioned limitations,
in this work, we take a close look at the dynamics of
WiFi, human respiration, and body motions in the wild.
Extrapolating on a set of transformations including first-
order differentiation, min-max normalization and compo-
nent projections, first, we analyze the impact of respiration
on the multipath components of WiFi signal to quantify the
effect of small breathing movements on the CSI signals.
Second, we analyze the impact of respiration on WiFi sig-
nals subspace to quantify how breathing affects the spatio-
frequency subspace—formed by multiple Tx-Rx antennas
(MIMO) and Orthogonal Frequency Division Multiplexing
(OFDM) subcarriers—very differently compared to other
bodily motions (such as slight head or limb movements).
Collectively, these characterizations enable us to develop
two robust methods for tracking respiration and body mo-
tions without any constrains. Moreover, these techniques
eliminate user- and environment-specific calibration efforts
and as such, allow us to build a system that can track vital
signs using design-time training data obtained from only a
few configurations and users.

We systematically evaluate our methods by first taking
sleep monitoring as a case study, where we collected more
than 550 hours (80 nights) of data from 5 users at their
respective apartments in real-world full-night sleep moni-
toring settings. Our experiments covered both line-of-sight
(LOS) and non-line-of-sight (NLOS) scenarios such that 55%
of our dataset corresponds to NLOS deployment scenarios,
and 45% to LOS. Second, we develop a system named Serene
that implements our proposed methods to track vital signs
during sleep. We evaluate Serene’s performance in terms of
breath rate error, number of motion false positives that occur in
a user’s environment (e.g. due to activities of other house
residents while the user is sleeping), and breath signal outage
during which Serene cannot track a subject’s vital signs but
the ground truth device can. Our results demonstrate that
the proposed techniques were able to track respiration rate
with an average error of <1.19 breaths per minute (BPM).
The breath rate error varied between 0.34 BPM to more than
5 BPM depending upon the time of night as a user’s sleep
posture and distance from the sleep monitor can change
during sleep. Figures 1(a) and 1(b) show how Serene tracks
breathing and body movement during a full night’s sleep
of a subject, when the WiFi sleep monitor was placed on a
table close to the subject’s bed and the router was placed in
their TV lounge.

2 UNDERSTANDING THE RELATIONSHIP BETWEEN
VITAL SIGNS AND WIFI CSI
2.1 Overview of WiFi CSI
WiFi devices measure the Channel State Information (CSI),
which characterises the surrounding wireless channel across
bandwidth and multiple antennae. The Orthogonal Fre-
quency Division Multiplexing (OFDM) communication
scheme used in IEEE 802.11a/n/ac divides the wireless
channel bandwidth into multiple modulated subcarriers.
To correct for channel frequency-selectivity (or equivalently
the delayspread in time-domain) and maximise the link’s
capacity, WiFi devices continuously track changes over these
subcarriers in terms of CSI values, which are then used
to adapt transmission power and rates in real-time. CSI
values are the Channel Frequency Response (CFR) at per
subcarrier granularity between each transmit-receive (Tx-
Rx) antenna pair. When a user is breathing, the chest and
body movements change the constructive and destructive
interference patterns of the WiFi signals. The CSI values are
sensitive enough to measure these breathing movements,
as CSI measurements can be obtained at high sampling
rates and from multiple different OFDM subcarriers of each
Tx-Rx stream. For example, the driver of the Intel 5300
WiFi NIC, which we use to implement our scheme, reports
CSI values on 30 OFDM subcarriers [32] for each Tx-Rx
antenna pair for every CSI measurement. This leads to 30
matrices with dimensions Mt ×Mr per CSI sample, where
Mt and Mr denote the number of transmit and receive
antennas respectively. Such high dimensional data allows us
to recover detailed information about the vital signs even if
the breathing and body/limb related movements only incur
small changes in the CSI.

2.2 Impact of Breathing on WiFi Multipath
Next, we present our first analysis that is aimed at under-
standing the effect of small breathing movements on the
WiFi multipath and CSI signals. Based on this analysis,
we design Serene’s signal processing pipeline to robustly
extract breathing waveforms in an individual and envi-
ronment independent manner. Our analysis shows that if
we differentiate (i.e. by taking first order difference) the CSI
signals from each WiFi subcarrier, and then max-min nor-
malize the CSI signal projection corresponding to variations
due to breathing, we can robustly extract the waveform
corresponding to a user’s breathing motion in an envi-
ronment and individual independent manner, as long as
the user sleeps close to the WiFi receiver. Such proximity
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Fig. 2: (a) Variation of Ai with di(t) for different D0,i; (b) Single breath samples for different configurations in (c)

requirement is easy to satisfy during real-life in-home sleep
scenarios by either mounting the receiver on the headboard
of a bed frame or placing it on a table nearby. Note that
differentiation generally degrades signal-to-noise ratio, unless the
differentiation algorithm includes smoothing that is carefully
optimized for the application at hand. Therefore, we introduce
a combination of low-pass filters (i.e. median, exponential mov-
ing average, and Butterworth filters (§3.1)) in Serene’s signal
processing pipeline. We experimentally design these filters such
that signal-to-noise ratio is sufficiently good for a reasonable
quantitative measurement of the sleep related vital signs. The
max-min normalization is performed after the filtering process to
estimate the breath rate (§3.3.2). At the basis of our analysis is a
closed form expression, which we derive using time-varying
Channel Frequency Response (CFR) of WiFi channel. The
time-varying CFR corresponding to a Tx-Rx antenna pair
for a subcarrier with wavelength λ can be quantified as:

H(f, t) = Hs(f) +
N∑
i=1

K

Di(t)2
e
j2πDi(t)

λ

︸ ︷︷ ︸
Hd(f,t)

(1)

In the equation above, N is the number of multipath
reflections of the transmitted signal at the Rx end, Di repre-
sents the distance traveled by ith multipath reflection, and
K is an environment dependent proportionality constant.
Hs(f) is the static component of CFR corresponding to all
non-user multipath reflections (i.e. the CFR when there is
no interference due to other networks or movement in the
environment), while the second term on the right hand side
corresponds to the dynamic component of CFR, represented
as Hd(f, t), while the user is breathing and/or moving dur-
ing sleeping. Moreover, in the context of sleep monitoring,
when we say Hs(f) is “static”, we mean that it is static in
the short-term. The changes and/or interferences that are
dynamic in the short-term (such as the ones caused by fans,
interfering wireless networks, movement of other persons
in the room, etc.) are captured by the dynamic component
of CFR Hd(f, t). However, Hs(f) can change in the long-
term, for example, due to environmental changes such as
addition of a new piece of furniture in a room or addition
of new person in the room or even when the sleeping per-
son changes their posture (because after a change in sleep
posture, the positions of different body parts that reflect
WiFi signals also change). That is why, we continuously

perform differential sensing, which reduces the impact of
such longer-term changes in Hs(f). Now, let us assume
that user is sleeping at a distance D0,i from the router, and
di(t) is the change in distance traveled by ith reflected path
due to breathing. To make our scheme resistant to static
changes in the environment, we first eliminate Hs(f) by
differentiating the above equation with respect to t, and
substitute Di(t) = D0,i + di(t) to get:

H ′(f, t) =
d

dt

[
N∑
i=1

k

D2
0,i

(
1 +

di(t)

D0,i

)−2
e
j2π(D0,i+di(t))

λ

]
(2)

As di(t) caused by motion due to breathing is in the
order of a few centimeters, whereas D0,i is usually in the
order of meters (i.e. di(t) � D0,i), we can expand the
negative polynomial (1 + di(t)

D0,i
)−2 via binomial series ex-

pansion. After performing binomial expansion, discarding
the di(t)

m

(D0,i)n
terms with n = 4 or higher, and doing some

algebraic manipulations, we get the following expression
for H ′(f, t):

H ′ ≈ ke
j2πD0,i

λ ×
[
N∑
i=1

d′i(t)

(
− 2

D3
0,i

+

j

(
2π

λD2
0,i

− 4πdi(t)

λD3
0,i

))
e
j2πdi(t)

λ

]
After converting the term inside summation into polar

coordinates, and discarding the di(t)
m

(D0,i)n
terms with n = 4

or higher, we get the following simplified expression for
H ′(f, t):

H ′ ≈
[

2πk

λD2
0,i

√√√√1 +

(
λ

πD0,i

)2

×

e
j2πD0,i

λ

]
·
[
N∑
i=1

d′i(t)e
j2πdi(t)

λ +jAi

]

Here, Ai = tan−1
[
πD0,i

λ

(
1− 2·di(t)

D0,i

)]
. Figure 2(a) shows

variation of Ai with di(t), as di(t) varies from 1cm to 20cm
(typical range for motion due to human breathing is 1-5cm
[33]), for different router-receiver distances D0,i ranging
from 3m - 10m (i.e. which is typical for in-home use cases).

We observe that changes in di(t) do not significantly
affect the value of Ai. Moreover, the impact of di(t) on Ai
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Fig. 3: Impact of bodily activity during sleep on WiFi subspace

decreases even further as the distance between receiver and
the router it is connected to increases. Therefore, we can
safely approximate Ai ≈ tan−1

[
πD0,i

λ

]
= A0,i and write

H ′(f, t) as:

H ′ ≈
[(

2πk

λD2
0,i

√√√√1 +

(
λ

πD0,i

)2)
×

e
j

(
2πD0,i
λ +A0,i

)]
×

N∑
i=1

d′i(t)e
j2πdi(t)

λ

The first term on right hand side of the equation above
stays constant when receiver is placed on some surface, e.g.
a desk/table, and is not moving. We write amplitude of CFR
i.e. |H ′(f, t)| as:

|H ′(f, t)| ≈ C0,i ·
∣∣∣ N∑
i=1

d′i(t)e
j2πdi(t)

λ

∣∣∣ (3)

The waveform
∣∣∣∑N

i=1 d
′
i(t)e

j2πdi(t)

λ

∣∣∣ corresponds to the
variations due to breathing. The proportionality term C0,i in
breathing samples extracted from |H ′(f, t)| corresponding
to different placement of receiver can be easily eliminated
via max-min normalization. Figure 2(b) shows extracted and
processed single breath samples from a user for seven
slightly different receiver placement configurations close
to the user, while the router was in a subject’s TV-lounge
(router-receiver distance >10 meters).

2.3 Impact of Breathing and Body/Limb Movements on
WiFi Signal Subspace
Next, we present our second analysis that is aimed to un-
derstand how breathing affects the signal subspace formed
by WiFi subcarriers compared to other bodily movements.
Today’s MIMO and OFDM based WiFi devices use many
frequency subcarriers and multiple transmit-receive (Tx-
Rx) antennas for data communication. The MIMO system
between the OFDM subcarriers and the Tx-Rx antennas,
forms a multidimensional array which effectively represents
a high-dimensional mathematical space. Contained in this
space is the signal subspace along frequency and spatial
dimensions [34]. The key intuition behind our model is that
while a user is sleeping, the signal subspace along these
dimensions is affected by both breathing and body/limb
motion. When there is no body/limb motion, there is only

one dominant time-varying component in the subspace,
which corresponds to breathing. However, more compo-
nents along these dimensions evolve (i.e. show considerable
variations) during other body/limb activity e.g. during roll
overs or arm/leg movement. Based on this principle, Serene
isolates breathing from limb motion without requiring any
environment-dependent calibrations.

To model this in Serene, we track the top dominant
components in the CSI signal subspace using Principal Com-
ponent Analysis (PCA). Figure 3(a) shows power values
in top 5 PCA projections of the CSI signals corresponding
to multiple sleep epochs during a sleep experiment, where
the dotted lines correspond to epochs with motion events—
highlighted in Figure 3(b). We observe that in the absence
of any body/limb activity, the top-most PCA projection is
enough to track breathing as it is the only major motion
occurring in the environment. However, during body/limb
movements, multiple lower PCA projections also show sig-
nificant variations. Based on this phenomenon, we accu-
rately detect and then discard the CSI values corresponding
to any body/limb activity by tracking variations in the
lower PCA components (e.g. 3, 4 and 5) using a multi-
dimensional clustering technique, which we discuss in §3.2.
Note that although PCA based approaches have been used in the
previous CSI-based sensing works, yet ours is the first work to
study, characterize, and build on the “intra-subspace” dynamics
of WiFi signals [34] for respiration and body motions.

3 CSI SIGNAL PROCESSING ARCHITECTURE
To obtain CSI data in real-time during sleep, we develop
a client-server based mechanism to communicate the CSI
values extracted from WiFi NIC to a Python based CSI
processing server. Based on our discussion in §2, we take
first order difference of the incoming CSI data and then
take its amplitude i.e. |H ′(f, t)| for further processing. From
now onward, we use the term “CSI” to denote |H ′(f, t)|.
CSI data is collected in 30 second epochs, which is typ-
ically the partitioning convention followed by most sleep
monitoring systems. Next, we first perform basic low-pass
filtering for removing bursty noise due to hardware noise
and isolate the signal of interest i.e. to extract human
motion related frequencies only. Second, we perform PCA
on the low-pass filtered CSI streams for dimensionality
reduction and automatic distinguishing of CSI variations
due to body movements from those of breathing in different
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Fig. 4: Our WiFi CSI signal processing architecture for extracting vital signs

subcarriers based on our discussion in §2.3. This avoids the
need for complex trial-and-error based subcarrier selection
procedures used in previous works [23], [22]. Third, we
harmonise the filtered CSI data corresponding to each 30s
sleep epoch into uniformly sampled and consistent mea-
surements via down-sampling. Fourth, we robustly detect
body movements by tracking lower PCA projections of CSI
signals using a clustering-based event detection technique.
Finally, we first detect the presence of breathing using a
power threshold, and then perform further band-pass filter-
ing to extract the signal corresponding to breathing. Figure
4 shows our system architecture. Next, we briefly discuss
Serene’s noise removal process.

3.1 Noise Removal
Commodity Wi-Fi NICs report noisy CSI values, both due
to hardware limitations (such as low resolution Analog to
Digital Converters (ADCs)) and due to changing transmis-
sion power and rates. We use a combination of median
filter and an exponential moving average filter to get rid
of such bursty noise and spikes in CSI time series. After
this basic filtering step, we further remove any high fre-
quency variations in CSI signals using Butterworth low-pass
filter. Variations due to movement during sleep cause low
frequency variations, typically under 5 Hz [33]. We use But-
terworth low-pass filter for separating these variations from
higher frequency noise in CSI values. Due to maximally flat
amplitude response of Butterworth filter, its application on
CSI time series does not distort the shape of CSI variations
due to body motion. Our scheme samples CSI values at a
nominal frequency Fs = 800. With this in mind, we use cut-
off frequency ωc = 2π∗f

Fs
= 0.0125π rad/s for Butterworth

filtering. We apply the same filter on CSI timeseries of all the
subcarriers, making sure that every CSI stream experiences
the same phase distortion and group delay introduced by
the filter.

Based on our experimental results, we observed that
filtered CSI waveforms still retain some noisy variations
which are not related to activity/breathing. We avoid any
further low pass filtering on CSI streams as it can lead
to loss in details of variations due to activity/breathing
behavior. To remove such noise, we utilize the fact that
the CSI variations in CSI streams of multiple subcarriers
in each Tx-Rx antenna pair are correlated. We apply PCA
on CSI obtained from all subcarriers and all Tx-Rx pairs,
and retain only the waveforms that represent the most
common variations in all the subcarriers, i.e., the variations
due to breathing and/or body movements during sleep.

That is, signal subspace-based filtering enables our scheme
to automatically obtain the signals that are representative
of the monitored vital signs only. Finally, we rearrange the
multi-dimensional filtered CSI data corresponding to each
30s sleep epoch into consistent length samples (600 in our
current implementation) via down-sampling, performing
zero-padding where necessary. We concatenate data from
consecutive epochs for real-time tracking of vital signs (e.g.
breathing) which we discuss later in this section.

3.2 Tracking Body Movements

We observed that when there is no body/limb motion,
there is only one dominant, time-varying component in
the signal subspace, which corresponds to breathing. PCA
sorts different principal components in descending order of
their variation. During sleep, the signal subspace is rather
quiet and breath is captured in the top PCA projection
of the CSI time series. However, we observed that during
episodes of other body movements—e.g. during roll overs
or arm/leg movement—more signal subspace components
evolve, since body movements cause more pronounced vari-
ations in the spatial-frequency subspace compared to faint
breathing movements.

3.2.1 Body Movements Detection Approach

To robustly distinguish body activity/limb motion from
breathing, we propose to use a multi-dimensional hyper-
ellipsoidal clustering on the lower PCA projections of CSI
data. At a high-level, we can think of this clustering method
as a high-dimensional generalization to a Gaussian out-
lier rejection technique whereby measurements few sigma’s
away from the mean are deemed erroneous. Specifically, let
Rk = {r1, r2, · · · rk} be the first k samples of CSI vectors
containing values from the selected signal subspace—we use
PCA projections 3, 4 and 5 in our current implementation. Each
sample ri is a d × 1 vector in Rd, where d is the number
of signal subspace components. This hyper-ellipsoidal tech-
nique clusters the normal data points (i.e. when there is no
body movement in the environment), and any points lying
outside the cluster are declared as outliers. The boundary
of the cluster (a “hyper-ellipsoid” in this case) is related to
a distance metric which is a function of mean mR,k and
covariance Sk of the incoming signal subspace components
Rk. We use the Mahalanobis distance metric, Di, for which
the cluster is arrived at according to the following [35]:
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ek(mR, S
−1
k , t) = {riεRd|

√
(ri −mR,k)TSk

−1(ri −mR,k)︸ ︷︷ ︸
Di=Mahalanobis distance of ri

≤ t}

(4)
where ek is the set of normal data points whose Maha-
lanobis distance, Di < t and t is the effective radius of the
hyper-ellipsoid. The choice of t depends on the distribution
of the normal data points. If the normal data follows a chi-
squared distribution, it has been shown that up to 98% of
the incoming normal data can be enclosed by the boundary
of an hyper-ellipsoid, if the effective radius t is chosen
such that t2 = (χd

2)−10.98 [35]. Data samples ri for which
Di > t, are therefore, identified as outliers. As it is often
not practical to store all the samples of a streaming data, a
recursive algorithm is required to update ek. Let rk+1 be
the most recent CSI sample. mR,k+1 =

kmR,k+rk+1

k+1 and

mR2,k+1 =
kmR2,k+rk+1r

T
k+1

k+1 can be updated recursively
from the previous means. By substituting covariance matrix
Sk = mR2,k − (mR,k m

T
R,k) into Eq. (4) we can represent ek

entirely in terms of means. The resulting equation updates
the cluster boundary and classifies the incoming data sam-
ples as normal readings or outliers. Our scheme uses above
equations for initial estimation of mean and covariance.
Afterwards, the mean mR,k is recursively calculated using
an exponential moving average technique, where mean
mR,k+1 is updated as mR,k+1 = α mR,k + (1 − α)rk+1,
where α = 0.9995 in our implementation. Moreover, af-
ter initial estimation of covariance, our scheme recursively
updates the covariance inverse S−1k by using the following
equation [35], which avoids extra computations required for
calculating the inverse of matrix S:

S−1k+1 =
kS−1k

α(k − 1)
×[

I − (rk+1 −mR,k)(rk+1 −mR,k)
TS−1k

(k−1)
α + (rk+1 −mR,k)TS

−1
k (rk+1 −mR,k)

] (5)

To determine the start and end of activity waveforms, we
use both cardinality and temporal proximity of the detected
outliers. If the number of consecutive outliers increases a
threshold E1, we declare a micro-event. Multiple micro-
events constitute a activity event. All the data points in-
cluding the points constituting the micro-events as well
as the points in between the consecutive micro-events are
recorded as part of activity waveform (merging). We only
merge the micro-events which are within E2 data points of
each other. Both E1 and E2 are design-time, easy to tune
thresholds. Figure 5 shows some body movements detected

by our algorithm in a portion of processed CSI timeseries
corresponding to an in-home full-night sleep monitoring
experiment.

3.3 Tracking Breath
Human breath involves motion of chest and lungs during
inspiration (when air enters the lungs) and expiration (when
air is blown out from the lungs) [33]. These motions are
often periodic (e.g. in case of healthy subjects [33]), and
therefore, cause periodic variations in WiFi channel which
we can extract using CSI data. In the absence other body
movements, the first PCA projection of CSI data would be
able to capture these variations due to breathing. However,
as these minute variations are often embedded in noise, and
because human subject might not be in proximity of the
Rx device, we can not always assume that breathing signal
exists in a particular sleep epoch. Therefore, to robustly
track breathing, we propose the following signal processing
pipeline.

3.3.1 Bandpass Filtering
To extract the periodic variations in CSI due to breathing,
we apply a Butterworth bandpass filter on the first PCA
projection. We choose the filtering parameters of this filter
according to the fact that breathing rate of humans (includ-
ing adults as well as newly born babies) ranges between 10
- 40 breaths per minute (BPM) [33]. This step removes any
non-breathing related noise present in the signal.

3.3.2 Measuring Breathing Rate
We design our system to measure breathing rate in terms
of breaths per minute (BPM). We measure the rate over a
window of two sleep epochs in length, which moves over
concatenated data from multiple consecutive sleep epochs.
To report BPM every second, we move this window over
the concatenated data every second (i.e. 20 samples a time).

To measure breathing rate, we employ a peak detection
based approach. First, we max-min normalize the signal
so that parametrization of our peak detection algorithm
can be easily generalized to different users. Second, to ro-
bustly detect the number of peaks, we use three parameters,
namely minimum peak prominence (MINPRO), minimum peak
distance (MINDIST), and minimum peak strength (MINSTR).
The prominence of a peak measures how much the peak
stands out, due to its height and location, relative to other
peaks around it. We tune MINPRO such that we only
detect those peaks which have a relative importance of at
least MINPRO. We tune MINDIST according to the fact
that human breathing rate ranges between 10-40 BPM [33],
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Fig. 6: Full-night breath tracking examples.

so that redundant peaks are discarded. To further sift out
redundant peaks, we only choose peaks of value greater
than MINSTR times the median peak value. In our current
implementation, we chose MINPRO = 0.025, MINDIST = 1.5
seconds and MINSTR = 0.6 which generalize well for differ-
ent sleeping scenarios. To achieve accurate tracking of breathing
rate, we perform parameterization of Serene’s breath estimation
algorithm using ground truths obtained from a contact-less COTS
Xethru X4M200 Breath/Motion sensor [36]. We perform this
parametrization only during the design of our system and do not
require any end-user calibration effort in real-world deployments.

4 IMPLEMENTATION AND EVALUATION

Fig. 7: The real-world deployment scenarios used for
evaluation of Serene.

4.1 Hardware Implementation
We developed compact HummingBoard (HMB)-based
small-sized nodes as sleep monitoring devices [37] which
makes Serene easy to deploy. HMB nodes were equipped
with the Intel 5300 NICs with modified drivers for ex-
tracting CSI information [32]. We used Linksys AC1200+
routers as transmitters in our deployments. Moreover, we
developed a client-server software architecture—in C and
Python respectively—capable of the real-time extraction and
processing of CSI data throughout the night. For body
movement and breathing rate ground truths, we deployed
state-of-the-art pulse-doppler radar-based Xethru X4M200

Breath/Motion sensors [36]. In terms of breathing rate ac-
curacy, the X4M200 devices have been shown to perform
very closely to a medical-grade, gold standard equipment
(X4M200 has been shown to track breathing with up to 96%
accuracy when compared to PSG) [38]. We chose a contact-
less sensor to record ground truths because the participants
of our study were not comfortable wearing devices such as
breath monitoring belts during their regular sleep. More-
over, the devices that require body contact generally tend to
interfere with natural sleep of the users [9].

4.2 Experimental Settings
We deployed our system in 5 apartments, where we collec-
tively recorded more than 80 nights (>550 hours) of data
from 5 different participants. Each of the 5 participants of
our study lived in different apartments and every apartment
was tested with the occupant of that apartment only. The
participants were graduate students aged between 23 to 32
years. The duration of data collection for each participant
varied from 5 to 31 days. Figure 7 shows the real-world
deployment scenarios for our sleep experiments. The num-
bers in circles specify user/environment IDs. Data collected
from environments 2 and 3 corresponds to NLOS deploy-
ment scenario, and constitutes 55% of our dataset. Data
collected from environments 1, 4, and 5 corresponds to LOS
deployment scenario, and constitutes 45% of our dataset.
To evaluate Serene’s vital signs tracking performance, we
collected Xethru ground truth alongside CSI data for the en-
vironments 1, 2, 3 and 5. We evaluate Serene’s performance
in terms of three key metrics: (1) breath tracking accuracy,
(2) breathing signal outage (during which Serene cannot
track breathing), and (3) naturally occurring motion false
positives due to activities of other house occupants. Overall,
we were able to collect 15, 31, 14, 16, and 5 nights of data
from users 1, 2, 3, 4, and 5, respectively.

4.3 Breath Tracking Accuracy
We evaluate the accuracy of Serene’s breathing rate estima-
tion in terms of BPM error. We define BPM error as the av-
erage mean squared error (MSE) between per second BPM
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(c) User 3, 6 nights.

Fig. 8: CDFs of BPM errors calculated over 15 minute windows for 6 different nights (Users 1, 2 and 3).

values reported by Serene and the corresponding ground
truth BPM values reported by X4M200 over a specific
time window. We perform this evaluation on data collected
from environments 1,2,3 and 5. Due to deployment issues,
we could not collect ground-truth data from environment
4 for a meaningful analysis required for this subsection.
Therefore, we exclude that user’s data from the following
discussion. We evaluate both long-term (i.e. whole night)
and short-term (i.e. specific short duration sleep windows
during the night).

4.3.1 Long-term Accuracy
Serene achieves a median error of less than 1.19 BPM for real-
world in-home full night sleep experiments. To evaluate Serene’s
long-term breath tracking accuracy, we compute the mean
squared error (MSE) of instantaneous (per second) breathing
rate estimate across an entire night of sleep. The overall
cumulative distribution function (CDF) of the MSE error
in breath per minute (BPM) is depicted in figure 9(a). In-
specting the blue curve, we see that the median accuracy of
Serene’s breathing rate estimate is 1.19 BPM, while its 95th
percentile confidence is under 1.9 BPM. We skip User 5 CDF
from the graph as we were only able to collect 5 nights of
data from that user. The average, minimum and maximum
BPM errors observed for User 5 were 1.1, 0.811, and 1.14,
respectively. Figure 6 shows how Serene tracks breathing
rate throughout a night for 4 different users, where we
have plotted X4M200 ground truth side by side. We can
observe that BPM accuracies vary during the night as a
user’s sleep posture and distance from the sleep monitor
can change during sleep. The sleep posture and distance of
a user from the sleep monitoring devices determine how
well both X4M200 and WiFi devices can track breathing.
Overall, X4M200 experiences negligible outage compared to
WiFi, because X4M200 uses a radar signal that uses orders of
magnitude more bandwidth and is specifically designed to
track respiration and other body movements during sleep
(shown to be up to 96% accurate compared to PSG - the
gold standard of sleep monitoring). As WiFi can experience
significant outage depending upon subjects position from
the WiFi receiver or their sleep postures (as discussed later
in §4.5), its breath graph can diverge from X4M200’s ground
truth at different times during a nights sleep. That said,
under the right circumstances occurring for some sleep
intervals, they can match up very closely. Moreover, we also
observe that during some parts of a full-nights sleep, Serene
is able to track the overall increasing and decreasing trend

in a subject’s breath during sleep fairly well when compared
to Xethru’s ground truth. We discuss some results related to
such dynamics later in §4.3.2.
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Fig. 9: CDF of overall and per-user breathing rate MSE
compared to a Xethru ground truth; average BPM errors

for short duration sleep posture experiments

Figure 9(a) also shows how BPM accuracy varies across
subjects. For instance, the median accuracy was better than
1.12 BPM and 1.2 BPM for users 1 and 2, respectively.
However, user 3’s median accuracy was a bit higher (i.e.
1.488), while the 95th percentile confidence was as large as
1.95 BPM. These slight variations across different users and
environments occur due to differences in physiques, res-
piratory system morphologies and environmental deploy-
ment conditions. For example, environments 2 and 3 both
correspond to NLOS scenarios, which leads to relatively
lower BPM accuracies. Although the level of robustness and
accuracy Serene achieves may not be comparable to contact-
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Fig. 10: Second-order statistics of breath estimation outage events. Outage rate and average outage duration mirror,
respectively, their counterparts level crossing rate and average fade duration from wireless propagation literature.

based high accuracy breath monitors, yet it is comparable
to other commercial contact-less sleep monitoring products.
Therefore, based on our results, we conclude that WiFi based
sleep monitors can be robust and accurate enough for daily
in-home use to gain insights into overall breathing trends
during sleep. However, the accuracy may not be enough for
medical grade sleep assessments.

4.3.2 Short-term Accuracy
Serene can achieve an error of as low as 0.34 BPM during certain
parts of a full-night sleep. However, the errors can be more than 5
BPM depending upon the time of night as a user’s sleep posture
and distance from the sleep monitor changes during sleep. In Fig.
6, we notice that there are certain time windows during the night
where Serene matches Xethru’s performance very closely. To know
how many times such time windows occur during different nights
in our dataset, we divide each night into small 15 minute time
windows and compute the MSE of per second BPM estimate in
those windows. Figure 8 show the CDF plots for 6 different
full-night sleep experiments corresponding to users 1, 2
and 3. From Fig. 8(a), we observe that in the case of User
1, Serene experienced a breathing rate error of only 0.34
BPM in one 15 minute window during Night 6. Moreover,
error in more than 50% of the time windows remained
below 0.84 BPM during Night 6. Similarly, for other users,
we observe that in multiple time windows during a full-
night sleep, BPM error stays under 1 BPM. This shows that
Serene does fairly well when compared to controlled short-
duration sleep experiments performed in recent CSI based
sleep monitoring studies. Also, figure 9(b) shows average
BPM errors for controlled 10 minute sleep experiments in
different sleep postures. We observe that Serene achieve an
error of less than 1 BPM for most sleep postures even in
NLOS scenarios. The errors were as low 0.55 BPM in LOS
scenarios. However, we also observed errors approaching 5
BPM during certain time windows that can be attributed to
changes in the user’s sleep posture and distance from the
sleep monitor during sleep.

4.4 Naturally Occurring Motion False Positives
Serene experienced a median of 20 false positive limb/body motion
events, which can be attributed to activities of other house resi-
dents while the user is sleeping. The total duration of such events
stayed below 37 minutes more than 95% of the time. Radar and
WiFi are both very sensitive to body motion. We observed
from our experiments that whenever a user moves in their

bed, both Serene and X4M200 successfully detect the motion
event. However, we also observed scenarios where Serene
detected body movements but the ground truth remained
undisturbed (i.e. contained breathing signal only). We call
such spurious movements detected by Serene as motion false
positives (MFPs), which we attribute to other movements
present in the environment (e.g. when one of the occupants
wakes up to get water, etc.). To understand how significant
such MFPs can be in real-world deployments of a WiFi
based sleep monitor, we evaluate the following two key
metrics on the real-life dataset we collected using Serene:
(1) the number and (2) duration of MFPs per night’s sleep.
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Fig. 11: CDF’s of numbers and total duration of motion
false positives during a night when compared with

X4M200 ground truths. Motion false positives naturally
occur due to activities of other housemates.

Figure 11 illustrates the CDFs of these two metrics eval-
uated over more than 65 nights in our database. We observe
that our system detected less than 56 MFPs occurrences
for 95% of tested nights 11(a). Moreover, when we observe
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that when MFPs occur, their collective duration remains
bounded under 37 minutes for 95% of the time, as shown
in figure 11(b). Although the total duration of such events
during any night’s stayed below 10 minutes on average
and below 37 minutes 95% of the time, yet we observed
motion false positives of more than 60 minutes (1 hour)
in total during one of the nights in our dataset. Note that
these MFPs do not signify any technical limitation of WiFi
based sleep monitoring, as such motions occur naturally in
home environments. Our results show that the number and
duration of naturally occurring interference in WiFi signals
due to activities of other residents is usually low during
night time. Therefore, WiFi based sensing is suitable enough
to be used for sleep monitoring during night time.

4.5 Breath Signal Outage
4.5.1 Detecting Outage in Breathing Signal
Serene experiences an average outage of less than 6.38 minutes,
during which it cannot track any vital signs. We define the
outage of our system as the event when variations due to
breathing are not present in the CSI signal while the ground
truth device (i.e. Xethru X4M200 in our case) is able to track
breathing.1 To detect outage, our system first determines the
noise floor of the environment using the first PCA projec-
tion. During real-time tracking, our system compares the
average power of the signal, calculated over 7.5s windows
of every 30s sleep epoch (i.e. 1/4th of an epoch’s duration),
with the determined noise floor. If the average power of
the sleep epoch is not above the determined noise floor
while X4M200 is still able to track breath, Serene signals
outage. To assess Serene’s ability to continuously track vital
signs (i.e. breathing and other limb/body activity) in real
life, we measure its per-night outage performance statistics.
To achieve this, we follow the treatment of signal outage
in wireless propagation literature. Specifically, we calculate
two second-order statistics: level crossing rate (LCR), and
average fade duration (AFD) [39]. LCR determines the rate
at which outages occur during a full-night sleep, whereas
AFD determines the duration of each outage. We analyze
the LCR and AFD using the first PCA projection’s power
with respect to the noise floor.

Figure 10(a) shows LCR or outage rate calculated per
hour across our sleep dataset. We can observe that on
average, the breathing rate estimation of participants ex-
perienced 2 outage events per hour. At 95 percentile con-
fidence, outage amounted to less than 6.6 events per hour.
However, in the context of sleep monitoring, a further piece
of detail must be considered to fully understand outage
events during sleep, i.e. the duration of such outages, which
we characterize using AFD. Serene can experience two
types of outage events: small-scale and/or large-scale. Such
outages arise due to users rolling over in bed to a different
position or sleep posture while sleeping. This is because
certain sleep postures can make it difficult for Serene to
detect the breath signal due to weaker chest movements.
To understand how such small-scale and large-scale outage
events are distributed naturally in real life, we introduce
a design threshold to separate the two types of outage

1. To detect outage, we use the “absent””’ signal that Xethru X4M200
provides when it cannot detect any motion in the environment.

events. From the analysis of our dataset, we set such design
threshold to 5 minutes, where we consider outage events
longer than 5 minutes as a large-scale outages and vice
versa. Figure 10(b) elaborates on the statistical behavior of
small-scale outage. On average, small-scale outage events
lasted for 0.7 minutes, while the 95th percentile confidence
outage duration is under 1.62 minutes. CDF of the duration
of large-scale outage is shown in figure 10(c). Large-scale
outage duration averaged around 6.38 minutes while its
95th percentile confidence is under 11.56 minutes, although
durations in excess of 15 minutes can occur. Based on this
analysis, we can conclude that WiFi based sleep monitors
experience more outages compared to radar based monitors
such as Xethru X4M200. However, we must mention that
while collecting the dataset we suggested our subjects not
to change the position of X4M200 so that their chest stays in
X4M200’s line-of-sight. In real life scenarios, users can make
mistakes while positioning such radar based sensors before
going to sleep which may cause outages similar to the ones
experienced by Serene.

5 DISCUSSIONS

Serene is an early step towards characterizing WiFi multi-
path and signal subspace to faithfully explain and quantify
the dynamics of respiration and body motions on WiFi
signals. There is obviously room for continued research in
various perspectives. In this section, we discuss WiFi based
sleep scoring, provide commentary on the limitations of our
work, and point to possible avenues of future research.

Sleep Scoring. To motivate the merits of WiFi based
sleep monitoring, we present a few interesting insights on
sleep quality gained from our data collection campaign. To
achieve this, we take an actigraphy based approach towards
sleep quality monitoring, where we classify the stage of each
minute as sleep or awake period. Our approach is inspired by
the classic light-weight actigraphy based method proposed
in [40], which determines sleep-awake stage of a minute
by taking into account body movement related information
corresponding to the surrounding minutes. The activity
sleep-awake scores determined by their technique have been
shown to agree with EEG based sleep monitoring 94.46% of
the time [40]. In our implementation, we adopt the following
model from their work, which takes 4 previous minutes and
2 following minutes into account to classify stage of the
current minute: sm = ρ× (w−4a−4 +w−3a−3 +w−2a−2 +
w−1a−1 + w0a0 + w+1a+1 + w+2a+2). where sm is the
average sleep-awake score for the current minute, ρ is a
scaling factor, a−i, a0, a+i are activity scores (normalized
number of body movement events in each minute) for
previous, current and following minutes, and w−i, w0, w+i

represent weights for the previous minutes, current minute
and following minutes. If sm ≤ 1, the current minute’s
stage is classified as sleep, and if sm > 1, the current
minute’s stage is classified as awake. In our implementation,
we chose ρ = 0.125, w−4 = 0.15, w−3 = 0.15, w−2 =
0.15, w−1 = 0.08, w0 = 0.21, w1 = 0.12, w2 = 0.13, as
suggested by the authors of [40] for best results in their real-
world deployments.

Figure 13 shows three different metrics of sleep deter-
mined for 3 users over a period of more than 13 consecutive
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Fig. 14: CDFs for motion duration and sleep efficiency.

days, namely sleep efficiency, aggregate motion (in minutes)
during sleep and sleep length. Sleep efficiency for each night
of sleep was calculated using on our actigraphy based sleep
scoring approach, which is defined as the ratio of actual
time spent in sleep stages to total time spent in bed (i.e.
Tsleep/(Tsleep + Tawake)). Figure 12 shows Sleep/Awake
classification performance for full night’s sleep of a subject,
where sleep efficiency was determined to be 62.1%. As users
manually started and ended each night’s data collection

using our software, the sleep lengths were easily determined
according to those end points. We observe interesting in-
sights for these long term sleep metrics. For instance, we
can see that User 1 experienced a noticeably restless 9th
night which resulted in poor sleep efficiency. User 4 only
slept for 1.25 hours, but as he was awake for only 4.156
minutes during that time, his sleep efficiency reaches 95%.

In terms of aggregate body motion statistics over nights
and across subjects, we measured a median of 40 minutes
with the 95th percentile being under 80 minutes as illus-
trated in the blue CDF in figure 14(a). On an individual
basis, and considering user 2 and user 4 for instance, their
median body movements were 36 minutes and 47 minutes,
respectively. This insight is corroborated when inspecting
the complementary CDF’s depicted in figure 14(b). Specifi-
cally, while both users 2 and 3 have a comparable maximum
sleep efficiency of 96%, User 3’s sleep efficiency was lower
than 80% on 3 different nights. Moreover, User 2 has a worst
efficiency of 75%, whereas User 3 has worst efficiency of
63%. For the aggregate dataset, the median user population
sleep efficiency was around 87%. The average sleep duration
among these 3 users during this consecutive testing period
was 7.32 hours. Note that the recommended sleep for ages
18-64 years is 7-9 hours [33].

Limitations of WiFi signals based sleep vital signs moni-
toring. Our results show that WiFi based sleep monitoring
can be significantly affected by changes in a user’s sleep
postures and activities of other house residents while the
user is sleeping. The breath rate error can vary between 0.34
BPM to more than 5 BPM depending upon the time of night
as a user’s sleep posture and distance from the sleep moni-
tor can change during sleep. Breath signal outages arise due
to subjects rolling over in bed to a different position and/or
sleep posture that makes it difficult to pick up the subjects’
chest movements for a while. Tracking position and sleep
posture using WiFi signals is a difficult problem to solve and
addressing it requires a separate dedicated research study.
Some recent works have proposed RFID tags based [41] and
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Frequency Modulated Carrier Waves (FMCW) signals based
[42] approaches to address this problem.

Extracting breath signal during other motions: When other
motions occur in the vicinity of a sleeping user, they usually
dwarf the changes introduced in WiFi signals by breathing.
Even if non-breathing motions are small (e.g. head or arm
movement), once the breath signals are entangled with
signals related to other motions, it is extremely hard to
extract the breath related signals. A similar problem is faced
if we want to track breath of multiple people sleeping in
a room simultaneously. Signal separation techniques such
as Independent Component Analysis (ICA) can be tried.
However, such techniques usually require strong assump-
tions. Specifically, in ICA, the goal is to recover the signal
sources and the mixing matrix given only the observations,
provided that the sources are independent, non-Gaussian,
and combine linearly at the receiver end. In our opinion,
these are very strong assumptions when using COTS WiFi
devices (with many non-idealities, such as limited sensing
capabilities, dynamic range, and aperture/spatial diver-
sity, etc.) for sensing. Multi-person breath tracking using
RF signals has been explored recently by researchers [26].
However, they use FMCW radar signals and hardware that
are specialized for sensing. In [26], the spatial domain is
shown to be able to resolve two adjacent motions and
disentangle breathing signals from multiple users using a
dedicated large aperture FMCW radar. With WiFi operating
at a comparatively tiny fraction of bandwidth and much
smaller antenna array, it may be difficult to achieve similar
results. However, a dedicated research study is required
before strong statements can be made.

Data collection. Although the data we collected is from a
limited population sample, we collected it over a duration
spanning several months i.e. results are stress-tested against
significant time non-stationarity often referred to as “dif-
ferent days” experiments in general RF sensing literature.
We feel that compared to the previous works, we have
collected a good volume of data. Although our dataset
is not exhaustive when measured on an industrial scale,
the volume is representative and sufficient for highlighting
some of the trends and difficulties of re-purposing COTS
WiFi for sleep monitoring. Orchestrating a study involving
a large cohort of users is outside the scope of this work.

Sleep stage classification. A more ambitious learning task
pertaining to sleep monitoring is sleep stage classifica-
tion [43]. It has been shown in prior art using custom radar
signalling that wireless sleep 4-stage classification can be
achieved through a domain adaptation approach paired
with ground truth from medical-grade devices [44]. The
Xethru radar we use in our comparative study does not
provide sleep stage classification information. Nonetheless,
we have demonstrated in this paper the elements of sleep
monitoring needed for such classification; namely, breathing
and motion estimation. To investigate the potential exten-
sion of this work towards 4-stage sleep classification, we
have conducted a limited pilot study using sleep versus
awake classification information obtained from a commer-
cial ResMed S+ sleep monitoring device [45]. For demon-
stration purposes, we apply a simple feature engineering
approach using statistical features derived from our respira-
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Fig. 15: Two-stage (asleep versus awake) crude
classification using simple feature engineering approach

and as compared to classification from a commercial
ResMed S+ device.

tion estimate. Figure 15 depicts a snapshot of such classifica-
tion over an entire night. From close inspection, it is evident
that the results of this relatively simple approach turn out to
be quite similar to that of ResMed S+. Therefore, we believe
that advanced sleep-stage classification is possible by using
both body movement and respiration based vital signs
obtained from our system. However, testing the accuracy
of a WiFi based solution compared to the Polysomnography
(PSG) gold-standard would require a dedicated study and
significant data collection effort. We leave expanding this
research strand for future work.

WiFi vs Bluetooth for sleep monitoring. Bluetooth devices
usually have higher energy constraints compared to the
WiFi devices of everyday use. For example, WiFi devices
are usually either regularly charged by the users (e.g. smart-
watches, smartphones, laptops, etc.) or are continuously
plugged in (e.g. WiFi routers). Therefore, establishing a
dedicated connection between any two WiFi devices for
long term sensing purposes makes for a better use case.
Also, Bluetooth received signal strength (RSSI) information
is much coarser grained compared to the WiFi CSI infor-
mation, making it difficult to extract any useful breathing
information. Moreover, Bluetooth devices usually have just
one antenna so we cannot utilize beamforming to improve
the good quality of breath signals. However, it may be
possible to fuse the lower-level PHY information of Blue-
tooth devices (e.g. RSSI) over multiple frequencies during
the frequency hopping process to improve the fidelity of
breath signals. Although a dedicated study on Bluetooth
based sleep monitoring is out of the scope of our current
work, yet we feel that this can be an interesting topic for
future research.

Modifying WiFi to improve sensing. The goal of this work
is to leverage the existing WiFi hardware and protocols
for sleep monitoring, without any modification. However,
we believe that adding dedicated “radar-like” capabilities
to WiFi systems can significantly improve their sensing
capability. Researchers are already working on developing
such specialized hardware for sleep monitoring applications
[25], [26], [42], however, their system does not have any
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WiFi like communication capability yet. Developing WiFi
systems that can jointly optimize communication and sens-
ing signaling, which can in turn be adapted according to the
requirements of different sensing applications, is an open
problem and a very interesting research direction.

6 RELATED WORK

6.1 Respiration, Body Movements and Sleep
Previous works have shown that breathing and body move-
ments during sleep are closely related to sleep quality in
humans [33], [2], [46]. These studies show that respiratory
dynamics vary over sleep stages, which means that respira-
tory activity can be used to separate sleep stages [33]. For
example, Dafna et al. evaluated whole night sleep based on
sleep-awake classification using audio recordings of breath-
ing sounds [46]. They captured and quantified variations
in breathing features such as periodicity and consistency,
and showed that these features contribute to distinguishing
between sleep and wake epochs.

6.2 Sleep Monitoring Technologies
Several sleep monitoring techniques have been proposed in
the past which use different sensing modalities, such as in-
ear [47], inertial sensors (Actigraphy) [48], [1], [2], [3], [4], [5],
[6], [7], EEG [8], Audio [10], [11], [12], Video [13], [14], Bed
sensors (e.g. Ballistocardiography (BCG), pressure and/or
motion sensors based techniques) [15], [16], [17], [18], [19],
[20] and RF sensing based techniques (e.g. mmWave, Fre-
quency Modulated Continuous Wave (FMCW) radar, Pulse-
Doppler radar, RFID and WiFi based techniques) [27], [28],
[21], [22], [23], [24], [25], [26]. For brevity, we will only
discuss some of the closely related recent works on contact-
less sleep monitoring, which include some sound, radar and
WiFi CSI based techniques.

Lullaby [49] tracks various environmental factors, sound,
light, temperature, and motion that help users assess the
quality of their sleep environments. iSleep [10] uses the
built-in microphone of the smartphone to detect the events
that are closely related to sleep quality, including body
movement, couch and snore, and infers quantitative mea-
sures of sleep quality. Sleep Hunter [50] uses actigraphy
and acoustic events to predict sleep stage transitions by
smartphone. Toss-N-Turn [51] uses features such as sound
amplitude, acceleration, light intensity, screen proximity,
battery and screen states, etc. to track a subject’s sleep qual-
ity. However, Audio based techniques are privacy invasive,
and therefore, often avoided as sleep is a private activity.

RF sensing based techniques are by far the least in-
trusive methods for monitoring sleep, both in terms of
privacy and convenience of use. DoppleSleep [21] is another
unobtrusive sleep sensing system which uses short-range
Doppler radar to perform sleep stage classification (Sleep
vs. Wake and REM vs. Non-REM). Vital-radio [25] develop
an FMCW based system which is shown to accurately track
a person’s breathing and heart rate without body contact,
from distances up to 8 meters. Based on the same system,
[44] proposes a deep learning architecture to perform 4-
stage sleep stage classification. More recently, authors of [26]
proposed algorithms to achieve multi-person identification
and breath monitoring based on the same FMCW hardware.

Although the aforementioned radar based techniques do
fairly well in terms of monitoring vital signs during sleep.
However, they require dedicated hardware and spectrum,
adding cost, scalability (e.g., when multiple such radars
are co-located), and/or RF regulation hurdles. These factors
prevent their large-scale and long-term deployment. WiFi
signals based sensing has recently emerged an approach to
low-cost and easily adoptable long-term sleep monitoring,
as the widespread use of WiFi capable devices (e.g. smart-
home assistants, smart-phones, etc.) has made WiFi signals
the most ubiquitous form of sensing in homes requiring
no additional hardware costs. Multiple WiFi CSI based
schemes have been proposed for tracking vital signs during
sleep [29], [23], [22], [30], [31]. The key limitation of the
existing works is that they have only been evaluated with
short-duration mock sleep experiments in very controlled
settings. This makes the applicability of their techniques
and findings quite limited in practical sleep monitoring
scenarios. For example, the techniques proposed in existing
works have been designed based on controlled experiments
often performed on the same subject, where they require
the subject to lie down in between and/or very close to both
transmitter (TX) and the receiver (RX) to ensure line-of-sight
(LOS) scenarios. Their techniques rely on trial-and-error
based positioning of WiFi transceivers and signal processing
methods to track vital signs, which often leads to high de-
pendency on multiple, environment-dependent parameters
that are difficult to tune in real world. Such techniques may
be suitable for controlled short-duration lab experiments.
However, their suitability cannot be generalized to different
individuals, environments, positioning of WiFi transceivers,
LOS/NLOS situations, and to natural in-home full-night
sleeping scenarios.

7 CONCLUSIONS

In this paper, we make two key contributions. First, we
characterize the relationship between WiFi signal compo-
nents (i.e. multipath and signal subspace) and human vital
signs (i.e. respiration and body motions). Grounded in this
characterization, we propose two methods: 1) a respiration
tracking technique that models the peak dynamics observed
in the time-varying signal subspaces and 2) a body-motion
tracking technique built with a multi-dimensional cluster-
ing of evolving signal subspaces. Second, we extensively
evaluate our proposed methods through real-world full-
night sleep experiments conducted in 5 different apart-
ments, where we collected more than>550 hours (80 nights)
of data from 5 users. Our results demonstrate that the
proposed techniques were able to track respiration rate
with an average error of <1.19 breaths per minute (BPM).
However, the breath rate error varied between 0.34 BPM
to more than 5 BPM depending upon the time of night as
a user’s sleep posture and distance from the sleep monitor
can change during sleep. Co-located activities of other house
residents also affect WiFi based vital signs monitoring. We
conclude that WiFi based sleep monitors can be robust and
accurate enough for in-home use to gain insights into overall
breath and motion trends. However, the accuracy may not
be enough for medical-grade sleep assessments.
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Leppäkorpi, and Markku Partinen. Unobtrusive online monitor-
ing of sleep at home. In IEEE EMBC, 2012.

[17] Juha M Kortelainen, Martin O Mendez, Anna Maria Bianchi, Mat-
teo Matteucci, and Sergio Cerutti. Sleep staging based on signals
acquired through bed sensor. IEEE Transactions on Information
Technology in Biomedicine, 2010.

[18] Wenxi Chen, Xin Zhu, Tetsu Nemoto, Yumi Kanemitsu, Keiichiro
Kitamura, and Ken-ichi Yamakoshi. Unconstrained detection of
respiration rhythm and pulse rate with one under-pillow sensor
during sleep. Medical and Biological Engineering and Computing,
2005.

[19] Byung Hun Choi, Gih Sung Chung, Jin-Seong Lee, Do-Un Jeong,
and Kwang Suk Park. Slow-wave sleep estimation on a load-cell-
installed bed: a non-constrained method. Physiological measure-
ment, 2009.

[20] Withings. Withings sleep tracking mat.
https://www.withings.com/us/en/sleep, 2018.

[21] Tauhidur Rahman, Alexander T Adams, Ruth Vinisha Ravichan-
dran, Mi Zhang, Shwetak N Patel, Julie A Kientz, and Tanzeem
Choudhury. Dopplesleep: A contactless unobtrusive sleep sensing
system using short-range doppler radar. In Proc. of ACM Ubicomp,
2015.

[22] Xuefeng Liu, Jiannong Cao, Shaojie Tang, and Jiaqi Wen. Wi-sleep:
Contactless sleep monitoring via wifi signals. In IEEE RTSS, 2014.

[23] Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry
Cheng. Tracking vital signs during sleep leveraging off-the-shelf
wifi. In Proc. of ACM MobiHoc, 2015.

[24] Zhicheng Yang, Parth H Pathak, Yunze Zeng, Xixi Liran, and
Prasant Mohapatra. Monitoring vital signs using millimeter wave.
In Proc. of ACM MobiHoc, 2016.

[25] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and
Robert C Miller. Smart homes that monitor breathing and heart
rate. In Proc. of ACM CHI, 2015.

[26] Shichao Yue, Hao He, Hao Wang, Hariharan Rahul, and Dina
Katabi. Extracting multi-person respiration from entangled rf
signals. ACM IMWUT, 2018.

[27] Cecilia Occhiuzzi and Gaetano Marrocco. The rfid technology for
neurosciences: feasibility of limbs’ monitoring in sleep diseases.
IEEE Transactions on Information Technology in Biomedicine, 2010.

[28] Cecilia Occhiuzzi, Carmen Vallese, Sara Amendola, Sabina Man-
zari, and Gaetano Marrocco. Night-care: A passive rfid system for
remote monitoring and control of overnight living environment.
Elsevier Procedia Computer Science, 2014.

[29] Peter Hillyard, Anh Luong, Alemayehu Solomon Abrar, Neal
Patwari, Krishna Sundar, Robert Farney, Jason Burch, Christina
Porucznik, and Sarah Hatch Pollard. Experience: Cross-
technology radio respiratory monitoring performance study. In
ACM MOBICOM, 2018.

[30] Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang,
Dan Wu, Tao Gu, and Bing Xie. Human respiration detection with
commodity wifi devices: do user location and body orientation
matter? In Proc. of ACM Ubicomp, 2016.

[31] Fusang Zhang, Daqing Zhang, Jie Xiong, Hao Wang, Kai Niu,
Beihong Jin, and Yuxiang Wang. From fresnel diffraction model
to fine-grained human respiration sensing with commodity wi-fi
devices. ACM IMWUT, 2018.

[32] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall.
Tool release: gathering 802.11 n traces with channel state informa-
tion. ACM SIGCOMM Computer Communication Review, 2011.

[33] Xi Long. On the analysis and classification of sleep stages from
cardiorespiratory activity. SLEEP-WAKE, 2015.

[34] M. Alloulah, A. Isopoussu, C. Min, and F. Kawsar. On Tracking the
Physicality of Wi-Fi: A Subspace Approach. IEEE Access, 7:19965–
19978, 2019.

[35] M. Moshtaghi and et. al. Incremental elliptical boundary estima-
tion for anomaly detection in wireless sensor networks. In IEEE
ICDM, 2011.

[36] Xethru. Respiration sensor x4m200.
https://www.xethru.com/x4m200-respiration-sensor.html, 2018.

[37] SolidRun. Hummingboard. https://www.solid-run.com/nxp-
family/hummingboard/, 2018.

[38] Xethru. Xethru vs. polysomnography (psg) comparative study.
https://www.xethru.com/community/resources/categories/white-
papers.6/.

[39] Ali Abdi, Kyle Wills, H Allen Barger, M-S Alouini, and Mostafa
Kaveh. Comparison of the level crossing rate and average fade
duration of rayleigh, rice and nakagami fading models with
mobile channel data. In Vehicular Technology Conf. , 2000. IEEE-
VTS Fall VTC 2000. 52nd, volume 4, pages 1850–1857. IEEE, 2000.

[40] John B Webster, Daniel F Kripke, Sam Messin, Daniel J Mullaney,
and Grant Wyborney. An activity-based sleep monitor system for
ambulatory use. Sleep, 1982.

[41] Jia Liu, Xingyu Chen, Shigang Chen, Xiulong Liu, Yanyan Wang,
and Lijun Chen. Tagsheet: Sleeping posture recognition with an
unobtrusive passive tag matrix. In IEEE INFOCOM, 2019.

[42] Shichao Yue, Yuzhe Yang, Hao Wang, Hariharan Rahul, and Dina
Katabi. Bodycompass: Monitoring sleep posture with wireless
signals. ACM IMWUT, 2020.

[43] Richard B Berry, Rita Brooks, Charlene E Gamaldo, Susan M
Harding, CL Marcus, BV Vaughn, et al. The aasm manual for
the scoring of sleep and associated events. Rules, Terminology and
Technical Specifications, Darien, Illinois, American Academy of Sleep
Medicine, 2012.

[44] Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S Jaakkola,
and Matt T Bianchi. Learning sleep stages from radio signals:
a conditional adversarial architecture. In IEEE ICML, 2017.

[45] RedMed. S+ sleep sensor. https://www.resmed.com/us/en/consumer/s-
plus.html, 2018.

[46] Eliran Dafna, Ariel Tarasiuk, and Yaniv Zigel. Sleep-wake evalu-
ation from whole-night non-contact audio recordings of breathing
sounds. PloS one, 2015.

[47] Anh Nguyen, Raghda Alqurashi, Zohreh Raghebi, Farnoush
Banaei-Kashani, Ann C Halbower, and Tam Vu. Libs: A
lightweight and inexpensive in-ear sensing system for automatic
whole-night sleep stage monitoring. GetMobile: Mobile Computing
and Communications, 2017.



15

[48] Xiao Sun, Li Qiu, Yibo Wu, Yeming Tang, and Guohong Cao.
Sleepmonitor: Monitoring respiratory rate and body position dur-
ing sleep using smartwatch. Proc. of ACM IMWUT, 2017.

[49] Matthew Kay, Eun Kyoung Choe, Jesse Shepherd, Benjamin
Greenstein, Nathaniel Watson, Sunny Consolvo, and Julie A
Kientz. Lullaby: a capture & access system for understanding the
sleep environment. In Proc. of ACM Ubicomp, 2012.

[50] Weixi Gu, Zheng Yang, Longfei Shangguan, Wei Sun, Kun Jin,
and Yunhao Liu. Intelligent sleep stage mining service with
smartphones. In Proc. of ACM Ubicomp, 2014.

[51] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John
Zimmerman, and Jason I Hong. Toss’n’turn: smartphone as sleep
and sleep quality detector. In Proc. of ACM CHI, 2014.

Kamran Ali graduated with a Ph.D. in Com-
puter Science and Engineering from Michigan
State University, USA, in 2019. He is now with
General Motors R&D. He received his B.S. de-
gree in Electrical Engineering and Computer
Sciences in 2013, from School of Science and
Engineering (SSE) of Lahore University of Man-
agement Sciences (LUMS), Pakistan. He has
worked with Hewlett Packard Labs, NEC Labora-
tories, Nokia Bell Labs, and Microsoft’s Applied
Sciences Group during his PhD. His research

interests lie in the areas of Sensing Systems, Applied Machine Learn-
ing, Signal Processing, Wireless Communications, RF Sensing, Mobile
Computing, and Internet of Things.

Mohammed Alloulah is with Nokia Bell Labs,
USA. Mo obtained a PhD from Lancaster Univer-
sity, UK, jointly funded by Research Councils UK
through a Dorothy Hodgkin postgraduate award
and by a Microsoft Research Cambridge Schol-
arship. Mo has 14+ years experience in wireless
& chips with silicon deployed in the field. Mo
has led R&D and delivered systems in multiple
industrial settings in areas spanning signal pro-
cessing, ultra-low power medical wearables, and
automotive radar. Recently, Mo has been leading

projects in indoor wireless sensing, ultra-low power machine learning,
and 6G networks. Outside work, Mo is a keen runner and a part-time
cyclist.

Alex X. Liu received his Ph.D. degree in Com-
puter Science from The University of Texas at
Austin in 2006, and is an honorary professor
of Qilu University of Technology. Before that, he
was a Professor in the Department of Computer
Science and Engineering at Michigan State Uni-
versity (MSU). He received the IEEE & IFIP
William C. Carter Award in 2004, a National
Science Foundation CAREER award in 2009,
the MSU Withrow Distinguished Scholar (Junior)
Award in 2011, and the MSU Withrow Distin-

guished Scholar (Senior) Award in 2019. He has served as an Editor for
IEEE/ACM Transactions on Networking and an Area Editor for Computer
Communications. He is currently an Associate Editor for IEEE Trans-
actions on Dependable and Secure Computing and IEEE Transactions
on Mobile Computing. He has served as the TPC Co-Chair for ICNP
2014 and IFIP Networking 2019. He received Best Paper Awards from
SECON-2018, ICNP-2012, SRDS-2012, and LISA-2010. His research
interests focus on networking, security, and privacy. He is an IEEE
Fellow and an ACM Distinguished Scientist.

Fahim Kawsar leads the Internet of Things re-
search at Bell Labs and holds a Design United
Professorship at TU Delft. His current research
explores novel algorithms and system design
techniques to build transformative multi-sensory
systems for disruptive mobile, wearable and IoT
services. He borrows tenets from Social Psy-
chology, learns from Behavioural Economics and
applies Computer Science methods to drive his
research. He is a frequent keynote, panel and tu-
torial speaker, hold 15+ patents, organised and

chaired numerous conferences, (co-)authored 100+ publications and
has had projects commissioned. He is a former Microsoft Research Fel-
low and has worked before at Nokia Research, and Lancaster University.
Fahim obtained his MSc and PhD degrees both in Computer Science
from Waseda University, Japan, respectively in 2006 and 2009.


