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Abstract—We present the design, implementation and evalua-
tion of an enabling platform for locating and querying physical
objects using existing WiFi network. We propose the use of WiFi
management probes as a data transport mechanism for physical
objects that are tagged with WiFi-enabled accelerometers and
are capable of determining their state-of-use based on motion
signatures. A local WiFi gateway captures these probes emit-
ted from the connected objects and stores them locally after
annotating them with a coarse grained location estimate using a
proximity ranging algorithm. External applications can query the
aggregated views of state-of-use and location traces of connected
objects through a cloud-based query server. We present the
technical architecture and algorithms of the proposed platform
together with a prototype personal object analytics application
and assess the feasibility of our different design decisions. This
work makes important contributions by demonstrating that it is
possible to build a pure network-based IoT analytics platform
with only location and motion signatures of connected objects,
and that the WiFi network is the key enabler for the future IoT
applications.

I. INTRODUCTION

The era of the Internet of Things (IoT) has arrived. As more
and more everyday objects get a digital makeover, they are
reshaping our experience with the physical world through new,
useful, exciting and sometimes entertaining smart services.
The common facet of all these connected objects (be it a home
appliance, a thermostat, a light or a wearable accessory) is
that they collect data that is produced by or about people to
offer value-added services. One service that is increasingly
becoming popular in this space is the search for physical
objects’ location and state. Although conceptually simple, this
service uncovers numerous application opportunities in the
area of physical analytics for personal, public and industrial
connected objects. Indeed, we expect that search will become
one of the most important services in the connected object
space, following the trend that we observed for the search for
documents (webpages, blogs, multimedia files, etc.) on the
web.

The problem of discovery and search of real-world entities
has been extensively studied in the literature. A number of
projects have extended the conventional keyword-based web
search methods to discover a ranked list of connected real
world entities (places and things) by leveraging static meta
data [1]–[3]. A variant of this approach is to locate and query
physical things by processing their sensor streams in real-
time [4], [5]. Real-world search has also gained substantial
attention from the industry, as multiple commercial products
are now available that use Bluetooth tags to locate objects with
smart phone applications [6], [7]. The former two approaches,

although useful, come with high deployment and management
costs due to dedicated platforms (ZigBee, RFID, Mote, etc.).
While in the latter, the search range is limited to the smart
phones’ proximity. Based on these observations, we argue
that it is the time to reflect on the role of these dedicated
sensing and communication infrastructures that are proven to
be limited in scale and adoption.

Fortunately though, WiFi is one of the wireless networks
that is ubiquitously available at a global scale. Upcoming WiFi
standards are power efficient with long range coverage capa-
bilities (e.g., IEEE 802.11ah) and WIFi chips are becoming
impressively small and low-cost1. We strongly believe that
WiFi network will be the key communication fabric in future
IoT applications across domains. Many past works have suc-
cessfully leveraged WiFi network signals for offering indoor
localisation [8]–[10] and thereby uncovered opportunities for
interesting location based services including people and space
analytics. In this work, we further extend this body of research
and explore to what extent WiFi network can be used for
sensing and learning about connected objects. Our approach is
based on the premise that connected objects’ movement data
extracted from WiFi network signals carries vital information
to model their spatio-temporal usage pattern.

To this end, we present a network-based platform in which
WiFi network signals provide the foundation for connected
object analytics. Physical objects are tagged with small WiFi-
enabled accelerometers that they use to determine their state-
of-use. These objects can report their state changes using
WiFi management signals [11]. These signals are captured
and stored by a local WiFi gateway after annotating them
with a semantic location label based on proximity ranging.
Personal object analytics applications can search and query
the aggregated view of these local data through a cloud-based
query server. Accordingly, we offer three contributions in this
work.

1) We are the first to show the feasibility of developing a
WiFi-only solution for connected object analytics which
radically minimises deployment and management cost.

2) We present the design, implementation and evaluation
of an end-to-end personal object analytics platform build
around only location and motion signatures of connected
objects. We show that these two pieces of information
are enough to develop useful IoT applications by illus-
trating a personal object analytics application.

1ESP chip used in this work costs $3 per unit including shipping.



3) We demonstrate how the design decisions and corre-
sponding algorithms used in this work address critical
technical challenges with respect to energy, inference
accuracy and computational overhead.

Finally, this work has also important secondary side-effects
for preserving end-users’ privacy as sensitive personal data
remains in the user premises with limited access and these
open up interesting opportunities to develop privacy-aware
physical analytics applications in the IoT space [12], [13].

II. DESIGN CHALLEGES & DECISIONS

The process of locating, querying, and presenting the aggre-
gated states of physical objects poses complex multi dimen-
sional challenges. In the context of this paper, we consider a
subset of these challenges which are detailed below2. These
design cardinals provide the foundation of our system design
decisions.

Uniform Features: Physical objects are diverse and het-
erogenous in terms of functionalities and descriptions. With
digital instrumentations, these objects are augmented with
additional functional features that are defined by the design-
ers without a common vocabulary [14], [15]. Due to this
heterogeneity, defining a uniform search feature is one of
the most challenging aspects of designing an IoT system. To
address this problem, we have limited the features into two
generic ones, namely location, and state-of-use. To further
simplify, the latter is determined by movement only with an
assumption that most physical objects’ motion characteristics
provide enough cues for determining their state-of-use, i.e., if
a physical object is detected to have constant motion over a
designated time window, the object’s is considered to be “in-
use” otherwise “not-in-use”. For most of the personal objects
that we consider in this work, this coarse grained state-of-use
is enough. Furthermore, we argue that these two features, i.e.,
location and state-of-use annotated with time, are sufficient to
generate useful physical analytics across various consumer IoT
applications, e.g., quantified self, energy awareness, predictive
maintenance, etc.

Seamless Configuration: A personal object analytics plat-
form should be easy to setup, function without manual calibra-
tion, and should include any objects. Most of the consumer-
faced connected objects operate in isolation with dedicated
applications. Hence, it is often difficult to interoperate with
these objects without contacting their cloud-hosted interfaces.
In our approach, we aim to include these connected objects
without relying on their native interfaces. In addition, we also
aim to include ordinary physical objects that are not connected
yet. We achieve this by using a small tag equipped with a
WiFi interface, an accelerometer and a battery. This tag is pre-
programmed and requires zero configuration. All that a user
needs to do is to attach, turn the tag on and associate the tag
with an object through a companion application. This tag is
then used to extract location and state-of-use data of a physical
object independent of its primary established functionalities.

2For a complete view on the design space please look at [4].

WiFi-based Proximity Ranging and Data Transport:
Indoor localisation is a heavily investigated topic with decades
of research [8]–[10], [16]. For the scope of this work, we
limit our discussion to Received Signal Strength Indication
(RSSI) based localisation. One class of indoor localisation
is proximity ranging that provides relative location instead
of absolute location. Essentially, in proximity ranging, when
a mobile object is detected by a single reference node, it
is considered to to be collocated with it. When more than
one reference node detects a mobile object, it is considered
to be collocated with the one that receives the strongest
signal. We argue that, for most of the consumer IoT appli-
cations, proximity ranging is enough as it can offer room-
level location with minimal calibration effort. Past research
on proximity ranging has used stationary physical objects
as reference points with rich semantic labels [1], [3], [17],
[18]. Grounded upon these works, we have also opted for
tagging stationary physical objects to act as reference points
(e.g., coffee machine area, kitchen, laundry room, etc.). As
discussed earlier, we use low-cost WiFi-enabled tags due to
the ubiquity of WiFi network. However, WiFi is known to have
high energy expenditure. To mitigate this energy challenge we
have taken two careful decisions. First, we use one of the WiFi
management frames, probe, for transporting state-of-use data
from connected objects [19] and thus avoid energy demanding
application level processes (e.g., HTTP based communication
that requires exchange of multiple packets to establish and
persist a connection). Second, we use an adaptive technique
to put the tag into the deep sleep cycle when no motion
is detected. These two optimisation decisions lead to a gain
of 30% on the battery life. These probes emitted from the
physical objects are also used for proximity ranging by the
reference nodes. We rely on a Support Vector Machine (SVM)
based classifier for proximity ranging with an accuracy of
84%.

Realtime Query with Dynamic Content: As discussed in
[4], there are multiple alternatives for query processing. Pull-
based approaches are demand driven, and provide real-time
dynamic content with reasonable communication overhead
(which is primarily caused by indexing and searching tasks).
Push-based approaches on the other hand, may or may not
have fresh data (depends on pushing scheme and frequency)
and often demand high communication expenditure. In our
approach, we have opted for a mixed solution, i.e., objects
push their state and location changes at real-time, but the data
remains in the local network. When a user queries for data, a
cloud-based query server pulls the data from the local network
after resolving the host location using an index service. We
argue that this decision offers a balanced approach, i.e.,
minimizes communication overhead without compromising
the data freshness.

Privacy-Aware Local Data Storage: Instrumented physical
objects essentially collect data to offer value-added services.
This ubiquitous data collection, unfortunately, raises the im-
portant issue of potential privacy and information exposure
risks [20]. There is a danger that people will not adopt



Fig. 1: System Architecture of the Proposed Platform.

connected objects if they do not believe their privacy is well
protected. As such, privacy-aware management of personal
data (to avoid ubiquitous tracking and profiling) is perhaps
the most important challenge for consumer IoT systems. In
this work, we advocate for a digital catalogue of personal
objects and therefore we have taken system design decisions
with very careful assessment of privacy risks. Grounded upon
the model of OpenPDS [13], we have opted for a local
repository that stores connected objects’ location and state-
of-use data and puts users at the center of control of their
data. To facilitate this, we have designed our system following
a cloudlet architecture [21], where the local WiFi gateway
acts as a data storage component, runs a proximity ranging
algorithm and provides only aggregated views of raw data to
external query services. In addition, due to the usage of WiFi
management frames for data transport, we also ensure that the
data associated with physical objects is geo-fenced and only
reaches to nearby gateways running relevant data acquisition
components. An advantage of these design schemes is that, it
opens up opportunity for willful monetization of personal data
as proposed in [12].

III. SYSTEM DESCRIPTION

The architecture of the platform is illustrated in Fig. 1.
Essentially, there are three components that work together
to provide the functionalities of the platform, i) Object Tags
responsible for emitting location and state data of physical
objects, ii) Home Node responsible for proximity ranging,
and local data storage, and iii) Query Server responsible
for executing application queries on the home node’s local
storage. In the following, we discuss these components and
their implementation details.

A. Object Tags

The purpose of the object tags is to emit the location
and state-of-use of the physical objects that are received by
the home node. In addition, some object tags also act as
location reference points, and receive signals from other tags.
Accordingly, there are two types of object tags in our system.

Mobile Object Tags: These tags are attached to physical
objects that are mobile in nature, e.g., a coffee cup, a vacuum
cleaner, a key, etc. These tags use the built-in accelerometers
to detect objects’ state-of-use based on their motion signatures,

and then emit the state information using WiFi management
frames.

Static Object Tags: These tags are attached to stationary
physical objects, e.g., a coffee machine, a washing machine,
etc., which are often electrically powered. Besides emitting
objects’ states, there tags can receive signals from mobile
object tags and can forward them to the home node through
persistent connections.

Object tags perform two important functionalities, i.e.,
determine the state-of-use, and then emit that state data
respectively. For determining the state-of-use, we leverage
only accelerometer based motion signature. This is captured
by modelling the velocity of physical objects with sinusoidal
waveform of acceleration in the 3D space, and is calculated
using equation 1.

v =
g ∗ ā
2πf

(1)

a =
√
x2 + y2 + z2 (2)

Here, v is the velocity, g is the gravity, ā is the average
acceleration (calculated with equation 2) over a time window
and f is the acceleration waveform over that time window.
This movement gives only a coarse grained state-of-use of
physical objects (i.e., if motion is detected over a time window
the object is considered to be “in-use” otherwise “not-in-use”).
However, it is neither complete nor generally applicable to
all kind of physical objects. Although additional sensors can
be used for detecting more advanced states, we have limited
ourselves to this basic motion signature in this work.

The object tags leverage the IEEE 802.11 standard’s man-
agement frames to propagate the states to the home node. In
particular, a Probe Request Frame, also referred as probe,
is a WiFi management frame that can be either directed
to a specific network, by indicating its SSID, or broadcast
to any network within range. Fig. 2 illustrates the structure
of a probe request frame. The body of a probe consists
of a set of options, and each option contains three fields -
Type, Length, Value. Type indicates what the option
is about, Length indicates the length of the Value in bytes.
An object tag sends probe requests every time the state of the
object changes. In our design, we use a dedicated SSID and a
single bit in the probe in that SSID value to reflect the state of
the object (1 being “in-use” and 0 being “not-in-use”). One of



the side-effects of using probes for data transport is that, it’s
propagation range is spatially constrained, thus providing an
implicit geo-fencing of the data emitted by a physical object

Fig. 2: Frame Format of IEEE 802.11 Probe Request.

The location of an object is determined through the RSSI
at the receiving ends (home node and multiple static object
tags).The calculation of RSSI is enabled through Radiotap,
the de-facto standard for encapsulating 802.11 frames for
injection and reception [22]. This encapsulation includes a 8-
bit Antenna Signal value that provides the RSSI. Home node
uses RSSI vectors to determine the proximity of a physical
object with respect to one of the stationary objects used as
location references.

Static object tags have an additional role in our platform,
i.e., they are capable of receiving data from mobile object
tags. Every time a static object tag receives a probe from
a tag, it forwards the probe packet to the home node. The
packet includes the state of the tag, and the RSSI value
annotated with the MAC address, timestamp, and a sequence
number. The sequence number is represented by 12 bits in the
Sequence Control field of the probe. Even though the
reception time of the same probe signal at various static object
tags differ slightly, they contain the same sequence number.
The home node uses the sequence number and the timestamp
information to assemble a RSSI vector representing single
signal received by multiple static object tags. This vector is fed
into the proximity ranging service to find the relative location
of the object.

Fig. 3: Object Tags, (a) ESP SoC construction for a Mobile
Object Tag, (b) An instrumented Inhaler with a Mobile Object
Tag and (c) Raspberry PI 2 Mobel B based Static Object Tag
with two WiFi interfaces.

We have implemented the mobile object tag with ESP8266
node [23] as illustrated in Fig. 3(a). This node is a low-
cost SoC with integrated WiFi, flash and MCU. It can be
programmed directly by flashing code onto the MCU. In
our prototype, we used this chip to tag a number of mobile

personal objects, such as an asthma inhaler as shown in
Fig. 3(b), a note book, a scooter, a vacuum cleaner, a coffee
cup, etc. The ESP8266 based nodes have been supplemented
with an accelerometer (Freescale MMA8452Q) to support
state-of-use determination. The accelerometer is also used to
implement a deep sleep strategy that allows the ESP8266 to
react to different movement profiles of the tag (e.g. sleeping
during quiet periods, waking on impulse or tap movements).
This strategy maximises the battery life of the tag.

The static object tags are implemented using a Raspberry PI
2 Model B [24]. The tags are powered and have two identical
WiFi interfaces (Ralink 5370), one used for capturing probes
coming out of mobile object tags, and the other for maintaining
a persistent connection to the home node over websockets.
Fig. 3(c) illustrates a prototype of static object tag. The probe
capturing functionality is implemented in C++ using the libtins
library [25]. The connection to the home node is built with
Node.js [26]. We used this to tag a number of stationary mobile
objects including a coffee machine, a washing machine, a dish
washer etc.

B. Home Node

Home node is the heart of our platform. It is designed
following a cloudlet architecture [21] in which functionalities
such as data storing, processing, etc. are not implemented in a
remote server in the cloud but at the edge of the network. The
home node hosts two important services. First, a proximity
ranging service that assigns a relative location to an object
using the network sensed information. Second, a data storage
service that stores objects’ information locally. We describe
these two services next.

Proximity Ranging Service: A proximity algorithm pro-
vides a symbolic location relative to a reference point. In our
platform, static object tags are used as reference points. When
more than one static object tags detect a mobile object, it
is considered to be collocated with the one that receives the
strongest signal. However, simply selecting the strongest signal
does not necessarily yield a reliable ranging performance due
to the non-deterministic signal propagation characteristics of
WiFi signals. So, we formulate this proximity ranging aspect
as a multi-class classification problem by dividing our space
in K non-overlapping zones, where each zone is represented
by a static object tag with a semantically rich location label,
e.g., living room, kitchen, laundry room, hallway etc. Each
of these zones has a distinct radio map (RSSI) signature
which is constructed by a minimal calibration phase, e.g.,
placing a tag at different locations within a zone and across
zones multiple times and recoding the transmissions signals
received at all the zones. After this training phase is completed,
our algorithm runs at real-time, i.e., it takes as input the
RSSI vector (assembled by combining the RSSI values from
the static objects tags that detect a mobile object) and tells
us in which zone the mobile object is located in a easily
understandable way (e.g., the key is in the hallway.).

Our algorithm relies on Support Vector Machine (SVM)
for the classification, and specifically leverages one-vs-one



classification scheme [27], [28]. One-vs-one classification uses
an underlying binary classifier to compare every pair of classes
and followed by a majority voting scheme to decide the
winning class.

For the SVM we have used a universal Gaussian kernel:

k(xi,xj) = exp(−||xi − xj ||2/2/σ2) (3)

where xi represents the vector of the RSSI values of a
mobile object tag received by the static objects tags.

Although the number of classifiers grows by K2 with
increasing K, the computational complexity of the training
and test phase are comparable to other alternatives, e.g., one-
vs-all approach [29] or the multiclass SVM [30] that grows
linearly with K. This is because each of the K(K − 1)/2
classifier uses less training data. Other algorithms can replace
the SVM as the baseline binary classifier, such as: Random
Forests [29]; Gaussian Processes [31]; Boosting [32]; or, Deep
Belief Networks [33]. But given the dimensionality of the
input space (less than 10) and the amount of training examples
(in the hundred-thousand samples), none of the above should
provide statistically significant improvements over the SVMs
results.

Data Storage Service: This service stores the information
about the physical objects. For every signal sent out by an
object tag, there is an entry in this storage that comprised of
the state and location of the object annotated with time and an
object identifier. This local database also contains meta data
about every object including a user friendly name, ownership,
object type and object description. This service has an external
facing interface that connects to the anchor points in the query
server (see next). This interface replies to external queries
with the information stored in this storage, however, only
aggregated data is served. External queries do not have access
to the raw data available in this storage.

Home node is implemented using an off-the-shelf WiFi
gateway, called Meshlium from Libelium [34]. A Meshlium
gateway has all the properties of a ‘real’ WiFi access point
and features a 500MHz x86 processor, two WiFi interfaces
(one of which acts as an access point by default) and runs an
embedded Debian Linux operating system. Both services are
implemented with Node.js and a SQLite database [35] is used
to store data.

C. Query Server

This component offers query services to external applica-
tions and comprises of the three elements as described below.

Anchor Points: As discussed earlier, all the data about
physical objects remains at the home node, i.e., at the edge of
the network close to the tracked physical objects. However, to
support queries on this data by the external applications, the
query server needs an access mechanism to different home
nodes. This is achieved by anchor points. An anchor point
maintains a persistent connection with a home node using
web sockets with failover support. Over this connection, an
anchor point forwards queries to a home node and receives
the query responses. Anchor points are implemented using

Node.js, and run in a virtual server that hosts the the query
server components.

Index Service: Our platform uses local storage to maintain
data about physical objects in the home node. An external
application posts a query to query server, and the query server
uses this index service to locate the home node that contains
the data relevant to the query. Index service is essentially a
key-value store. The keys correspond to the physical objects’
identifiers while the values correspond to the home node.
When a new object tag (mobile or static) is registered in
the system, the home node sends a registration message
together with the object identifier, timestamp and ownership
information to the anchor point that in turn relays it to this
index service. We have used B+ tree to implement this index
service [36], [37].

Query Service: This is essentially a query broker for
our platform. When a query request is received from an
external application, the query service first initiates a short-
lived connection with the index service to retrieve the index
of the home node and the corresponding anchor point. It then
initiates another short-lived connection with the anchor point
that eventually forwards the query to the home node. The
query may be about a single object, a number of objects or all
the objects that are associated with a home node. The query
can request the state and location of a physical object (or a
set of objects) at a specific time instant, within a time interval
(both usage and location traces). The query service is also
capable of limiting the number of queries that can be made per
unit time by an external application. Once the query service
receives the responses from the home node via the anchor
point, it forwards them to the external application. This service
is stateless and is implemented in virtual servers. This makes
it easy to scale the service as required. The Query service is
implemented with Node.js.

IV. PROTOTYPE APPLICATION

In the earlier section, we have described the architectural
components of our platform which, as a whole, enables the
development of privacy-aware personal object analytics appli-
cations. In this section we briefly present a mobile application
(developed both for Android 4+ and iOS 8.0+) that showcases
the feasibility of building this class of applications with the
proposed platform. The experimental settings include 5 static
objects and 5 mobile objects instrumented with object tags,
and a Meshlium-based home node. The application features a
HTML5 front-end and offers the following functionalities.

Seamless Configuration: One of our design challenges is
to reduce the complexity of end-user deployment and con-
figuration. This is achieved with our ready-to-run object tags
together with this application. Once a user attaches an object
tag (mobile or static) to a physical object, the user can use
this application to register the object in the system following
two simple steps i) search and discover the new tag and ii)
provide a friendly name (as illustrated in Fig. 4(b)). This phase
assumes that the mobile application is connected to the home
node, i.e., a regular WiFi access point. The access point pushes



Fig. 4: Prototype Personal Object Analytics App - (a) Dash-
board, (b) Registration Phase, (c) Analytics Summary, (d)
Usage Timeline.

the new tag to the application for registration. However, after
this registration phase is completed, the application does not
need to be connected to the home node any longer and can
query for the object’s status and location through the query
server.

Object Dashboard and Summary View: The application
offers an object dashboard that shows all the objects that are
in the home node as illustrated in Fig. 4(a). A user can pick
any object to see its spatio-temporal usage information in an
aggregated fashion as shown in Fig. 4(c).

Real Time Search: Finally, a user can search for the real
time status of any physical object. The result is presented in a
timeline that includes current spatio-temporal usage together
with last five entries in the system as depicted in Fig. 4(d).

V. EVALUATION

In the earlier sections, we have covered the end-to-end
design and implementation of the proposed platform including
it’s multiple architectural components and models. In this
section, we evaluate a subset of these components that we
consider are most interesting in the context of this work, i.e.,
power profile of the WiFi-enabled tag, inference accuracy of
the proximity ranging algorithm and computational overhead
of the home node. To have a realistic assessment of these
aspects we have made some assumptions: “a regular house-
hold has a single home node, 100 connected objects equipped
with WiFi-enabled accelerometers and 5 of these objects act
as location reference points (augmented with static object
tags). There stationary objects are placed at different locations
across the household to represent different areas. Each of these
connected obejcts can have 10 updates per day for both state-
of-use and location changes.”

Although, the number of updates assumed here is relatively
small, we argue that most of the household objects are not
moved or used on a daily basis. Therefore, this estimation
accurately captures the dynamics of a modern home [38].

A. Energy Assessment of the Object Tag

One of the design decisions that we have taken in this work
is to use WiFi-enabled sensor tags due to the ubiquity and

wider range of the WiFi infrastructure. However, compared to
other wireless standards (e.g., Bluetooth) WiFi has relatively
higher energy expenditure. Although we have used one of
the low-power WiFi chips available today, in this section we
evaluate its power profile based on our design decisions (e.g.,
using probes instead of application processes with deep sleep
cycles) and assess its feasibility in practical applications.

Fig. 5: Energy Assessment of a Mobile Object Tag - (a) Power
Profile of Different Test Configurations, (b) Understanding
Probe’s Behaviour and (c) Estimated Battery Life based on
Sensing Loads.

We begin by looking at the power profile with different task
configurations, baseline with the various background tasks of
the MCU, application process that continuously sends a TCP
packet of 49 bytes (the size of the probe frame) every 30
seconds and probe based data transport at the same 30 seconds
interval. We used data logging meter (Agilent 34410A) to log
the power consumption data every 100ms and each test was
run for a period of 30,000 samples (at 100ms intervals). Note
that this artificial test configuration is aimed at uncovering the
benefits of our design decision of using probe to transport
state-of-use data. Fig. 5(a) shows that in relative terms (i.e.
when the idle background current consumption is removed)
the probe based data transport approach offers approximately
30% improvement in the energy use. To further understand
the power profile of a probe, we looked at individual probe’s
behaviour (depicted in Fig. 5(b)) and observed that a probe
exhibits “one peak” - for the outgoing probe request.

Finally, in Fig. 5(c), we show that the battery life based on a
850 mAh battery is estimated to be approximately a year based
on a premise that a household object reports on an average 10
updates (state-of-use and location changes) with probes per
day. This is based on the published deep sleep consumption
of 78uA, a transmit consumption of 70mA, a 80% efficiency
of the regulator. The ESP8266 is a very capable platform for
WiFi-based sensing. Although the absolute energy gain with
probe based transport can be considered small, for applications
with long reporting interval the approach is attractive.

B. Inference Peformance of the Proximity Ranging Algorithm

To evaluate the performance of the proximity ranging algo-
rithm, we have divided our office space in five non-overlapping
zones (Fig. 6), each represented by a static object tag. For
this assessment, we again adopted an artificial setting which
was used to gather data and to validate the performance of
the classifier. During the data collection phase, we walked
around each zone with three tagged mobile objects (an inhaler,



Fig. 7: Confusion Matrix of the Proximity Classification for the (a) Scooter and (b) Inhaler (b) based on 140K Observations.

Fig. 6: Experimental Settings for Evaluatuing the Proximity
Ranging Algorithm.

a scooter, and a keyring). These tags were shielded in a
plastic enclosure. Each of these objects transmitted probes
every 100ms for an hour in each zone. We recorded the closet
zone manually as ground truth and annotated the records with
start and end time of the dwell period in each zone. This phase
yielded in a large collection of probe transmission records of
5 hours emitted from three mobile objects and captured by 5
stationary objects. This data is then is passed through a pre-
processing phase in which we leveraged the sequence number
and the timestamps to create an ordered collection of probes
for all transmissions as seen by different static objects.

We used the probes emitted by the keyring to train the
SVM classifier, and used the transmissions from the other two
objects to test the classifier’s performance. To fix the hyper
parameters of the SVM, namely σ in equation 3, we have
used a validation procedure, in which we used 80% of the
data for training and 20% for testing. In Fig. 7, we show the
confusion matrices between the five zones, rows represent the
estimated zones and columns the true zones. It can be seen that
the errors follow the map illustrated in Fig. 6 and the largest
errors between Zone A and B are due to the fact that these
zones do not have a physical separation as the other three. On
an average our algorithm achieved 84% classification accuracy.

C. Space and Communication Overhead in the Home Node

Finally, we provide a mathematical analysis on the com-
putational overhead incurred at the home node due to our
design decisions. Based on the assumptions mentioned earlier,
i.e., 100 connected objects (n), 5 static objects (m), and 10

status updates (λ) per day, we observe that the overall traffic
introduced by our platform in the WiFi network is about 45.5
KB on a daily basis3. In addition, every probe from a mobile
object tag prompts a maximum of m state update messages
from the static objects tags. Every state update includes a
timestamp, object id, RSSI measurement, sequence number
and state. Timestamp is a 64 bit value in new systems, we use
MAC address of the tag to identify the object which takes 48
bits and the state is a one bit value. RSSI takes 8 bits and the
sequence number is a 12 bit value. Since the state update is
delivered over a persistent connection between the static object
tag and home node over Wi-Fi, it includes TCP, IP, 802.11 and
Radiotap headers as well. In total, every state update message
takes 821 bits. Assuming static object tags can reach the home
node in a single hop, the amount of state update overhead in
a day mounts up to a little over 481 KB. Note that this traffic
is contained in the local network and does not go beyond the
home node. Current WiFi routers are more than capable to
handle such load in the network.

Each record in the home node database includes a times-
tamp, ID for the object, state, and location. In our system,
a mobile object can be collocated with one of the m static
objects. Hence, dlog2me bits are needed to represent the
location of an object. Given there are nλ in average updates
sent by the tags in day, the storage required to store all the
updates from object tags is nλ (113 + dlog2me) bits. With
the same numbers as above (n = 100,m = 5, λ = 10),
our system writes 14.16 KB per day to the database. In our
prototype, we use Meshlium WiFi gateway as a home node.
A Meshlium gateway has approximately 9 GB of available
storage. Assuming we can use 5 GB for object storage, our
system can seamlessly store data for 370255 days.

VI. LIMITATIONS AND FUTURE WORK

There are a number of limitations of our research presented
in this paper. Using WiFi probe as a data transport mechanism
is inherently insecure as an adversary can easily snoop on
the updates from connected objects. However, currently we
do not offer any encryption in our platform. We have shown
that avoiding application level communication process can
lead to substantial energy gain. However, it is indeed arguable
whether probe, a WiFi management protocol, can be subverted

3Recall that the size of each probe frame is 49 bytes including the
Radiotap header.



in this fashion against its original use. Probe is not the only
way to avoid application level processing. We can use other
management frames of WiFi standard or the data frame to
transport state data, which can then be used for relative
location annotation through proximity ranging.

In our current prototype, we have used only one home node
assuming the data ownership implicitly belongs to a single
household. However, our query server is designed to support
connected objects that can move from one home node to other.
The index service is able to locate the correct home node for
querying when multiple home nodes contain an object’s spatio-
temporal usage data. However, this requires a clear model and
definition of ownership which are currently not supported in
our platform.

As a future avenue of our work, we like to address the
above limitations, i.e., i) adding an encryption scheme to our
transport mechanism while exploring other WiFi frames for
data transport and ii) scaling our system to multiple home
nodes to support objects’ mobility. Furthermore, we aim to
deploy our system in multiple households to qualitatively
assess the feasibility of our system.

VII. CONCLUDING REMARKS

In this paper, we propose a platform that leverages WiFi
network to trace the location and state-of-use of connected
objects. We highlight a number a design decisions including
opportunistic data transport, privacy-aware storage, network-
based proximity inference, etc. that provide a foundation for
many future IoT applications beyond spatio-temporal analytics
of connected objects. Finally, this work makes an important
stride by demonstrating how wireless network can be used as
a true platform for designing user-centered applications in the
IoT space.
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