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ABSTRACT
We present a solution for analysing crowds at events such as con-
ferences where people have networking opportunities. Often, po-
tential social relations go unexploited because no business cards
were exchanged or we forget about interesting people we met ear-
lier. We created a solution built on top of ubiquitous Wi-Fi signals
that is able to create a memory of human trajectories and touch
points. In this paper we elaborate on the technological assets we
designed to perform crowd anlaytics. We present small wearable
Wi-Fi badges that last for the duration of an event (up to 3 days)
with a single charge, as well as network equipment that senses the
signals radiating from these badges and contemporary mobile de-
vices.

1. INTRODUCTION
Events such as conferences and summits are a catalyst for spread-

ing ideas and transacting business. By providing a setting in which
people from diverse backgrounds and with diverse purposes assem-
ble, new social relations are established [12]. Events give rise to
building trust and attracting new resources for firms [7] as well as
identifying business and collaboration opportunities [4].

In this paper, we summarize a system that collects data to under-
stand the impact of spatial structure on the behavioral dynamics of
social groups assembled in an event. We report on an end-to-end
system that collect data to accomplish these goals. We designed and
developed a Wi-Fi solution comprising of wearable Wi-Fi badges
and gateways. These gateways capture Wi-Fi signals radiating from
wearable badges (the size of a credit card) and anonymous smart
devices to create spatio-temporal trajectories of individuals dis-
cretely wearing them. By performing sensing at the network side
rather than at the device end, we are able to keep mobile power
consumption to a minimum. The system collects fine granularity
data from the badges that are given to a selected group of people
to achieve the first goal and coarse granularity data from the smart
devices of the conference attendees to accomplish the second.

We have deployed this system in a large scale industrial event
and capture the spatio-temporal trajectories of 2.5K+ attendees in-
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cluding two special groups: 34 investors and 27 entrepreneurs1.
The event attracted 40K+ people from 134 different countries and
took place over three days in early November 2015 in a European
city. The ±6000 sq. m. venue of the event was organized to cre-
ate structural opportunities for the participants to meet and interact
through technical presentation sessions, demo booths, marketing
booths, startup pitch sessions as well as informal spaces.

2. RELATED WORK
A rich body of literature has studied the crowd behavior during

large events. One way to collect information is through a mobile
app that uses a variety of resources such as GPS, Wi-Fi, Bluetooth,
cellular, and other sensors from the mobile phone and integrate
them to estimate the location of the user [3, 17]. However, in-
stalling and running the app on the critical mass of the event partic-
ipants’ devices is challenging. Hence, the majority of the previous
work rely on opportunistic sensing.

Bluetooth tags are used by Jamil et al. to study the movement
and community structure of pilgrimage during Hajj religious festi-
val [11]. The ubiquity of mobile phones on the other hand made it
possible to use network signals to trace and track people to study
mobility and behavior without the need for specialized tags. Larsen
et. al. use Bluetooth signals emitted from smartphones to analyze
the behavior of participants to a large music festival [14]. Other
works investigate the mobility and interactions of people by cap-
turing Bluetooth signals from their discoverable devices with scan-
ners [18]. Features about Bluetooth signals such as mean signal
strength and the number of devices can also be leveraged to esti-
mate the crowd density [22].

Prior work on crowd analysis widely used Bluetooth technology
to collect information about participants. Though Wi-Fi signals
have been widely leveraged for indoor localization [10, 15, 23], Wi-
Fi based systems have not been deployed to understand the crowd
behavior to the best of our knowledge. On the other hand, Wi-
Fi based analytics methods have been used to detect face-to-face
interactions [21], to track physical objects in time and space [2]
and evaluating location reputation[16].

3. SYSTEM DESCRIPTION
In this section, we first discuss the design challenges we have

faced in building the sensing system and present the components of
the system.

1The consent to record the trajectory of those wearing the badges
were given by the individuals themselves, and the consent to gather
crowd analytics data from all the attendees were given by the event
organisers.



3.1 Design Challanges and Decisions
Our system has two primary goals: (i) Retrieving the behavior of

two groups of people, e.g. entrepreneurs and investors, and (ii) cap-
turing the crowd dynamics in the event. For the first goal, guaran-
teed participation of a number of attendees from both groups were
required. It was essential that these attendees produce signals at a
high rate so that we can estimate their location at different points
in time with fine granularity to construct their trajectories. With
the second goal, we aim to establish the how the popularity of the
prominent places in the event venue changes over time by looking
at the spatio-temporal density. For such a feast, the system needs
to collect data from all the attendees in the event, albeit with coarse
granularity.

Past research has relied on technologies such as GPS [19] and
Bluetooth [22, 11] as sensing modalities. Because the event was
confined to indoors, GPS was excluded from our design alterna-
tives. Though a Bluetooth-based approach offers accurate location
estimates, it has a number shortcomings. Due to its short commu-
nication range, it requires a large number of scanners. It offers a
limited participation with smart phones as the Bluetooth interface
is turned off most of the times [6] and it requires a high energy
cost [9].

In this study, we have relied on Wi-Fi signals from Wi-Fi enabled
devices. This decision is grounded on findings that suggest people
carry their smartphones with them most of the time [13] and their
Wi-Fi is switched on particularly where/when free Wi-Fi service
is available. Since Wi-Fi has a wider range than Bluetooth, it de-
mands a fewer number of receivers capturing the wireless signals.

Wi-Fi and the underlying IEEE 802.11 standard [1] uses three
types of link layer frames to facilitate communication the access
points (AP) and non-AP devices. Data frames transports applica-
tion layer traffic from higher layers. Control frames police devices
accessing the wireless medium without causing an interference be-
tween each other. Every time a device has data to send to another
device, they perform a handshake through Request-to-Send (RTS)
and Clear-to-Send (CTS) frames. The other devices in the vicinity
also listen to these frames and back off their transmissions during
this exchange. Management frames are used to provide and main-
tain connectivity to the devices. It includes a number of subtypes
such as authentication frames that facilitates securely connecting
to a AP, association frames that bind the device to the AP, beacon
frames for AP to announce its presence and its service set identifier
(SSID), and probe requests to scan Wi-Fi networks in the vicinity.
To receive a frame, the receiving device needs to listen the same
Wi-Fi channel over which the transmitting device is sending the
frame.

We have designed custom, isolated Wi-Fi gateways to capture
Wi-Fi signals from attendees’ smart devices. The gateways have
no external connectivity to minimize interference and reduce con-
gestion. Moreover, we have made two important design decisions:

• We capture only probe requests from the Wi-Fi enabled de-
vices. Probe request - further referred to as probe - is a Wi-Fi
management frame that is either directed to a specific net-
work or broadcasted to any network by a mobile device while
it scans Wi-Fi network .

• We use dedicated Wi-Fi badges that were distributed to a se-
lect number of investors and entrepreneurs. The badges emit
probes systematically so that nearby Wi-Fi gateways can cap-
ture them, which are in turn used to estimate the positions of
the wearers in the venues.

Though devices send data frames and control frames more fre-
quently for their application traffic, we decided to only use probes.
They are sent on the channel that the AP is operating on. However,
with several APs present in the conference venue, each operating
on a different channel to reduce interference from other devices,
one cannot determine before hand what channel the gateway needs
to monitor. On the other hand, when a Wi-Fi device scans the net-
works, it sends probes on every Wi-Fi channel. Therefore, even
if a gateway monitors a single Wi-Fi channel, it receives probes
from devices when they scan the networks. Given the crowded na-
ture of the event and congested open Wi-Fi network, we expected
that devices would often lose the connection, or look for a better
connection resulting in the transmission of probes. Even if the de-
vice keeps the connection to a particular device, it still scans Wi-Fi
networks with scanning interval defined by the vendor that allows
device to be detected by the deployed gateways [8]. Hence, merely
capturing the probes from user devices suffices in capturing coarse
granularity data for crowd analytics.

The badges on the other hand programmatically send probes at
a rate high enough the construct the user trajectories. In short, we
used the data from the probes from the badges for behavioral anal-
ysis and the data from other devices for crowd analysis.

Figure 1: IEEE 802.11 Probe Request Frame

The format of management frames are shown in Fig. 1. The
frame offers information regarding various entities including the
type and subtype of the frame, transmitting and receiving devices,
MAC address of the AP, sequence number, etc. The transmitting
device address (TA) and sequence number fields are used to differ-
entiate each probe from each other. The frame body consists of a
number of information elements such as SSID and vendor specific
information. SSID information is mandatory in the frame however
it can be empty (or null) to specify the probes that are broadcast
and not directed towards an AP with a particular SSID.

We next describe the two system components, Wi-Fi badges and
gateways that monitor the Wi-Fi channel.

3.2 Wearable Wi-Fi Badge
We begin by describing the hardware and software components

of the wearable badge and then briefly discuss its energy footprint.

3.2.1 Hardware
Two concerns mainly drove the hardware design of the badge

are its physical size and the functional requirements. Physically
the badge should equal the size of a standard credit card (including
battery, electronics and all outside connections) to ensure that it
could be attached to a standard conference lanyard. Functionally,
reprogramming and re-charging of the battery should be achieved
by the user. Taking both these concerns into account, we designed
a badge that was implemented using a custom designed PCB with
a dimension of 85mm x 55mm x 2mm. The badge was composed
of an ESP82662, a SoC consisting of an ARM-based CPU and a
2.4GHz Wi-Fi controller, a Freescale MMA8452Q accelerometer
and associated power regulation and battery charging circuitry. We
opted for a ultra thin 180mAH LiPo battery which was regulated

2http://www.esp8266.com



to provide the system with power. The accelerometer was used
to wake up the system from sleep on motion. Figure 2 shows the
schematic of the badge.

Figure 2: (a) The schematic design and (b) the production ver-
sion of the badge.

3.2.2 Software
The badge can be charged and programmed using a micro USB

connector. We developed an energy aware firmware to broadcast
the 802.11 management probes systematically. The firmware also
offered remote management functionality using which one could
connect to the badge remotely over Wi-Fi and adjust the probe
sending rate and power management sensitivity. The firmware im-
plemented a simple algorithm that could detect when the badge was
in motion for multiple seconds using the accelerometer and used
this as a trigger to send probes. If no motion was detected for a spe-
cific period of time, then the badge followed a pre-defined schedule
for sending probes (one per minute). The probe functionalities, i.e.,
custom header construction, emit rate, etc. were implemented in C
on top of a modified Wi-Fi stack of ESP firmware. Specifically,
we control the Sequence Control field of the probe frame to
uniquely detect a probe emitted from a specific badge (identified
by its MAC address). In addition, we set the SSID information el-
ement to a particular string. The motion detector was implemented
in C using the standard I2C library.

3.2.3 Energy Management
The ultra thin 180mAH battery had a total capacity to send 1840

probes. Past research has shown that Wi-Fi packet transmission is
energy expensive [5]. To ensure that a fully charged badge could
operate the whole duration of the events, we used a timer that put
the badge into deep sleep after 10 operational hours (08:00 - 18:00),
and woke up the badge after 14 hours. During the operational cy-
cle the badge followed the algorithm mentioned earlier for sending
probes. This approach ensured that we capture probes for critical
times compared to the simpler approach of sending probes at reg-
ular intervals until the battery is drained. This design also enabled
the badges to operate effectively over the 3 days of the event with-
out the need for recharging.

3.3 Wi-Fi Gateways
In our system, Wi-Fi gateways captured the probes emitted from

wearable badges and other smart devices . These gateways were
implemented using Raspberry PI 2 Model B 3 one board computers
equipped with a Wi-Fi dongle (Ralink 5370) and a programmable
LED lamp4. The probe capturing functionality was implemented in
C++ using the libtins library5. The LED lamp acted as an indicator
that a gateway was operating normally. Figure 3(c) illustrates a
gateway and its constituent components.
3https://www.raspberrypi.org/products/model-b/
4https://blink1.thingm.com
5http://libtins.github.io

Once a probe is captured, the gateway looks at the IEEE 802.11
header to extract TA and Sequence number information to iden-
tify each probe. It also checks the SSID field to distinguish probes
from the badges. The gateway also checks the Radiotap header6 to
get the Received Signal Strength Indication (RSSI). These values
along with the local timestamp at the gateway are stored in the
local storage in the gateway.

As pointed out earlier, the Wi-Fi devices send probes every chan-
nel (2.4 GHz or 5GHz band) during their scans. Given the Wi-Fi
infrastructure of the event was on the 5GHz band with each de-
vice working on a different channel and the badges have only 2.4
GHz Wi-Fi interfaces, we set the Wi-Fi dongle in monitor mode
on 2.4GHz band to capture the probes emitted from the badges and
smart devices. Since the badges send probes on the less crowded
channels, it also increases the probability that these probes are cap-
tured.

In addition, we have utilized a daemon in each gateway that mon-
itors the data capturing process. If the process fails due to any rea-
son, the daemon restarts the process but writes the new records to a
new file. Hence, we can end up with having a number of data files
in a single gateway.

4. SYSTEM DEPLOYMENT
Our study was conducted in early November, 2015 in a three-day

industrial exhibition in western Europe. The event attracted over
40K attendees including representatives from major IT companies,
small to medium sized startups, media companies, venture capital
firms, etc. The ±6000 sq. m. venue was organized strategically
to create multiple opportunities for these two groups to meet, inter-
act, and socialize. We deployed 30 gateways in 9 different zones.
These zones and the location of the deployed gateways and a snap-
shot from the exhibition are shown in Figure 3(a,b). Out of the
30 gateways, we were able to retrieve 29 Gateways after the event
closing.

5. DATA PRE-PROCESSING
We stored the information of all captured probes in local data

files in the Wi-Fi gateways. Since these gateways were isolated
and lacked external connectivity, their local times were not syn-
chronized. In total, we obtained 195 files from all 29 gateways. We
pre-processed these data files before merging them. Each data entry
in the traces consists of MAC, sequence, RSSI and timestamp
values and a isBadge flag that indicates whether the probe is from
a badge or not. With pre-processing, we obtain a global-time
value from the timestamp values for each probe.

Because the gateways have no internal battery that can keep the
local time up to date, the local time increments from the last known
time when they start. Hence, it is assumed that each timestamp
value from a data file is skewed by a constant value. In order to find
this skew, we use received probes as anchors because it is likely that
a single probe is received by a number of gateways. Using such
commonly received probes, we can find the how far files are apart
from each other. Since we recorded the start time of a particular
gateway, we could find the difference of the first file it recorded
from the actual time. Then, we found the relative difference of
each file in all gateways to that particular file.

Each probe is identified by MAC and sequence fields. How-
ever, the sequence field is a 12 bit number and it rolls back to
zero for each device. A typical device likely emits two probes
with the same sequence value. However, since the badges are

6http://radiotap.org/



Figure 3: (a) Venue floor plan and deployment map, (b) snapshot of the event and (c) the Wi-Fi gateway.

programmed to send only 1840 probes, every probe from a badge
has a unique MAC and sequence combination. For each file
pair, we found the common set of received probes from badges
and used them the find the time difference between them. By us-
ing the probes from the badges, we were able to merge 122 files.
Since the other files did not receive any probes from the badges,
we used the entire set of probes they received. For each MAC,
sequence pair in a file that also appears in the merges set, we
calculated the difference between the local timestamp and the
correspondingglobal-time. Since, these pairs are no longer
guaranteed to be unique, it is likely to receive multiple values for
each pair. We calculated the median difference value and used it as
the skew value for that particular file.

In the merged database, we included the gateway information
to every entry to indicate the particular gateway that captured the
probe. Once we merged all the data files, we sorted the data entries
by the global-time entry.

6. DATA DESCRIPTION
In data, we see that large portion of these records did not contain

meaningful information as most of the MAC addresses were seen
only a few times or over a very short period of time. 38% of the
MAC addresses seen in the traces had only a single probe and more
than 85% of the MAC addresses had less than 10 probes in total.

Figure 4: Distribution of the emitted probes and active dura-
tion for each device.

As illustrated in the Figure 4 (a), the distribution of probes per
device had a very long tail with a small number of non-mobile de-
vices were seen sending over 40K probes. We concur that these
were the networked gateways that offered Wi-Fi connectivity, or
P2P devices that searched constantly for peers. In addition, about
88% of the MAC addresses were seen only for less than 10 minutes

(Figure 4 (b)). We filtered the traces to include MAC addresses that
sent at least 300 and at most 1000 probes and were active for at least
two different days in the event7. Out of the 85 distributed badges,
24 badges either emitted only a few probes, or seen for a very short
time, and we also excluded these badges for further analysis.

After this filtering, we ended up with 2526 anonymous device
MAC addresses, 61 badges yielding two datasets: a crowd dataset
that we have used subsequently for crowd analytics, and a badge
dataset that we have used for analyzing the behavior of investors
and entrepreneurs. The summary of the entire and the

# MAC # Probes # Badges # Badge Probes
Total 290740 7054970 85 69191

Filtered 2526 1325364 61 56615

Table 1: Description of the orginal and filtered datasets.

Figure 5: The distribution of device vendors

MAC addresses are structured so that the vendor of the Wi-Fi
interface can be determined from the first three octets, which is also
known as Organizationally Unique Identifier (OUI). In the filtered
7Upper limit on the number is not applied to the badges



traces, we have discovered 67 vendors. Nine most popular vendors
have produced 90% of the devices and the emitted probes. The
most popular vendor, Apple, accounts for about half of the devices.
The distribution of devices per vendor is shown in Figure 5.

Figure 6: (a) Number of unique MAC addresses discovered by
each gateway and (b) the number of probes captured by each
gateway

In Figure 6, we show the number of total probes each gateway
recorded and the number unique mac addresses that emit these
probes. Most gateways receive from almost all 2526 devices apart
from a small number of very inactive gateways as a result of the
large range of Wi-Fi signals and mobility of users. In average, gate-
ways received more than 129K probes from 2100 devices. Since
the range Wi-Fi signals are relatively large and RSSI values are
highly volatile, it is not straightforward to to get the location of the
user from the reception of a probe by a gateway.

We use a proximity ranging mechanism to translate the RSSI
values associated with a probe from a device that are recorded in
a set of gateways to a location relative to the gateways. We for-
mulated this proximity ranging task as a multi-class classification
problem by dividing our space in K = 9 non-overlapping spa-
tial zones (see Figure 3(a)). We use the Support Vector Machine
(SVM) classifier with a One-vs-One scheme [20].

We leave details of the localization mechanism and further anal-
ysis on the crowd analytics and behavior traits of the certain groups
for future work.

7. CONCLUSION
In this paper, we summarize the elements of a Wi-Fi based moni-

toring system that aims to collect data in a very large event to study
the crowd dynamics in the event and the behavioral analysis of a
select group of attendees. We have designed custom Wi-Fi badges
and Wi-Fi gateways. We used badges to produce data for behavior
analysis. In addition, gateways collect information from other de-
vices present in the event to study the general crowd in the event.
We programed the gateways to collect, and the badges to produce
only the probe request frames. This enabled us to collect coarse
granularity data about the devices present in the event and fine gran-
ularity data from the badges that are used of behavior analysis. We
also outline pre-processing phase in the system that allowed us to
have a coherent data set.

This paper focuses on the system and the data collection phase
of our study. We plan to report the lessons we learned from this
collected data in future work.
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